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Abstract

This thesis presents a cache-efficient probabilistic algorithm for approximating
maximum flows on undirected graphs using state-of-the-art methods. It draw
on general algorithmic advances in the maximum flow problem as well as recent
research on related problems in the parallel and distributed setting. These methods
escape the combinatorial formulation of the maximum flow problem and work
instead using gradient descent methods from convex optimisation. The thesis
presents a comprehensive survey of these techniques, highlights open problems,
and develops novel cache-efficient counterparts to the elementary algorithms
involved in the construction.

The algorithm presented here requires O(m1+o(1)

DB ε−3) I/Os in the external
memory model and succeeds with high probability. Here D is the number of
disks, B is the number of records transferred per disk per I/O, and ε measures the
quality of the approximation. Note that this becomes almost linear asymptotically.
In anticipation of future improvements to the super-linear overhead, the thesis is
structured as a general framework in which individual components can be easily
substituted.
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Chapter 1

Introduction

With data sizes increasing rapidly, research has for many years focused on parallelising
algorithms across multiple nodes. However, individual machines have also greatly
grown in capability, and it was recently demonstrated that simple graph problems
can now be solved on a single multicore node in practice, even for enormous graphs
[DBS21], by leveraging cache-aware implementations of modern parallel algorithms.
This bachelor thesis surveys the extent to which this approach could become applicable
for more complex problems by studying the modern approximation algorithms for the
maximum flow problem from the perspective of theoretically cache-efficient algorithm
design.

To do so, this thesis translates current state-of-the-art algorithms from the parallel
and distributed setting into efficient implementations in the external memory model,
a computational model that studies the design of cache-efficient algorithms. Exact
techniques for the maximum flow problem have been notoriously hard to parallelise
efficiently with provable performance guarantees,1 and similar issues plague the design
of a cache-efficient exact algorithm. Approximate algorithms that achieve a solution
within (1− ε) of optimal have on the other hand seen much progress in recent years
after the work of Christiano et al. [Chr+11], and some parallel or distributed versions
are known [Ble+13]. This thesis follows the work of Sherman [She13], who devises a
gradient-descent based solver for the (1− ε)-approximate maximum flow problem,
which was also used by Ghaffari et al. [Gha+18] for an algorithm in the distributed
setting.

In doing so, the thesis serves two purposes: (i) as a self-contained survey of existing
methods (translated to the external memory model that will be defined in the next
section), with proofs (loosely) taken either from the original work and if necessary
augmented with extra steps, or reproduced entirely when simpler methods suffice.
Later improvements to sub-problems etc. are incorporated where applicable, aiming to
depict the current state-of-the-art as much as possible. As a result of the translation to
the EM model, some new algorithms for elementary problems are developed in this
thesis. Additionally, (ii) the thesis attempts to serve as a basis for future research in
resolving the main remaining bottleneck, the computation of a low-stretch spanning
tree. Multiple approaches to the problem are given, and it is discussed what would be
necessary for omitting this problem entirely.

1In fact, the problem is shown to be P-complete [GHR95], and thus admits no deterministic
polylogarithmic-depth exact PRAM solution unless P = NC. Moreover, the maximum flow problem is
log-space complete [GSS82], i.e. any exact and deterministic algorithm requires more than O(polylog(n))
space, hence no ‘trivially’ cache-efficient algorithm can exist.
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CHAPTER 1. INTRODUCTION 4

This work is one of few resources, if not the only resource, that collects all the results
that combine to form Sherman’s maximum flow algorithm into a single document.
While most of the theorems and lemmas presented here are not novel themselves, great
care has been taken to introduce a consistent and unified notation, making the thesis a
self-contained reference for the topic. Proofs are augmented with additional details
necessary for those new to the rather specific field. Folklore results that are often only
alluded to in original works are formalised and proved in detail.

1.1 The External Memory Model

The external memory model, or short EM model, is an alternative computational
model to the RAM model for analysing the runtime of computations on a single
machine. Instead of concerning itself with the number of computational steps, the
model recognises that large problems are often I/O-bound on modern hardware, and
instead considers the number of I/O accesses to some external memory required to
perform the computation. In the initial publication due to Aggarwal and Vitter [AV88],
the authors argued that the internal memory (i.e. RAM) of machines was too small to
hold large problems entirely, and hence solving large problems would require frequent
accesses to a set of disks for fetching parts of the input and storing intermediate results.
The model has remained relevant even today: In some contexts, such as embedded
systems, memory can still be a limiting factor. But even large, modern machines
with ample of internal memory have CPUs with only limited cache sizes. Aggressive
pipelining has made computations themselves incredibly performant – but only up to
the point when data must be fetched from main memory, which throws a wrench into
the pipelined execution, and costs not only the hundreds of CPU cycles of fetching
data from main memory, but also the tens of cycles introduced by a pipeline stall. This
implies that algorithms which perform frequent random accesses to main memory
will not benefit from most of the gains introduced by modern hardware and perform
considerably worse than algorithms that are carefully designed to make good use of
processor caches and prefetchers that predict and load data from memory even before it
is used.

Formally, the external memory model views memory as containing M records,
such as a machine word or a vertex of a graph,2 that can in a single I/O request
transfer B consecutive records to or from external memory, and do so concurrently
for D blocks within the same I/O request [AV88]. For example, iterating over an
n-record list in external memory would require n

DB =: scan(n) I/Os. Sorting this list
requires Θ( n

DB logM/DB
n

DB ) =: sort(n) I/Os in the average and worst-case, as proved by
Aggarwal and Vitter [AV88] (the lower bound holds for comparison-based sorts).

Note that this model carries over well to the modern setting of CPU caches fetching
data from SDRAM, where accessing a single word must load the entire row of B
words, which is then transferred to the CPU as a burst; moreover multiple I/O requests
can be made in parallel to D different banks. For this reason, we will refer to EM
algorithms also as cache-efficient algorithms. Some important details are however not
captured: Modern architectures allow memory requests to be pipelined, and hardware
prefetchers make predictable memory access patterns much more efficient. Moreover,
cache eviction policies are not part of the model. In general however, designing complex

2Throughout the thesis, we make the practical assumption that the record size is always large enough
to store unique identifiers for vertices and edges, i.e. that the record size is at least 1 + 2 log2 n bits.
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EM-efficient algorithms typically relies only on a few well-structured data access
primitives such as sorts and scans, which play well with all of these considerations.

It is also worth noting that many EM algorithms rely on sorting to structure their
data accesses. For large values of n but fixed M, D, and B, this could eventually require
more I/Os than a naive, unstructured algorithm due to the logarithmic overhead of
sorting. For all practical values of n however, the algorithm will still outperform a
naive algorithm, precisely due to the design of modern hardware, which in practice
makes sorting very efficient [San00].

Designing EM-efficient algorithms is hard for a number of reasons. Most notably,
algorithms from the RAM model seldom carry over to become efficient EM algorithms,
and hence EM algorithms need to be designed from the ground up. Even simple routines
such as depth-first-search have no efficient EM counterpart; a major design constraint
for EM graph algorithms is to find ways of avoiding expensive graph traversals such as
DFS. Fortunately, the ideas that lead to efficient parallel or distributed algorithms often
also lead to efficient EM algorithms, and the combined body of research from these
areas has by now become substantial. However, black-box techniques for translating
results from one model to another are often not good enough: They generally require
strong assumptions about the algorithms that need to be validated, possibly requiring
modification of the algorithm to make it EM-efficient. For example, black-box sim-
ulation techniques for PRAM algorithms as efficient EM algorithms exist, but make
limitations on the size of memory used by the PRAM algorithm, and perform best
when this memory size decreases exponentially throughout the execution depth of the
PRAM algorithm [MZ03]. These assumptions must be carefully validated for the more
complex PRAM algorithms, hence it can be preferable to translate the underlying ideas
to the EM model instead.

1.2 Related Models

Let us briefly remark on some of the related computational models. The semi-external
model for graph algorithms assumes that |V| ≤ O(M). Sometimes semi-external
algorithms can be combined with external-memory reduction steps to yield efficient
algorithms [ACZ12]; in the case of approximate maximum flow however, we note
that sparsification (see Chapter 3) yields graphs where m ≤ n polylog(n) and hence
the semi-external assumption would almost admit an internal-memory algorithm, so
studying the fully external model seems more insightful.

The cache-oblivious model [Fri+99] requires algorithms to be efficient independent
of the cache parameters. This more accurately models the deep cache hierarchies
encountered in real-world systems, where optimising for the parameters of only one
cache level would neglect the other cache levels. By making the algorithm independent
of cache parameters, it will automatically perform well on arbitrary hierarchies. The
model assumes a fully associative cache with optimal replacement. Algorithms that
rely only on sorts and scans are in general immediately cache-oblivious. We note that
the maximum flow algorithm presented in this thesis is immediately cache-oblivious,
but do not discuss this explicitly in the thesis.

The parallel EM model [Arg+08] gives each processor a private cache of M records,
connected to a shared external PRAM memory, making it a natural extension of the EM
model to parallel algorithms. We note here that this thesis does not make explicit use
of the parallel EM model, because the main algorithm developed here is a high fan-out
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recursive algorithm, and hence parallelises readily at least after the first recursion, with
computations on individual processors being EM-efficient by design.

The single-pass and multi-pass streaming models [HRR98] study algorithms that make
one or a small (polylogarithmic) number of passes over the adversarially-ordered input
(the stream), possibly modifying it between passes. The goal is to find algorithms
that require only few passes, while using only a small (polylogarithmic) amount of
working memory. These algorithms yield good semi-external memory algorithms, but
the models are otherwise not immediately comparable (since the working memory can
be accessed arbitrarily often during a pass of the input). However, the techniques used
to achieve good streaming algorithms can carry over to PRAM and EM algorithms
[BEL20]. The semi-streaming model [Fei+04] increases the working memory to at most
O(n polylog(n)). This is more suitable for graph traversal algorithms, but makes the
approximate maximum flow problem essentially trivial after sparsification, which can
be performed efficiently in this model [GKK10].

1.3 Related Work on Maximum Flow

We now switch our focus towards the maximum flow problem. Since this problem
was originally formulated only for directed graphs, let G = (V, E) for now be directed
and consider the standard formulation of finding the maximum flow from some
source vertex s ∈ V to the sink t ∈ V, subject to the usual flow constraints. The
perhaps most famous algorithm solving this problem was given by Ford and Fulkerson:
Any given flow can be iteratively improved up to reaching the maximum flow by
finding augmenting s-t paths in the residual network. Many faster algorithms have been
developed from this idea: Dinitz’s algorithm (sometimes also referred to as Dinic’s
algorithm) restructures the problem to maintain more information from previous BFS
paths between iterations, and achieves a running time of O(n2m) [Din06] (where
n = |V| and m = |E|). Taken further, one can find entire augmenting DAGs of
increasing BFS distance from s to t [Tar84], achieving a running time of time O(n3) or
O(n · (BFS(n, m) + n2/B)) I/Os on general graphs.3 While asymptotically inefficient
compared to modern algorithms, it is conceivable that this algorithm performs very
well in practice on moderate input sizes due to its simplicity.

Breaking the cubic barrier with an augmenting-path algorithm seems to require the
use of special data structures to accelerate path queries in the dynamically changing
residual network, such as the use of dynamic trees [ST81]. An I/O efficient construction
of such data structures is not necessarily impossible, however previous methods for
achieving I/O-efficient tree-like datastructures don’t appear to be applicable. Many
related algorithms based on similar path-query datastructures are known, all of which
are plagued by this same difficulty.

A more promising approach for a cache-efficient algorithm might be the push-
relabel paradigm: Instead of globally increasing the flow while respecting all con-
straints, the push-relabel algorithms locally augment the flow without respecting flow
conservation, but then converge to a valid maximum flow. Parallel and distributed
versions of this method are known [GT86], and some heuristics are used in practice for
increased performance, such as in the empirically cache-aware implementations due to

3On directed, acyclic graphs, the performance improves to O(n sort(m)) I/Os. The idea is to employ
the O(n sort(m))-I/O algorithm for topological sorting due to Ajwani, Cosgaya-Lozano and Zeh [ACZ12]
in conjunction with a version of Karzanov’s O(n2)-time blocking flow algorithm due to Tarjan [Tar84].
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Bader and Sachdeva [BS05] and Delong and Boykov [DB08], or the GPU-accelerated
implementation due to He and Hong [HH10]. However, none of these come with
good, provable worst-case asymptotic bounds. Without using dynamic trees, the best
provable bound for this paradigm of algorithms in the RAM model is time O(n2√m)
[CM89], which is achieved when globally ordering the local operations in a suitable
way, making it difficult to achieve the same bound in a cache-efficient algorithm. In
any case, the bound falls short of the Õ(nm) time achieved by modern algorithms such
as those of Orlin and Gong [OG21].

Finally, a new set of techniques has been built around the use of electrical flows, which
are flows induced by treating the reciprocal capacities 1/ce as ‘electrical’ resistances and
iteratively finding vertex potentials φv, inducing a flow 1

ce

(
φu − φv

)
on the edge (u, v),

such that a maximum flow can be built from a combination of electrical flows [Chr+11].
Electrical flows posses desirable linear-algebraic and spectral properties, allowing for
asymptotically efficient algorithms based on advances in graph sparsification and
Laplacian system solving [ST14]. These algorithms are generally (1− ε)-approximate
[Chr+11; LRS13], but an exact algorithm for directed, unit-capacity graphs is also
known [Mad13; KLS20]. When combined with interior-point methods, algorithms for
integer-capacity graphs with runtime Õ((m + n3/2) log U) and better can be achieved
[Bra+21; GLP21], where U is the capacity ratio U = maxe ce/ mine ce. This constitutes
the current state of the art for exact maximum flows on integer-capacity graphs with
small capacity ratio.

The (1− ε)-approximate algorithm of Sherman [She13] that this thesis follows is
loosely inspired by the electrical flow approach, although it abandons it entirely and
an alternative explanation (given in the next section) is perhaps more approachable.
As already noted, a distributed variant of Sherman’s algorithm is known [Gha+18].
This thesis incorporates some later improvements to some of the problems involved in
the construction, while replacing the parts specific to the distributed model with their
external-memory counterparts. It is difficult to determine exactly the current state-of-
the art in (1− ε)-approximate algorithms, because many related approaches have been
published, differing only in polylogarithmic runtime factors, whose exponents evolve
rapidly in the presence of later incremental improvements to perhaps superficially
unrelated problems. The design of Sherman [She13] is however the basis of most
of these algorithms, and falls within the general category of current state-of-the-art
almost-linear-time approximate algorithms.

Other candidates for a basis of this work could be the work of Kelner et al. [Kel+14],
who independently derive a similar algorithm to that of Sherman. They however
require the construction of an oblivious routing scheme, which is effectively an oracle for
finding approximate maximum flows with low accuracy. The same object can be used
in the algorithm of Sherman. In a sense, if we can implement the approach of Kelner
et al. efficiently, then we can also implement the algorithm of Sherman efficiently, but
not vice-versa.

Peng [Pen16] improves Sherman’s algorithm from O(m1+o(1)ε−3) to Õ(mε−3)
(where Õ hides substantial polylogarithmic terms). His process involves a circular
reduction of a modification of Sherman’s algorithm to itself. Although the algorithms
differ, they suffer from the same bottleneck of computing a low-stretch spanning tree (see
Chapter 4).

Recent work due to Kyng et al. [Kyn+19] also presents a strong generalisation of
the maximum-flow problem that can be solved with a closely related algorithm. Their
algorithm again reduces to the low-stretch spanning tree problem that we will find to
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be hard to solve cache-efficiently. Hence studying Sherman’s algorithm is also a first
step towards a cache-efficient version of the more general algorithm due to Kyng et al.,
while being less complex.

1.4 Overview of this Thesis

By translating the work of Sherman [She13] to the EM model, we improve on the
previous best-known bounds for approximate maximum flow in the EM model (c.f.
Table 1.1) – note that the problem has not been previously studied in the EM model,
and hence previous bounds are based on naive implementation of state-of-the-art
algorithms.

To motivate the remainder of this thesis, we must first introduce some basic notation.
We will write flows as vector f ∈ Rm

≥0 index by the edges E; fe is therefore a flow
amount on the edge e. Likewise, capacities are vectors c ∈ Rm

≥0, and the capacity on an
edge e is thus ce.

Let us now take a step back and divide the algorithms from the previous section into
three major categories: (i) The augmenting-path algorithms that iteratively find paths
(or even subgraphs) in the residual network, (ii) algorithms based on the push-relabel
approach that locally improve the solution in the residual network, and (iii) modern
approximation algorithms that use iterative solver techniques. All of these algorithms
have in common that they iteratively improve the solution, either in terms of improving
the flow, or in terms of reducing violation of the flow constraints to converge to an
optimal solution. In somewhat more precise terms, virtually all algorithms can be
expressed as starting in iteration i with some (almost-)flow f (i), and producing a flow
f (i+1) = f (i) + f̃ (i). This perspective allows us to escape the combinatorial formulation
of the problem: If we are able to take large, global steps f̃ (i) as vectors, then we can
hope to construct a fast algorithm. The challenge is to find large steps that, after taking
all steps to arrive at a final flow f , still guarantee f to uphold the flow constraints.
At a high level, the idea then is to construct an algorithm to compute large steps f̃ (i)

while also providing some mechanism to uphold the flow constraints for the final flow
f . This is the approach taken by Sherman [She13], and it is the approach that this
thesis studies, so we begin by making the idea somewhat more precise and providing
a rough intuition.

A convenient reformulation of the maximum flow problem for this purpose is
the equivalent congestion minimisation problem: Instead of seeking to maximise the
value of the flow, we seek to minimise the congestion congc

f (e) = fe
ce

on the edges
while achieving a unit-valued flow from s to t. Then by scaling up the flow so that

Graph Previous best bound This thesis

Capacitated and undirected Õ(mε−3) [Pen16] O(m1+o(1)

DB ε−3)
Expander graphs Õ(mλ−2

2 ε−3) [She13] Õ( m
DB λ−2

2 ε−3)

Table 1.1: I/O Bounds of the approximate maximum flow algorithms developed in this
thesis. Note that previous algorithms were not designed to be cache-efficient. We use
Õ to hide lower-order terms. For expander graphs, λ2 is the second-largest eigenvalue
of the graph Laplacian. The dependence on ε can be improved in some cases, see
Section 6.3.
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the maximally-congested edges have congestion one, we recover the solution to the
maximum flow problem (this is made precise in Section 2.2). In fact, we can understand
any of the iterative-improvement algorithms from this perspective: Simply divide every
edge’s flow by the current value of the flow after every iteration; if a maximum flow is
achieved then the congestion of the unit-valued flow is minimised.

Our requirement for the step-finding algorithm in the congestion-minimisation
formulation is that the final flow f should (i) route one unit of flow from s to t, and
(ii) satisfy flow conservation at every other vertex. A key insight is that both these
constraints can be combined elegantly by reformulating the problem as demand routing:
Given a demand bv for each v ∈ V, demand routing asks to find a flow that has excess
exactly bv at vertex v. For the unit-flow problem, we have bs = −1, bt = 1, and bv = 0
everywhere else. In an iterative algorithm that works its way towards routing the unit
flow, every step tries to satisfy the residual demands left by the flow excesses of the
previous steps, thus ‘cleaning up’ after the violated flow conservation constraints and
working towards a unit-valued flow.

Intuitively then, we want every step f̃ (i) of the algorithm to respect two goals: (i) to
reduce the maximum congestion of the flow f (i) + f̃ (i) in order to solve the congestion
minimisation problem, and (ii) to reduce congestion required to route the remaining
demands after taking the step, so that after everything is said and done, the flow
constraints can be satisfied: Once the remaining demands become small enough, we
will route them in some trivial way to satisfy the constraints exactly, while taking care
not to increase the congestion induced by the final flow too much. Let us make these
desiderata for the step f̃ (i) somewhat more precise as a potential function that we aim
to (approximately) minimise to find f̃ (i):

Define C = diag(ce1 , . . . , cem) to be the m×m diagonal matrix of edge capacities
and note that ‖C−1 f‖∞ measures the maximum edge congestion of a flow vector f .
Let B be the n×m incidence matrix of the directed graph G given by

(B)v,e =





−1 if e = (v, ·)
+1 if e = (·, v)
0 otherwise

For a flow f , (B f )v is the flow excess at v. A naive potential function Φ( f̃ ) that
implements the intuition discussed above for some demands b is then

Φ( f̃ ) = ‖C−1 f̃‖∞ + optG(b− B f̃ )

where optG(b− B f ) is the maximum congestion incurred by an optimal solution for
routing the residual demands b− B f . Indeed, observe that Φ( f̃ ) is optimised when
f̃ is an optimal flow, and thus by optimising Φ( f̃ ) to within some factor (1 + δ), we
achieve that (i) f̃ has low congestion, and that (ii) the residual demands b− B f̃ can be
routed with little additional congestion.

In practice, we cannot hope to compute optG(b− B f ) exactly, and thus we will
make due with an approximation operator R for G that satisfies, for any demands b̃
and some constant α,

‖Rb̃‖∞ ≤ optG(b̃) ≤ α‖Rb̃‖∞

and call it an α-congestion-approximator. In other words, the approximator R is construc-
ted such that it underestimates the congestion by at most an α-factor, allowing us to
later bound the number of iterations to (approximately) minimise Φ( f̃ ).
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undirected max-flow

flow packinglow-stretch tree

j-tree

sparsification

gradient descent

R

Madry’s Decomposition

Figure 1.1: An overview of the reduction process for Sherman’s algorithm.

The minimisation of Φ( f̃ ) will be based on gradient descent. We require the
operator R to be linear to facilitate this process.4 As such, R can be thought of as
matrix, though we are only ever interested in computing Rb (and, for computing
gradients, matrix-vector products of the form RTv), so we will never construct R
explicitly as a matrix. We will instead use as R a convex combination of graphs that
approximate the cut-flow structure of G. Computing Rb under this interpretation
amounts to routing b in the approximating graphs, which is simple if these are e.g.
trees. Note that even if computing R turns out to be expensive in terms of constant
factors, this only needs to be done once for any given G, and the same R can be used
throughout the entire optimisation procedure.

We also have to ensure that upon termination, the final residual demands can
be routed easily, without increasing the congestion too much. The crucial idea of
Sherman is to over-emphasise the term for the residual congestion by a factor of two
to accumulate a guaranteed ‘slack’ between f̃ and a (1 + ε)-optimal solution, making
room for the routing of the final residual demands. This will be better understood from
the analysis in Chapter 6, Section 6.1. We are left with the following potential function:

Φ( f̃ ) = ‖C−1 f̃‖∞ + 2α‖R(b− B f̃ )‖∞

A step of the algorithm requires us to minimise Φ( f̃ ) approximately (taking care of the
supremum norm using standard approximations) for the current demands, compute
the residual demands for the next iteration, and iterate until some trivial solution
suffices. What remains to be done is to find a good congestion approximator R for
general graphs, and to prove correctness and runtime of this construction formally.

For special cases of graphs, simple and efficient constructions of R can be made.
In the general case however, we will rely on a rather involved reduction process
proposed by Madry [Mad11] that computes a cut-approximating distribution of trees.
At a high level (c.f. Figure 1.1), this reduction involves a flow-packing procedure that
queries a large set of graphs H on V through an oracle to produce a distribution over a
small subset of these graphs. The querying oracle is built around the construction of
low average-stretch spanning trees. These are spanning trees that, on average, preserve

4Linearity of R is useful also for other optimisation methods such as coordinate descent [ST18].

Lukas Gianinazzi
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Figure 1.2: j-Tree with j = 4.

distances between edge endpoints from G within some multiplicative factor. The set of
graphs H produced by the flow packing will not have a structure directly amenable to
solving the demand-routing quickly, so we will transform these graphs into j-trees (c.f.
Figure 1.2), which are disjoint trees connected to some arbitrary, smaller graph on j
vertices. By recursively decomposing these j-trees, we obtain a convex combination
of trees that overall approximates the cut-structure of G well. Unfortunately, this
reduction process is only defined for undirected graphs.

This thesis is structured as follows: In Chapter 2, the congestion minimisation
problem is stated formally, and some preliminaries are introduced: A collection
of cache-efficient subroutines is presented, and the flow packing problem is studied.
Chapter 3 is devoted to sparsifying graphs by removing edges while keeping the value
of every cut almost unchanged; this will greatly aid the performance of later stages
of the algorithm. In Chapter 4, cache-efficient constructions for low-stretch spanning
trees are discussed. In Chapter 5, some congestion approximators for special cases are
discussed, and the construction of a general approximator based on a decomposition
by Madry [Mad11] is given. Then in Chapter 6, the maximum flow algorithm described
so far is stated formally and analysed.



Chapter 2

Preliminaries

2.1 Undirected Maximum Flow and Edge Congestion

As noted in the introduction, the construction of a congestion approximator will
constrain us to undirected graphs. We now make the notation for this problem precise
and prove some key structural lemmas. We still interpret flows and capacities as
m-dimensional vectors f , c indexed by the edges E, but allow the flow to also take
negative values:

To have well-defined notions of inflow and outflow in the undirected setting, fix an
arbitrary1 orientation ~E = {(u, v), . . .} of the edges E, and interpret negative flow values
fe < 0 as flowing ‘against’ the direction of that edge. More concretely, we define inflow
and outflow to entire (vertex-induced) cuts in G based on an arbitrary orientation ~E:
For any disjoint subsets S ⊆ V and T ⊆ V with S ∩ T = ∅ and S, T 6= ∅, write the set
of edges from S to T as

S E→ T = {(u, v) ∈ ~E | u ∈ S, v ∈ T}

The total signed flow across the cut S E→ T is then

f
S E→ T

= ∑
e∈(S E→ T)

fe − ∑
e∈(T E→ S)

fe

where the signs of the fe depend on the orientation ~E. For singleton sets {v}, we will
sometimes abbreviate {v} → V \ {v} as just ‘v →’ and write e.g. fv→. With this, the
‘inflow’ minus ‘outflow’ at a vertex v, or excess at v, is given by fv→.

The undirected maximum s-t flow problem asks to find an assignment of possibly
negative flows fe ∈ R to capacitated and arbitrarily oriented edges e ∈ E with capacities
ce ≥ 0 on an undirected graph G = (V, E, c), such that (i) the flow from s to t given by
fs→ is maximised, (ii) all capacities are respected in the sense that | fe| ≤ ce for all e,
and (iii) the flow is conserved at all vertices except s and t, i.e. for any v ∈ V \ {s, t},
fv→ = 0.

The s-t flow problem can be generalised to the demand routing problem, where we
have multiple sources and sinks by asking that the flow excess at vertex v is exactly

1The orientation itself is irrelevant, however it is important to consider it to be fixed for any given
graph so that the signs of any two distinct flows f (1), f (2) are defined in terms of the same orientation.
Moreover, the orientation should be preserved for subgraphs. We could define a fixed orientation by for
example mapping vertices to integers and using the total order on the integers to orient the edges, i.e.
(u, v) ∈ ~E ⇐⇒ {u, v} ∈ E ∧ u ≤ v.

12
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fv→ = bv for some demand vector b ∈ Rn indexed by the vertices V. Similar to the
notation above, for a subset S ⊆ V, write

bS = ∑
v∈S

bv

We say that the demands are valid when bV = 0, i.e. when there exists some flow
(possibly exceeding capacities) that routes b. The objective in this formulation is not to
find the maximum flow (the flow value is already defined by b), but to find the flow f
that minimises the maximum edge congestion cong f (e) =

| fe|
ce

. The flow f is said to be
feasible when it respects all capacities, i.e. when it has maximum congestion at most
one.

Finally, the capacity matrix C ∈ Rm×m and incidence matrix B ∈ Rm×n are as
defined in the introduction; recall that C = diag(ce1 , . . . , cem) is the diagonal matrix of
edge capacities, such that C−1 f is the vector of (signed) edge congestions under f , and
for the incidence matrix B, (B f )v measures the demand satisfied by a flow f on the
vertex v.

With this out of the way, we are ready to formally state the congestion minimisation
problem:

Definition 2.1 (Minimum Congestion Flow Problem). Given an undirected, capacit-
ated graph G with valid demands b ∈ Rn and edge capacities c, the minimum congestion
flow problem asks to find an assignment of flow f ∈ Rm to the edges such that the excess
at every vertex v ∈ V is bv, i.e. B f = b, and the maximum edge congestion ‖C−1 f‖∞ is
minimised, i.e. the problem asks to solve

min ‖C−1 f‖∞ subject to B f = b

Denote by optG(b) the optimal value of this problem on the graph G with demands b.�

Somewhat surprisingly, an immediate reduction from the directed to the undirected
flow problem on the same graph size (up to constant factors) exists [Mad11]. However,
the construction falls apart when using approximate max-flow algorithms, as will be
discussed in Section 7.3.

The other direction, reducing the undirected to the directed case, is much easier:

Lemma 2.1. Let G = (V, E, c) be some undirected, capacitated graph, and let b be valid
demands on G. Consider an arbitrary orientation ~E of the edges E, and denote for e = (u, v) by
~e the edge (v, u). Let ~G = (V, A,~c) be the directed graph resulting from adding arcs e and ~e

for each e ∈ ~E with capacity ce each. If ~f is a routing of b in ~G, then f where fe = ~fe − ~f ~e is a
routing of b in G.

Proof. We prove that flow excess of f at every vertex v ∈ V is exactly bv. Compute

fv→ = ∑
e∈({v} ~E→V\{v})

fe − ∑
e∈(V\{v} Ē→{v})

fe

= ∑
e∈({v} ~E→V\{v})

(
~fe − ~f ~e

)
− ∑

e∈(V\{v} ~E→{v})

(
~fe − ~f ~e

)

= ∑
e∈({v} A→V\{v})

~fe − ∑
e∈(V\{v} A→{v})

~fe

= bv
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where we use that if e ∈ ({v} ~E→V \ {v}), then ~e 6∈ (V \ {v} ~E→ v), but ~e ∈ (V \
{v} A→ v).

2.2 Max-Flow Min-Cut Theorem for Congestion Minimisation

The congestion minimisation formulation is fully equivalent to the maximum s-t flow
problem, in the sense that both problems easily reduce to a single invocation of each
other. An optimal routing of demands bs = −1, bt = 1, and bv = 0 otherwise, has
maximum congestion exactly 1/ν, where ν is the value of a maximum s-t flow: If the
congestion were any less, then we could scale up the routing to arrive at an s-t flow of
value greater than ν. If the congestion were any more, then we could instead use the
s-t flow, but scaled down by 1/ν.

Likewise, a routing of any valid demands b can be obtained using a single maximum
s-t flow computation. This is made more precise in Lemma 2.3, but at a high level,
one can attach an artificial source s and sink t, with an edge (s, v) of capacity −bv for
all v with negative demands bv < 0, and an edge (v, t) of capacity bv for all v with
positive demands bv > 0. Then computing a maximum s-t flow and removing s, t
yields a routing of the demands b. A minor caveat is that the capacities need to be
scaled appropriately such that the s-t flow computation does not run into capacity
limits inside the original graph.

This reduction leads to a direct analogue of the well-known max-flow min-cut
theorem for the congestion minimisation formulation, which will play a crucial role
throughout the thesis. To ease notation in preparation for the theorem, denote the
set of edges crossing the cut between S ⊆ V and T ⊆ V, where again S ∩ T = ∅ and
S, T 6= ∅, as

S E↔ T = {{u, v} | u ∈ S, v ∈ T}
and write the capacity of the cut S E↔ T as

c
S E↔ T

= ∑
e∈(S E↔ T)

ce

Whenever E is implied from context, write only S↔ T.

Theorem 2.1 (Max-Flow Min-Cut Theorem for Congestion Minimisation). Let b be ar-
bitrary valid demands and c be arbitrary capacities for a connected, undirected graph G. Then
for any cut S ⊆ V,

|bS|
cS↔V\S

≤ optG(b)

The bound is tight in the sense that

optG(b) =
|bS|

cS↔V\S
⇐⇒ S ∈ arg max

S⊆V

|bS|
cS↔V\S

The theorem follows from bounding optG(b) from below and above as in the standard
max-flow min-cut theorem:

Lemma 2.2. Let S ⊆ V be arbitrary. Then for any valid demands b and capacities c,

|bS|
cS↔V\S

≤ optG(b)
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Proof. Assume that every edge has congestion strictly less than |bS|
cS↔V\S

. Any routing of

b must flow the demands |bS| across the cut S, hence

|bS| = | fS→V\S| ≤ ∑
e∈(S↔V\S)

cecong f (e) <
|bS|

cS↔V\S
∑

e∈(S↔V\S)
ce = |bS|

which is a contradiction. Thus there must exist an edge of congestion at least |bS|
cS↔V\S

.

The bound holds with equality if and only if S maximises the cut congestion:

Lemma 2.3. Let S ⊆ V be an arbitrary cut that maximises the cut congestion |bS|
cS↔V\S

. Then,
and only then,

optG(b) ≤
|bS|

cS↔V\S

Proof. Let S ⊆ V be an arbitrary maximally-congested cut and assume w.l.o.g. by
rescaling that min ce ≥ 1. We now describe a reduction of the demand routing problem
to the maximum s-t flow problem using an artificial source and sink.

Let λ =
cS↔V\S
|bS| and let ~G be the directed graph corresponding to G as in Lemma 2.1.

Write V− = {v ∈ V | bv < 0} and V+ = {v ∈ V | bv > 0}. Attach to ~G two new vertices
s, t (c.f. Figure 2.1), with an edge (s, v) for any v ∈ V− of capacity c(s,v) = −λbv > 0.
Likewise, for any v ∈ V+, add an edge (v, t) of capacity c(v,t) = λbv > 0 to ~G.

The proof proceeds by constructing an s-t flow of value cS↔V\S. First, contract all
vertices {s} ∪V− into v− and {t} ∪V+ into v+. Since S maximises the cut congestion
in G, and V−, V+ maximise the demand in G, the minimum cut between v− and
v+ is at least cS↔V\S (otherwise we could find a cut S′ with greater cut congestion
than S). In particular, there exists some flow from v− to v+ of value cS↔V\S. Now
undo all contractions and observe that the cuts {s} and {t} have capacity exactly
∑v∈V− −λbv = ∑v∈V+ λbv = cS↔V\S, hence together with the uncontracted flow from
the previous step, there exists a flow f̃ from s to t of value cS↔V\S. All edges incident
to s or t have congestion one, and hence the inflow resp. outflow to any v ∈ V− resp.
V+ is exactly λ|bv|.

−1

−2

−1

0

0

1

0
2

1

ts

S T = V \ S

Figure 2.1: An artificial source-sink construction for routing the indicated demands,
and a hypothetical corresponding minimum cut S.
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Remove the vertices s and t, scale f̃ by λ−1, and obtain the resulting flow f in the
undirected graph G as in Lemma 2.1. Any vertex v ∈ V now has flow excess (w.r.t. f )
exactly bv, i.e. f routes b in G: If v is neither in V− nor V+, then it has excess 0 = bv
by construction of the original f̃ . Else, removal of s or t means that v has no inflow
resp. outflow, and thus after scaling f has flow excess exactly bv. Moreover, since f̃
originally had congestion at most one because it respected all edge capacities, f now
has congestion at most λ−1 = |bS|

cS↔V\S
. More pointedly, f is certainly a solution to the

congestion minimisation problem, and thus optG(b) ≤ λ−1 = |bS|
cS↔V\S

, which proves the
‘if’ direction.

By Lemma 2.2, the bound can only hold for cuts that maximise the congestion
|bS|

cS↔V\S
, and the lemma follows.

2.3 Maximally Congested Cut

In order to efficiently generate certificates in the form of (1 + ε)-minimum cuts from
our solution to the minimum congestion flow problem, we will rely on a dual problem:

Definition 2.2 (Maximally Congested Cut Problem; [She13]). Given an undirected, ca-
pacitated graph G with valid demands b ∈ Rn, the maximally congested cut problem asks
to find vertex potentials ψ ∈ Rn achieving

max bTψ subject to ‖CBTψ‖1 ≤ 1 �

As the name suggests, this program measures the congestion of the maximally-
congested cut (which by Theorem 2.1 is optG(b)). While it is possible to derive
this duality in a mechanical way (see e.g. [GT04]), we will require some more structural
insight to extract the actual cut from ψ.

We want to prove that for any feasible potentials ψ, there exists a cut S with
bTψ ≤ |bS|

cS↔V\S
≤ optG(b). This weak duality is sufficient for using the dual problem to

efficiently generate solution certificates, but the problem satisfies even strong duality,
i.e. its optimum value is also optG(b).

Assuming weak duality, strong duality is easy to prove:

Lemma 2.4. For every vertex-induced cut S ⊆ V, there exists ψ with ‖CBTψ‖1 ≤ 1 and
bTψ = |bS|

cS↔V\S
. In particular, there exists ψ satisfying the constraint such that bTψ = optG(b).

Proof. Fix any S and let ψv = sign(bS)
cS↔V\S

for all v ∈ S and 0 otherwise. It is not hard to

see that bTψ = |bS|
cS↔V\S

. Now write ‖CBTψ‖1 = ∑{u,v}∈E cu,v|ψu − ψv|. All terms in the
sum are zero except for those corresponding to edges that cross the cut, thus the sum
collapses to ∑{u,v}∈(S↔V\S) cu,v

1
cS↔V\S

= 1.
Choosing S as the maximally-congested cut in the sense of Theorem 2.1 implies the

lemma.

With this insight into the structure of the problem, let us proceed to proving weak
duality:

Lemma 2.5. for every ψ with ‖CBTψ‖1 ≤ 1, there exists a vertex-induced cut S ⊆ V such
that bTψ ≤ |bS|

cS↔V\S
≤ optG(b).
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Proof. First, note that the problem is shift-invariant because (i) validity of b implies
bT(ψ + α1) = bTψ + 0, and (ii)

‖CBT(ψ + α1)‖1 = ∑
(u,v)∈E

cu,v

∣∣∣ψu + α− (ψv + α)
∣∣∣ = ‖CBTψ‖1

Assume therefore by shifting that the smallest vertex potential is zero, and let µ =
maxv ψv be the maximum vertex potential.

Let Sλ = {v ∈ V | ψv ≥ λ} be the cut resulting from thresholding ψ at λ. Imagine
selecting λ ∈uar [0, µ].2 Then 1

µ‖CBTψ‖1 ≤ 1
µ measures the expected capacity of such a

random threshold cut, and 1
µ bTψ measures the expected demand of the cut. In other

words, if C is the random variable modelling the cut capacity, and B is the random
variable for the cut demand, we have

E[B]
E[C]

≥ bTψ

and one can prove that there thus must exist a joint outcome, i.e. a single cut Sλ, that
attains congestion bTψ.3 Note that since b is valid, b∅ = bV = 0 and hence if bTψ > 0
(otherwise any cut suffices), S must be a proper cut, i.e. ∅ 6= Sλ 6= V.

Lemma 2.5 gives rise to a simple and efficient algorithm for computing the cut Sλ

from a feasible dual solution ψ: Sort all vertices descending by their potential ψv, sort
all edges descending by the larger potential of either endpoint, and scan through these
lists until the cut reaches congestion at least bTψ – the lemma guarantees that such a
cut exists. The algorithm is given in pseudocode form in Algorithm 2.1.

Algorithm 2.1 Compute cut of congestion at least bTψ from ψ

1: procedure CongestedCut(G, b, ψ)
2: Sort vertices by ψv, sort edges (u, v) by max{ψu, ψv} tiebroken arbitrarily
3: Let µ = maxv ψv and initialise λ← µ, b← 0, c← 0, S← ∅
4: repeat
5: Continue scanning vertices v until ψv < λ, add these v to S
6: For all vertices v scanned above, increment b by bv
7: Continue scanning edges until both endpoints have potential less than λ
8: For all edges e scanned above, if both endpoints have potential at least λ,

decrement c by ce, else increment c by ce
9: Let λ be the potential of the next vertex in the list

10: until |b|c ≥ bTψ
11: return S

2.4 Approximate Flow Packing

The set of feasible flows (i.e. flows in G with | fe| ≤ ce for all e), disregarding the
demands that they satisfy, is exactly the set of flow vectors f with ‖C−1 f‖∞ ≤ 1

2This elegant technique was inspired by [Chr+11].
3If X, Y are discrete random variables with E[X] ≤ λE[Y], then there must exist a joint outcome (x, y)

with x ≤ λy: If we would have for all (x, y) that x > λy, then E[X] = ∑x,y p(x, y)x > ∑x,y p(x, y)λy =

E[Y], which is a contradiction.
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and hence a convex polytope. If we want to find a particular feasible flow, say one
that routes some demands b, it might be hard to find a feasible flow directly, but
we can instead hope to find a flow as a convex combination of infeasible flows F,
whose convex hull intersects the polytope of feasible flows (c.f. Figure 2.2). This is
accomplished by flow packing, which will prove to be a central component of this
thesis. The following description is based on Madry [Mad11], section 2.8, although the
underlying multiplicative weights update method has general applications [AHK12].
Formally, define

Definition 2.3 ((F, G)-system; [Mad11]). An (F, G)-system is a set of possibly infeas-
ible flows F in G. The system is feasible if there exists a convex combination of the
flows that is feasible, i.e. if there exist λ f ≥ 0, ∑ f∈F λ f = 1 such that for all e ∈ E,
∑ f∈F λ f cong f (e) ≤ 1. ∑ f∈F λ f f is called a flow packing of F in G. An α-relaxed flow
packing satisfies only ∑ f∈F λ f cong f (e) ≤ α for all e ∈ E. �

Madry does not require an explicit representation of F, but instead queries it using
a β-oracle for the system (in fact, this is a general technique in the multiplicative
weights update framework):

Definition 2.4 (β-oracle for an (F, G)-system; [Mad11]). A β-oracle for an (F, G)-system,
with β ≥ 1, is an algorithm that given weights w returns a flow f ∈ F such that f has
congestion at most β on average if the system is feasible exactly, i.e.

∑
e∈E

wecong f (e) ≤ β ∑
e∈E

we

or, if the system is infeasible, either returns an f as above or indicates that the system
is infeasible.

The oracle has tightness k if for all weights w, the oracle returns a flow f such that
the number |{e ∈ E | cong f (e) ≥ 1

2 maxe′ cong f (e′)}| of edges with congestion at least
one-half the maximum congestion is at least k. �

Intuitively, if the weights for an edge are small, then this edge may have large congestion
in the flow returned by the oracle. This can be accounted for by choosing λ f small
enough, and increasing the weight of such an edge so that in a future query to the
oracle, the edge will have much lower congestion. By scaling all λ to be smaller, more
flows can be packed, which leads to greater accuracy. The final approximation ratio
α thus depends on the quality β of the oracle and the scaling factor δ described in
the theorem below. The tightness of the oracle ensures that if one edge has large
congestion, then in fact many edges have comparably large congestion also, and thus
fewer flows need to be packed to arrive at a final solution.

F

α-relaxed

feasible

Figure 2.2: Finding feasible flows with flow packing.
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Theorem 2.2 ([Mad11]). Given an (F, G)-system and a β-oracle O for it, there exists an
algorithm RelaxedFlowPackingO that computes an α-relaxed flow packing of the system with
α = β(1 + 3δ), where 0 < δ ≤ 1/2 is an accuracy parameter. If the oracle has tightness k, then
RelaxedFlowPackingO makes at most 4αm log m

kδ2 iterations, each of which performs one call to
the oracle and otherwise requires O(scan(m)) I/Os.

Algorithm 2.2 Multiplicative Weights Update for Relaxed Flow Packing [Mad11]

1: procedure RelaxedFlowPackingO(G, δ)
2: Initialise w(1)

e ← 1 for all e ∈ E. Define η = 2 log m
δ2 .

3: for t = 1, . . . until ∑t
i=1 λ(i) = 1 do

4: Query the oracle O with weights w(t). If it fails, fail also.
5: Else, let f (t) be the returned flow and define µ(t) = maxe∈E cong f (t)(e)

6: Let λ(t) = min
{

1
ηµ(t) , 1−∑t−1

i=1 λ(i)
}

and append (λ(t), f (t)) to the output.

7: For all e ∈ E, set w(t+1)
e ← w(t)

e ·
(

1 + δηλ(t)cong f (t)(e)
)

8: return the packing
{(

λ(t), f (t)
)}

t

If the oracle fails, then the packing is allowed to fail also, so assume in the following
that the oracle never fails. Begin by proving correctness, i.e. that the final flow packing
satisfies the congestion bound ∑ λ f cong f (e) ≤ β(1 + 3δ) upon termination.

Lemma 2.6 (Madry). Upon termination, RelaxedFlowPackingO either fails or outputs a
flow packing satisfying ∑i λ(i)cong f (i)(e) ≤ β(1 + 3δ).

Proof. Begin by lower-bounding w(t)
e during any iteration t and for any edge e. The

bound relies on the fact that 1 + δx ≥ exp((1− δ)δx) for 0 < δ < 1 and x ∈ [0, 1],
which one can prove by checking equality at x = 0 and comparing derivatives w.r.t.
x. Recall that λ(t) ≤ 1

ηµ(t) and hence 0 ≤ ηλ(t)cong f (t)(e) ≤ 1 because by definition

cong f (t)(e) ≤ µ(t). With this, compute as follows:

w(t+1)
e = w(1)

e︸︷︷︸
=1

t

∏
i=1

(
1 + δηλ(i)cong f (i)(e)

)
≥ exp

(
(1− δ)δη

t

∑
i=1

λ(i)cong f (i)(e)

)

We can now derive an upper bound for the congestion on e in terms of w(t+1)
e :

exp

(
(1− δ)δη

t

∑
i=1

λ(i)cong f (i)(e)

)
≤ w(t+1)

e ⇐⇒
t

∑
i=1

λ(i)cong f (i)(e) ≤
log w(t+1)

e

(1− δ)δη

To obtain an upper bound for w(t+1)
e that does not depend on the congestions of e, use
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w(t+1)
e ≤ ‖w(t+1)‖1. To this end, compute:

‖w(t+1)‖1 = ∑
e∈E

w(t)
e (1 + δηλ(t)cong f (e))

= ‖w(t)‖1 + δηλ(t) ∑
e∈E

w(t)
e cong f (e)

≤ (1 + βδηλ(t))‖w(t)‖1 ≤ exp(βδηλ(t))‖w(t)‖1

∴ ‖w(t+1)‖1 ≤ m exp

(
βδη

t

∑
i=1

λ(i)

)
(‖w(1)‖1 = m)

Hence if the algorithm makes τ iterations in total and does not fail, then ∑τ
i=1 λ(i) = 1

by construction and thus upon termination, combining both bounds yields

τ

∑
i=1

λ(i)cong f (i)(e) ≤
log w(τ+1)

e

(1− δ)δη
≤ log m + βδη ∑τ

i=1 λ(i)

(1− δ)δη
=

1
2 ηδ2 + βδη

(1− δ)δη

=
δ

2(1− δ)
+

β

(1− δ)
≤ β(1 + 3δ) (η = 2 log m

δ2 and 0 < δ ≤ 1/2)

The number of iterations can be bounded by a potential argument relying on the
correctness of the algorithm:

Lemma 2.7 ([Mad11]). If the oracle has tightness k, then RelaxedFlowPackingO makes at
most 4αm log m

kδ2 iterations.

Proof. The number of iterations depends on the maximum congestion µ(t) of any edge
in the t-th flow, which can be bounded by combining the tightness of the oracle with
the approximation factor α = β(1 + 3δ) of the final solution. Concretely, the proof
defines a potential function φ(t) = ∑t

i=1 ∑e∈E λ(i)cong f (i)(e). The tightness k of the

oracle dictates that at least k edges have congestion at least 1
2 µ(t) = 1

2ηλ(t) except in the

last iteration, where λ(τ) is bounded to fill up the convex combination. The potential
thus increases up to the last iteration by at least

φ(t)− φ(t− 1) = ∑
e∈E

λ(t)cong f (t)(e) ≥
k

2η

At the same time, the potential is bounded from above by Lemma 2.6:

φ(t) = ∑
e∈E

t

∑
i=1

λ(i)cong f (i)(e) ≤ mβ(1 + 3δ) = mα

Irrespective of the potential increase in the last iteration, this bounds the total number
of iterations to at most

2ηmα

k
=

4αm log m
kδ2

Proof of Theorem 2.2. The number of I/Os per iteration, except execution of the oracle,
is at most O(scan(m)). Combine this with the previous two lemmas, Lemma 2.6 and
Lemma 2.7, to arrive at the theorem.
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2.5 Working with Trees

We now switch to presenting some elementary cache-efficient algorithms for tree
processing that will be used as building blocks throughout this thesis.

Lemma 2.8 (Euler Tour; [MZ03]). Given an undirected tree T on n vertices, an Euler tour
through the arcs formed by doubling the edges as directed arcs in either direction can be
computed in O(sort(n)) I/Os.

Proof Sketch. See [MZ03] for details. The basic idea is to produce for each edge two
arcs (u, v) and (v, u) during a scan of all edges, yielding the arc list A. Now make
two copies of A, one sorted by source and one by target vertex. In a tandem scan of
both lists, we can now assign for all v ∈ V to each incoming arc (u, v) the successor
outgoing arc (v, w) along the tour. A final O(sort(n)) I/Os convert this representation
into a list of arcs sorted in traversal order using list ranking (see [MZ03]).

Using Euler tours, it is well-known that bottom-up and top-down tree computations
can be performed efficiently.

Lemma 2.9 (Processing on Rooted Trees; [MZ03]). A suitable function f defined top-down
or bottom-up on a rooted tree can be computed at all vertices v in O(sort(n)) I/Os, or
O(scan(n)) if an Euler tour for the tree is already given.

Proof Sketch. See [MZ03] for details. Intuitively, by scanning arcs in the Euler tour order
while tracking whenever we are going ‘up’ from a leaf or ‘down’ towards one, we can
apply f in bottom-up or top-down fashion.

What do we mean by a suitable function f ? Intuitively, f is a function that takes the
current vertex v along with the set of values computed at its children (resp. ancestors)
{ν1, . . .} to produce a value f (v, {ν1, . . .}) for the vertex v, and it should do so efficiently.
In particular, we cannot allow f to inspect all children in arbitrary order; it must instead
perform a single pass over the children in the Euler tour order. We make this precise
by defining f to be an efficiently tree-foldable function:

Definition 2.5 (Tree-Foldable Function). A tree-foldable function f is a function that can
be written as f (v, {ν1, . . . , νk}) = f̃ (v, e · ν1 · · · νk), where f̃ : V × V → V and · along
with the set V forms an abelian monoid, of which e is the neutral element. Moreover,
we call f efficiently tree-foldable when f and · can be evaluated without incurring any
I/Os. �

Remark. There is some handwaving here about the set V : Clearly, the elements of the
set must have small enough encoding size (a constant number of records) such that
we can keep track of the intermediate results without incurring any asymptotic I/O
overhead. We can also allow the evaluations to incur some I/O overhead, as long as
the I/Os amortise to at most O(scan(n)) when all evaluations take place in Euler tour
order. �

Finally, a useful gadget when working with Euler tours is a labelling of the first
incoming and last outgoing arcs to resp. from all vertices. This can be done efficiently
in a single scan of the tour. We make the idea precise here to provide an example for
simple operations on Euler tours.
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Algorithm 2.3 Euler Tour Labelling
1: procedure LabelTour(T,A, (u∗, v∗))
2: Initialise an empty stack S, push u∗ to S
3: for all arcs (u, v) along the tour A when starting from (u∗, v∗) do
4: Peek the two topmost elements of S, if they exist
5: if u is the topmost and v the second-topmost element of S then
6: Label (u, v) as last outgoing arc from u
7: pop u from S
8: else if v is not the topmost element of S then
9: Label (u, v) as first incoming arc

10: Push v to S

Lemma 2.10 (Euler Tour Labelling). Given a tree T along with an Euler tour A on it, we
can for any starting arc (u∗, v∗) in O(scan(n)) I/Os label every arc of the tour by whether it is
the first incoming or last outgoing arc of its source resp. target in the tour when starting at
(u∗, v∗).

Proof Sketch. Consider the algorithm shown in Algorithm 2.3. One can show with two
simple but tedious nested inductions that (i) every vertex is pushed to the stack at most
once, that (ii) vertices are pushed to the stack in the order they are visited by the tour,
whenever they are first visited, and that (iii) vertices are popped from the stack exactly
when they will never be visited again. We omit the details here, and instead provide
only an intuition:

Since we are traversing T along an Euler tour, whenever visiting a vertex v twice,
all vertices traversed between the previous and current visit to v will never be visited
again. In particular, when following a path 〈v, u, v〉, u must certainly be a leaf, and the
two topmost vertices on the stack are S = u, v, . . ., hence u is correctly popped from
the stack. This process repeats until the current vertex is no longer on top of the stack,
in which case we must have discovered a previously unvisited subtree and thus push
the new vertex to the stack.

The algorithm performs a single scan through the Euler tour, requiring O(scan(n))
I/Os when the tour is already given with arcs sorted in order of traversal.

We can extend the Euler tour technique to also perform bottom-up processing on
unrooted trees. Intuitively, this corresponds to recursively clipping off the leaves of
the tree, while accumulating some value in a bottom-up fashion. To beat the naive
implementation of scanning all vertices n times, we construct an Euler tour on T and
show how a single scan along the Euler tour can implement the ‘recursive’ clipping.

Lemma 2.11 (Leaf Elimination). An efficiently tree-foldable function f can be evaluated
bottom-up in a tree T in O(sort(n)) I/Os, or O(scan(n)) I/Os when an Euler tour on T is
given.

Proof Sketch. Proceed as in Algorithm 2.3, but also maintain accumulator values of the
abelian monoid on the stack: Whenever visiting a vertex v for the first time, push (v, e)
to S. When popping (u, ν̃u) from the stack, output the value νu = f (u, ν̃u) for u, and
then update the top of the stack (v, ν̃v) to become (v, ν̃v · νu).
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2.6 Undirected Breadth-First Search

We will later in this thesis need to devise a modified external-memory BFS where the
edges incident to the source will have weights (Algorithm 4.3). In preparation of this,
we devote this section to detailing a somewhat cache-efficient algorithm for BFS on
undirected graphs.

Undirected graphs give more structure to traversal problems than directed graphs:
Let v be some vertex with distance d(v) from the root, and let u be some neighbour of v.
Because d(v) = minw∈N(v) d(w) + 1 and u ∈ N(v), we get d(u) ≥ d(v)− 1, which does
not hold for the directed case when e.g. there is only an arc from v to u but not vice-
versa. Munagala and Ranade [MR99] exploit this fact to devise an O (n + sort(n + m))
I/O algorithm for the BFS traversal problem.

2.6.1 Graph Representations

Before we begin, let us briefly remark on suitable methods for representing the graph G
in memory. While a number of compressed graph representations have been developed
for practical high-performance computing [Bes+20], these are not feasible to work with
from a theoretical standpoint when developing complex algorithms. We instead deal
only with the naive representations.

When not otherwise specified, assume all graphs are represented as edge lists, i.e.
as lists of arbitrarily ordered pairs {(u, v) | {u, v} ∈ E}. When the edge list is sorted
appropriately, many simple graph computations can be performed efficienlty in a
single scan through the list, thereby avoiding the random access cost that would be
incurred otherwise. However, for some operations, the overhead of scanning the entire
graph is larger than the cost of randomly accessing specific parts of the graph. For
these cases, we will use an adjacency list representation, which is a list of n memory
locations, each pointing to the list of neighbours of the given vertex. Lastly, we will
sometimes make use of an arc list, which is an edge list with each edge represented by
two arcs, one in either direction.

An edge list can be efficiently converted into an arc list on O(scan(m)) I/Os, by
scanning the edge list and duplicating each tuple with the direction flipped. An
arc list is then also efficiently converted to an adjacency list in O(sort(m)) I/Os by
lexicographically sorting the list and then in O(scan(m)) I/Os writing the pointer list
that indexes into the sorted arc list.

2.6.2 The Algorithm of Munagala and Ranade

Munagala and Ranade [MR99] give an algorithm for breadth-first search using the ad-
jacency lists representation that improves upon a naive random-access implementation:

Theorem 2.3 ([MR99]). The BFS level of every vertex of an undirected graph can be computed
in O(n + sort(m)) I/Os.

The algorithm is given in pseudocode in Algorithm 2.4. It stores all vertices at the
current BFS level in a list, then scans the adjacency list representation of the graph to
capture all neighbours, excluding those which are already in the current or previous
BFS level.

Since our modified BFS will rely on similar techniques, we restate the proof of the
algorithm’s correctness in the following lemma:
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Algorithm 2.4 Munagala-Ranade External Memory BFS; [MR99]
1: procedure MunagalaRanade(G, s)
2: L(0)← {s}, L(1)← N(s)
3: for t = 2, . . . , until L(t) = ∅ do
4: Scan L(t− 1) to copy the adjacency lists of all v ∈ L(t− 1) into A(t)
5: Sort A(t) and remove duplicates
6: for vt−2, vt−1, vt in sorted tandem scan of L(t− 2), L(t− 1), A(t) do
7: If vt 6∈ {vt−2, vt−1}, add vt to L(t)
8: return the BFS level lists {L(t)}t

Lemma 2.12 ([MR99]). After execution of Algorithm 2.4, v ∈ L(t) if and only if the BFS
distance of v from s is exactly t.

Proof. The claim holds for L(0) and L(1). To proceed by induction, assume that it
holds for L(0), . . . , L(t− 1) for some fixed t. Then L(t) is built as the list of all nodes
adjacent to those of L(t− 1) but not in L(t− 2), and hence L(t) must include at least
all nodes of distance t from s. Moreover, because the graph is undirected, all nodes
adjacent to those in L(t− 1) have distance at least t− 2 from s. Hence any node in
A(t) of distance unequal to t must have distance t− 2 or t− 1, and is thus excluded
from L(t) by the induction hypothesis.

Lemma 2.13 ([MR99]). Algorithm 2.4 requires O (n + sort(m)) I/Os

Proof. The initialisation of L(1) requires scan(|N(s)|) I/Os. In every iteration, we scan
|L(t− 1)| lists and accumulate |A(t)| total elements, requiring at least one I/O per
list and thus O(|L(t− 1)|+ scan(|A(t)|)) in total. To remove duplicates, we sort A(t)
and then perform a scan, copying the unique elements into a still sorted new list;
this requires O(sort(|A(t)|)) I/Os. Finally, the tandem scan requires scan(|L(t− 2)|+
|L(t− 1)|+ |A(t)|) I/Os.

Every vertex is in at most one list L(t), and thus ∑t |L(t)| ≤ n. Note that A(t) can
include duplicates, but in building A(t), only ∑v∈L(t−1) deg v edges are traversed, and
∑t |A(t)| ≤ ∑t ∑v∈L(t−1) deg v ≤ ∑v∈V deg v ≤ O(m). We can thus compute over the
entire execution of the algorithm:

∑
t
O (|L(t− 1)|+ scan(|A(t)|) + sort(|A(t)|)) ≤ O (n + sort(m))

where we make use of the fact that for any values n1, . . . , nk,

∑
i

ni log ni ≤ log
(
(max{n1, . . .})∑i ni

)
≤
(

∑
i

ni

)
log

(
∑

i
ni

)

2.6.3 From BFS Levels to BFS Tree

While one could conceiveably modify Algorithm 2.4 to also emit a BFS tree, this is
much more easily described as a separate procedure. Note that the edges of the BFS
tree are exactly those edges where one endpoint has a BFS level distinct from the other
(in which case they must differ by exactly one). Hence to build the BFS tree as an
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edge list, we must annotate all vertices in the edge list E of G with their BFS level
as returned by the algorithm of Munagala and Ranade. We use this opportunity to
demonstrate once how such tasks are achieved in a constant number of sorts and scans,
so that we may omit such details in the remainder of this thesis.

First, orient the edges in E arbitrarily (defining source and target) and sort lexico-
graphically by (source, target). In O(scan(m)) I/Os (assuming the level lists are stored
contiguously in memory, or in an otherwise suitable format), translate the level lists
of Algorithm 2.4 to the form (v, `), where ` is the BFS level of v. Sort the resulting
lists by v. Now scan the sorted E and level list in tandem, annotating the edges in E
with the BFS level of their source vertex. To annotate also the target BFS levels, sort
E lexicographically by (target, source) and repeat the tandem scan. Finally, to build
the edge list T of the BFS tree, scan E for edges whose endpoints are on different BFS
levels, copying these to a new list T .

This procedure requires 2 sorts of E and 1 sort of the level lists, as well as a constant
number of scans over lists of length m. Hence in total, it requires O(sort(m)) I/Os.

2.6.4 Simultaneous Ball Growing

Munagala and Ranade use an adjacency list representation of G so that edges are only
traversed when they are needed. Somewhat surprisingly, we can in some circumstances
do better by scanning the entire edge list of G in every iteration, removing all edges
that have already been traversed and thereby shrinking the edge list. If for example we
could guarantee that the BFS traversal terminates after only a few iterations, then the
number of scans of the edge list is small, and the total number of I/Os incurred during
scanning could be less than n.

This approach is particularly useful when growing ‘balls’ from a number of starting
points ‘simultaneously’, partitioning the graph into a set of balls of bounded BFS radius.
The BFS radius of a ball is the maximum BFS distance from the starting point of that
ball (the centre) to any vertex in the same ball. If the BFS radius of all balls is at most ρ,
then the number of scans over the edge list representation of G is also at most ρ. For
small ρ, this improves upon running Munagala-Ranade BFS directly.

The ball-growing algorithm (inspired by Mehlhorn and Meyer’s accelerated BFS
for extremely sparse graphs [MM02]) is shown in Algorithm 2.5. It takes as input the
graph G and a list of vertices C that serve as ball centres; the balls will be grown around
the vertices in C. While traversing the graph, the algorithm maintains the current BFS
level list as in Algorithm 2.4, but with each vertex additionally tagged by its ball centre,
i.e. L(t) takes the for {(cv, v), . . .} where cv is the centre of the ball to which v belongs.

Lemma 2.14. Upon termination, SimultaneousBallGrowing outputs an edge list F tagged
by cluster centres cv ∈ V such that if (cv, v, ·) ∈ F , then cv is a centre with minimal hop
distance to v.

Proof. Begin by noting that once a vertex is added to some L(t), all its outgoing arcs
are moved from E to F . Hence in line 11, only vertices from R that have not been
previously captured are added to L(t).

The proof proceeds by showing that L(t) contains exactly the vertices v whose
closest centres have hop distance t from v using strong induction on t. For t = 0,
the statement holds by construction of L(0). Fix any t and assume that the statement
holds for all t′ ≤ t. In the iteration for t + 1, R collects all outgoing arcs from L(t). By
the above observation, any vertex v added to L(t + 1) cannot have previously been
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Algorithm 2.5 Simultaneous Ball Growing; based on [MM02]
1: procedure SimultaneousBallGrowing(G, C)
2: Let A be the lexicographically sorted arc list of G
3: Initialize L(0) = C × C
4: Let F be an initially empty edge list
5: Move all arcs incident to a c ∈ C from A to F , tagged by c
6: for t = 1, . . . until done do
7: Let R← ∅ be an initially empty array of requests
8: for all (cu, u) in L(t− 1) and (u, v) ∈ A using tandem scan of both lists do
9: Append (cu, u, v) to R

10: Sort R by target, resolve duplicate targets arbitrarily
11: Set L(t) = {(cu, v) | (cu, u, v) ∈ R, (v, ·) ∈ A}
12: Move all (v, ·) ∈ A to F , tagged by cv, for (cv, u) ∈ L(t)
13: Sort F lexicographically by ball tag, source, target
14: return F

captured, but is incident to some vertex in L(t), hence together with the induction
hypothesis, v must have hop distance t+ 1 to the cluster centre assigned to it. Moreover,
there cannot exist a cluster centre closer than t + 1 hops to v, since otherwise v would
have been in some L(t′) for t′ ≤ t by the induction hypothesis.

Thus if (cv, v, ·) ∈ F for some cv and v, then cv must be one of the closest clusters
to v.

Lemma 2.15 ([MM02]). SimultaneousBallGrowing(G, C) requiresO(ρ scanm+ sort(m))
I/Os, where ρ is the maximum hop radius of any cluster centre.

Proof. The initialisation up to line 6 requires O(sort(m)) I/Os to sort C, E and extract
the initial F from E . In each iteration, the shrinking E is scanned. An edge (v, ·)
remains in E only for as long as v is not captured by any cluster. Since any vertex
must be captured after at most ρ iterations, there are at most ρ scan(m) I/Os involved
in scanning E in total. Removing captured vertices from E ensures that every edge is
responsible for at most one request in R throughout the entire execution, hence sorting
R incurs at most sort(m) I/Os overall. Finally, recall from Lemma 2.13 that all other
operations do not require more than O(sort(m)) I/Os in total either. Hence algorithm
completes after O(ρ scan(m) + sort(m)) I/Os.

We note that Mehlhorn and Meyer [MM02] show that running SimultaneousBallGrowing

from suitably selected starting points such that ρ ≤
√

nDB
m , followed by a Munagala-

Ranade BFS that uses the improved locality granted by the ball decomposition, yields
a BFS algorithm that only requires O(√ nm

DB + sort(m)) I/Os. This improves upon
Munagala-Ranade when m ≤ O(nDB), i.e. when the graph is extremely sparse.

2.7 Other Graph Algorithms

Simple modifications of BFS to compute single-source shortest paths with integer edge
weights {1, . . . , W} immediately yield the following:
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Lemma 2.16 ([MM02]). Single-source shortest paths on undirected graphs with integer edge

weights {1, . . . , W} can be solved in O(Wn + W sort(m)) I/Os, or O(
√

Wnm
DB + W sort(m))

I/Os for sparse graphs.

In the general case, SSSP can be solved using I/O-efficient tournament trees [KS96],
which serve as external priority queues:

Lemma 2.17 ([ABT04]). Single-source shortest paths on an undirected graph can be solved in
O(n + sort(m) log M

DB ) I/Os.

For extremely sparse graphs, Meyer and Zeh [MZ06] obtain a speedup by reduction to
the minimum spanning tree problem (see below):

Lemma 2.18 ([MZ06]). Single-source shortest paths on undirected graphs can be solved in
O(√ nm

DB log n +MST(n, m)) I/Os, where MST(n, m) ≤ O(sort(m) ·max{1, log log nDB
m })

is the number of I/Os required to compute a minimum spanning tree. Note also that there exist
randomised MST algorithms that require only O(sort(m)) I/Os with high probability.

Cache-oblivious algorithms (c.f. Section 1.2) for finding single-source shortest paths in
O(n + sort(m) log M

DB ) also exist [Bro+04].
The well-known PRAM algorithms for computing connected components via pseudo-

tree decomposition, where each vertex requests to be merged with one of its neighbours
such that all components are quickly reduced to a single vertex, can be translated effi-
ciently to the EM model. Crucially, after reducing the number of vertices to O(m/DB),
a BFS traversal for identifying the remaining components becomes efficient. The
following result is due to Munagala and Ranade [MR99]:

Lemma 2.19 ([MR99]). Connected components in undirected graphs can be identified in
O(sort(m) ·max{1, log log nDB

m }) I/Os.

Minimum spanning forests can be computed using a related approach: By com-
bining a similar vertex-reduction step followed by a ‘naive’ implementation of Prim’s
algorithm with an external priority queue, Arge, Brodal and Toma [ABT04] obtain:

Lemma 2.20 ([ABT04]). A minimum spanning forest of an undirected graph can be computed
in O(sort(m) ·max{1, log log nDB

m }) I/Os.

Randomised approaches can eliminate the log log nDB
m -factor with overwhelming

probability. This was demonstrated by Abello, Buchsbaum and Westbrook, who give
an I/O-efficient version of Karger, Klein and Tarjan’s phased Borůvka-and-sampling
algorithm for computing minimum spanning forests:

Lemma 2.21 ([ABW02]). Minimum spanning forests can be computed in O(sort(m)) I/Os
with probability at least 1− exp(−Ω(m)).

The same algorithm can be used to compute connected components.
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Graph Sparsification

Graph sparsification is the process of approximating all cuts of some graph G using a
graph G̃ on the same vertices, but with fewer edges. Recall from Theorem 2.1 that the
cut structure of the graph essentially defines the maximum congestion of any optimal
flow. Hence by removing edges while almost preserving the cut structure of G, we
can approximate the congestion of any flow in G on a much sparser graph. Doing this
early on in the construction of our congestion approximator (recall Section 1.4) will
greatly improve the performance for dense graphs.

Many graph sparsification algorithms are known, perhaps most famously due
to Benczúr and Karger [BK15], who give a simple and elegant algorithm for non-
uniformly sampling the edges of G to yield the sparsified graph G̃. Other approaches
rely on spectral graph theory and can provide even stronger guarantees. In the most
extreme case of the celebrated result due to Batson, Spielman and Srivastava [BSS14],
the spectrally-sparsified graph contains only d n−1

ε2 e many edges, where ε is the approx-
imation quality, but requires O(n3mε−2) time in the RAM model to compute1 (almost
linear-time constructions with an additional polylogarithmic factor in the number of
edges are known [SS11; KX16]). Ultrasparsifiers are a closely related line of research,
where the sparsified graph is desired to have few added edges over a tree (as opposed to
analysing the multiplicative factor), but allowed to have poorer approximation quality
[ST14; Kol+10] – these algorithms internally rely on computing low-stretch spanning
trees (see Chapter 4).

In the context of this thesis, we observe that the I/Os required for sparsification are
hardly going to be a bottleneck, and hence favour a simple approach over the (some-
times considerably) more involved schemes that might perform better asymptotically.
The sparsification algorithm presented here is that of Benczúr and Karger, suitably
modified.

More concretely, we seek an algorithm that computes an ε-graph sparsifier:

Definition 3.1 (ε-graph-sparsifier; [BK15]). An ε-graph-sparsifier of some undirected,
capacitated graph G = (V, E, c) is a graph G̃ = (V, Ẽ, c̃) such that for any cut S ⊆ V,

(1− ε)c
S Ẽ↔V\S ≤ c̃

S E↔V\S ≤ (1 + ε)c
S Ẽ↔V\S �

The well-known construction due to Benczúr and Karger [BK15] is based on non-
uniformly sampling the edges of E. At a high level, the idea is that if the minimum cut

1The existence of such sparsifiers is considered the major contribution of the work, rather than the
algorithm to compute them. Hence it is conceivable that the running time may be improved upon.

28
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that an edge e participates in has value ke, then by sampling edges with probability
pe ≈ 1/ke, we expect one edge of the cut to remain as part of the sparsified graph, and
can scale up its capacity by a factor of ke to encompass the capacity of the entire cut.
The formal treatment requires some terminology for the value ke:

Definition 3.2 (k-connected; [BK15]). A graph is said to be k-connected if its minimum
cut has value at least k. �

Definition 3.3 (k-strong component; [BK15]). A k-strong component of G is a maximal
k-connected vertex-induced subgraph of G. �

Definition 3.4 (Edge strength; [BK15]). The strength ke of an edge e is the minimum
value of a cut that separates both its endpoints. We say that e is k-strong when its
strength is at least k, and k-weak otherwise. �

Benczúr and Karger show a number of useful structural lemmas for edge strength
and strong components. Of particular interest here will be the following result:

Lemma 3.1 ([BK15]). The summed capacity of any graph’s k-weak edges is at most k(n− 1).

Armed with this, let us introduce the graph sparsification algorithm formally. We
will call the sparsified graph G̃ that results from sampling with probabilities pe the
compressed graph of G under pe:

Definition 3.5 (Compressed graph; [BK15]). The compressed graph G[p] = (V, Ẽ, c̃) of
some graph G = (V, E, c) with respect to sampling probabilities pe for each e ∈ E is the
graph resulting from sampling each edge of G with probability min{1, pe} and settings
its capacity to c̃e = ce/pe. �

Theorem 3.1 (Benczur-Karger Graph Sparsification; [BK15]). Let G = (V, E, c) be an
undirected, capacitated graph with edge strengths k. Then for any 0 < ε ≤ 1 and integer
d, with probability at least 1− n−d, the compressed graph G[p] with pe = ρε

ce
ε2ke

, where
ρε = 3(d + 3)ε−2 log n, is an ε-graph-sparsifier of G containing at most O(nρε) many edges.

The largest computational challenge of the Benczúr and Karger sparsification
approach is to compute the edge strengths ke; the sampling itself can then be done in
linear time. Fortunately, exact strengths are not required:

Corollary 3.2 (Sparsification with Approximate Edge Strengths; [BK15]). If p̃e ≥ pe for
all e ∈ E, then G[p̃] is an ε-graph-sparsifier of G. In particular, given edge strengths under-
estimates k̃e ≤ ke, the procedure of Theorem 3.1 yields an ε-graph-sparsifier of O(ρε ∑e

ce
k̃e
)

many edges with probability at least 1− n−d.

In their original work, Benczúr and Karger [BK15] rely on a sparse certificate al-
gorithm due to Nagamochi and Ibaraki [NI92], which they employ to identify all
k-weak edges for k = 1, 2, 4, . . ., thereby under-approximating the edge strengths
by at most a factor of 2. This combinatorial algorithm translates poorly to the ex-
ternal memory model. Instead, we will rely on a result due to Goel, Kapralov and
Khanna [GKK10], who observe that (in the uncapacitated case) k-weak edges can be
eliminated by uniformly sampling edges with probability O(1/k). This is because any
cut of value k or more will contain at least one edge in expectation, whereas smaller
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cuts will contain none, and hence invoking a connected components algorithm on
the sampled graph will allow us to identify the k-strong components in expectation.
To implement this elegant idea as an algorithm that succeeds with high probability,
they repeat the sampling step O(log n) times, adding edges back after the sampling
whenever their endpoints remain connected. This ensures that it is unlikely for k-strong
components to become disconnected, while decreasing the probability that any k-weak
edges remain in the final graph. Similar to Benczúr and Karger [BK15], they perform
this procedure for k = 1, 2, 4, . . ., which we shall refer to as the levels of k, and write as
k = 2λ henceforth.

The description due to Goel, Kapralov and Khanna does not explicitly deal with
capacitated graphs, and also appears to have some subtle flaws in the probability
calculations. Both of these issues are remedied in this thesis.

Algorithm 3.1 Refinement Sampling for Edge Strengths; adapted from [GKK10]
1: procedure EstimateStrengths(G, d)
2: Set τ ← d77d log ne and Λ←

⌈
log2

( 1
n−1 ∑e∈E ce

)⌉

3: Let G(λ,0) ← G for λ = 1, . . . , Λ
4: for t← 1, . . . , τ do
5: for all λ← 1, . . . , Λ do
6: Compute G(λ,t) ← Refine(G(λ,t−1), 2−λ)

7: Compute le ← min
(
{λ | e 6∈ E(G(λ,τ))} ∪ {Λ}

)
for all e ∈ E

8: Let k̃e ← 2le−1 and return k̃
9: procedure Refine(G, p)

10: Sample Ẽ ⊆ E with probabilities p̃e = ce p, let G̃ = (V, Ẽ)
11: Compute ConnectedComponents(G̃)
12: Let G′ be G with all cross-component edges removed
13: return G′

Lemma 3.3 (Adapted from [GKK10]). Let d ≥ 1 be any integer and ρ = 12(d + 4) log n
similar to Theorem 3.1 for ε = 1/2 but d being d + 1. Then with probability at least 1−
O(Λn−d), the values k̃ returned by EstimateStrengths(G, d) satisfy k̃e ≥ ke

8ρ for all e.

Proof. We aim to show that for all e, le ≥ log2(ke/4ρ) to imply the lemma. The proof
proceeds over all λ ∈ [Λ] to show that with high probability, all edges of strength at
least ke ≥ 4ρ2λ are still part of G(λ,τ), and hence le ≥ λ = log2(ke/4ρ) for these edges.

To that extent, fix any λ and denote by Ce for any edge e the ke-strong component
that contains e. We proceed by induction on t to prove that with probability at least
(1− n−d−1)t, all Ce remain internally connected in G(λ,t) for all edges e with strength
at least ke ≥ 4ρ2λ, thus implying the statement for G(λ,t).

Let t = 1. We will show that the sampled graph in Refine(G(λ,t−1), 2−λ) restricted
to the strong components Ce is a 1

2 -cut-approximator of all Ce w.h.p., and hence w.h.p.
all Ce remain internally connected after sampling. Indeed, for any e with ke ≥ 4ρ2λ

and any edge e′ of Ce, p̃e′ = ce′2−λ ≥ 4ρ
ce′
ke
≥ 4ρ

ce′
ke′

because every edge e′ of Ce has
strength at least ke by construction of Ce. Let C =

⋃
e Ce. By Corollary 3.2, C[p̃] is a

1
2 -cut-approximator of C with probability at least 1− |V(C)|−d−1 ≥ 1− n−d−1, which
implies that the connected components of C must remain connected after sampling,
proving the base case.
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Now assume as induction hypothesis that for some fixed t ≥ 1, all the Ce are
connected in G(λ,t) with probability at least (1− n−d−1)t. Hence none of the edges
inside the Ce have been removed so far, implying that the edge strengths have not
changed. Then by the same argument as above, with probability at least 1− n−d−1,
sampling does not internally disconnect any of the Ce, thus all Ce remain internally
connected with probability at least (1− n−d−1)t+1, concluding the inductive step.

Hence with probability at least (1− n−d−1)τ, the edges of strength at least ke ≥ 4ρ2λ

are still part of G(λ,τ). In particular, for any edge e of strength ke ≥ 4ρ2λ, we have
le ≥ λ and thus k̃e = 2le−1 ≥ 1

2 2λ ≥ ke
8ρ with high probability.

Applying Bernoulli’s inequality (1− n−d−1)τ ≥ 1− τn−d−1 and noting that τ ≤ n
for sufficiently large n yields a success probability of at least 1 − n−d for every λ.
Now observe that Lemma 3.1 implies that the maximum strength of any edge is at
most 1

n−1 ∑e∈E ce, thus our choice of Λ is sufficiently large that a union bound over all
λ ∈ [Λ] captures all edges.

Lemma 3.4 (Adapted from [GKK10]). For any integer d ≥ 1, with probability at least
1− Λn−d, the values k̃ returned by EstimateStrengths(G, d) satisfy k̃e ≤ ke for every
e ∈ E.

Proof. We aim to show that for every edge e, le ≤ dlog2 kee with high probability to
imply the lemma. The proof proceeds by showing that for all λ ∈ [Λ], all 2λ-weak
edges are removed from G(λ,τ) with probability at least 1− n−d; a union bound over
the failure probabilities for all λ ∈ [Λ] will then complete the proof.

Fix any λ ∈ [Λ] and let k = 2λ−1. Benczúr and Karger [BK15] show that contracting
edges of strength at least k does not change the strength of the k-weak edges, so for
the sake of argument, we will consider the contracted graphs H(λ,t) resulting from
contracting all k-strong components of G(λ,t) before sampling in Refine(G(λ,t), 2−λ).

For any t, let C(t) denote the largest connected component of H(λ,t) and let n(t) be
the number of vertices of C(t); the proof will show that as t → τ, n(t) must go to 1,
implying that all k-weak edges will be removed from G(λ,τ). Since all edges in C(t) are
k-weak, the total capacity of all edges of C(t) is at most k(n(t) − 1) by Lemma 3.1 before
sampling. Now let the random variable W denote the number of edges in C(t) after
sampling. We have

E[W] = ∑
e∈E(C(t))

ce2−λ =
1
2k ∑

e∈E(C(t))

ce ≤
1
2k

k(n(t) − 1) =
1
2
(n(t) − 1)

i.e. after sampling and removing the corresponding edges also from H(λ,t), C(t) will
have at most 1

2 (n
(t) − 1) edges in expectation. A non-uniform Chernoff bound states

that [CL06]

P[W ≥ (1 + δ)E[W]] ≤ exp
(
−δ2E[W]

2 + δ/3

)

which with δ = 1/2 implies in particular that

P[W ≥ 3
4
(n(t) − 1)] ≤ exp

(
− n(t) − 1

17 + 1/3

)

i.e. with probability at least 1− exp(− 1
c n(t)) where c = 17 + 1/3, C(t) is split into n(t)/4

many connected components by the sampling in Refine(G(λ,t), 2−λ). This implies that
n(t+1) is at most 3

4 n(t) with probability at least 1− exp(− 1
c n(t)).
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To remedy the decreasing success probability as n(t) decays, we divide the algorithm
into log4/3 n phases, where the i-th phase consists of ri many iterations of refinement,
and ensures that with high probability, n(t) has decreased by a factor of 3/4 over its
initial value at the start of the phase (which is at most (3/4)i−1). The total number of
iterations of the algorithm will then be given by ∑i ri. More concretely, the probability
of failing to decrease n(t) by a factor of 3/4 during ri many repetitions is at most

exp
(
−1

c
(3/4)i−1n

)ri !
≤ 1

log4/3 n
n−d ⇐⇒ ri ≥

c
n
(4/3)i−1

(
d log n + log log4/3 n

)

Hence the total number of iterations to reach n(τ) = 1 is at most

τ =

log4/3 n

∑
i=1

ri ≤
c
n
(d log n + log log4/3 n) · (

4/3)log4/3 n − 1
4/3− 1

≤ 77d log n

with a success probability of at least

(
1− 1

log4/3 n
n−d

)log4/3 n

≥ 1− n−d

In other words, G(λ,τ) contains no k-weak edges w.h.p., hence every k-weak edge e
satisfies le ≤ λ− 1 =⇒ k̃e ≤ 1

2 k. In particular, for those edges e of strength 1
2 k ≤ ke < k,

we have k̃e ≤ ke. Taking a union bound over the failure probabilities for all λ ∈ [Λ]
completes the proof for succeeding in all edges simultaneously.

Combining both lemmas with Corollary 3.2 yields the following theorem:

Theorem 3.2. There exists an algorithm Sparsify(G, ε, d) that, given any undirected graph
G with polynomially bounded capacities, produces with probability at least 1−O(n−d log n)
for any 0 < ε ≤ 1 an ε-graph sparsifier G̃ of G containing at most O(ε−2n log2 n) many
edges after performing at most O(d log2 n sort(m)) I/Os.

Proof. Correctness follows from both lemmas with Corollary 3.2 and the fact that
we assume capacities to be bounded by nb for some constant b. For the number of
I/Os, note that after computing k̃, we can sample G̃ in only O(scan(m)) I/Os, hence
we only need to consider the I/Os required to run EstimateStrengths(G, d): The
algorithm performs τΛ many iterations, each of which consists of a call to a connected-
components procedure as well as a constant number of sorts and scans to identify cross-
component edges. Computing connected components (c.f. Lemma 2.21) requires at
most O(sort(m)) I/Os with overwhelming probability 1− exp(−Ω(m))� 1− 1

τΛ n−d

and the theorem follows.

Remark. Goel, Kapralov and Khanna [GKK10] develop their algorithm in the semi-
streaming model (c.f. Section 1.2). This allows them run Benczúr and Karger’s original
algorithm after a preliminary sparsification, further reducing the number of edges by a
logarithmic factor to only O(ε−1n log n). This technique is not applicable in the (fully)
external memory model. �



Chapter 4

Low Average Stretch Spanning Trees

Consider any undirected graph G = (V, E, `) with edge lengths given by a vector `. We
are interested in finding trees on the vertices of G such that when removing all non-tree
edges from G, the distances between vertices do not grow too much. Alternatively,
one can understand the problem as trying to find a tree T such that the graph metric1

induced by T dominates the graph metric induced by G, but as tightly as possible. A
formulation involving the condition numbers of the graph Laplacians also exists due
to Spielman and Woo [SW09].

Formally, denote for any tree T and u, v ∈ V by pathT(u, v) the unique path
〈u, . . . , v〉 between vertices u, v in the tree T. Let pathT(e) be the path between the
endpoints of an edge e ∈ E (c.f. Figure 4.1). Then the stretch of e ∈ E is given by the
ratio between the length `e of e, and the length between the endpoints of e in T, i.e.

Definition 4.1 (Edge Stretch). For any e ∈ E, the stretch of e is given by

stretch`T(e) =
1
`e

∑
eT∈pathT(e)

`eT

�

The problem of finding trees with low stretch was originally introduced by Alon
et al. [Alo+95] when studying the ‘k-server problem’, but has received much attention
since. Broadly speaking, variants of the problem can be divided into two major

1The graph metric induced by a graph is the metric on the vertices V induced by the shortest paths in
G.

ET

e
pathT(e)

Figure 4.1: Paths in Trees
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categories: (i) finding spanning trees on G, i.e. as subsets of the edges E, and (ii)
relaxing this to allow addition of new edges.

Note that when restricted to spanning trees, there exist graphs for which the
maximum edge stretch can be as large as Θ(n). This will be relevant for a related
argument later in this thesis, so we devote some space here to making this precise:

Lemma 4.1. For any n, there exists an n-vertex unit-weighted graph G = (V, E) such
that for any spanning tree T on the vertices of G, there exists an edge e ∈ E with stretch
stretchT(e) ≥ n− 1.

Proof. Consider the n-vertex cycle. For any spanning tree, exactly one edge is not part
of the tree, and this edge clearly has stretch n− 1.

The bound is tight in the following sense:

Lemma 4.2. For any n-vertex graph G = (V, E, `) with edge lengths `, there exists a tree T
such that no edge has stretch greater than n− 1.

Proof. Consider a minimum spanning tree T = (V, ET) on G. Any edge that is part of
the tree has stretch one. Any edge e ∈ E \ ET not part of the tree has stretch at most
n− 1, because e closes a cycle with T, but because T is a minimum spanning tree, `e is
at least as large as the length of any edge in this cycle. Since the cycle contains at most
n− 1 edges apart from e, the stretch of e is at most n− 1.

Alon et al. thus propose to find trees T with low average stretch:

Definition 4.2 (Average Stretch). Given an undirected graph G = (V, E, `) with edge
lengths ` and a tree T = (V, ET) on the vertices of G, the average stretch of T is defined
as the average of edge stretches, i.e. as

1
m ∑

e∈E
stretch`T(e) �

Note that finding trees of low average stretch is a fundamentally harder, more
global problem than e.g. computing minimum spanning trees. Consider for example
the complete graph Kn. Any tree in this graph is a minimum spanning tree, but star
graphs have much lower stretch in Kn than e.g. an n-vertex path.

Alon et al. prove the existence of graphs where any spanning tree has average
stretch at least Ω(log n) by asserting the existence of not-too-sparse n-vertex graphs
with cycle length (girth) Ω(log n), but this lower bound holds also in the general case
[RR98; Gup01].

Low-average-stretch (henceforth just low-stretch) trees are an essential tool for
approximating graph metrics on much simpler graphs. They find applications in a
variety of problems, such as (among others, see also [FRT04; ABN08]) in network
routing problems [Hu74], graph sparsification [ST14; Kol+10] and solving Laplacian
linear systems [ST14], and, as relevant for this thesis, approximating the cut-flow
structure of graphs using a distribution of trees [Mad11]. We note that the application
of low-stretch spanning trees to solving Laplacian linear systems (linear systems of
the form Lx = y where L is the Laplacian matrix of some graph) due to Spielman
and Teng [ST14] is also used in the electrical flow based maximum-flow algorithm of
Christiano et al. [Chr+11] and its later variations.
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For some applications, the relaxed problem (allowing edge additions) suffices.
A celebrated algorithm due to Fakcharoenphol, Rao and Talwar [FRT04] gives an
optimal algorithm in this setting. For the purposes of this thesis however, the subgraph
constraint will be vital. Alon et al. propose an algorithm achieving average stretch
exp(O(

√
log n log log n)),2 which is also the basis for a parallel version due to Blelloch

et al. [Ble+13]. Constructions with stretch closer to the lower bound have been found
[Elk+05; ABN08], although they tend to be difficult to parallelise or implement cache-
efficiently.

The remainder of this section is structured as follows: In Section 4.1, a variant of the
algorithm from Alon et al. is given in a way that generalises the underlying low-diameter
decomposition. This follows the work of Blelloch et al. [Ble+13], who use this algorithm
in a parallel setting, but the actual low-diameter decomposition will be an improved
version due to Miller, Peng and Xu [MPX13] presented in Section 4.2. Next, because
the algorithm due to Alon et al. only achieves sublinear stretch for astronomically
large input sizes on the order of n� 10100, a more practical algorithm due to Becker
et al. [Bec+19] is given that unfortunately relies on exact SSSP computations, which
incur a substantial I/O overhead asymptotically.

4.1 The Algorithm of Alon et al.

Throughout this section, we use ‘length’ and ‘weight’ of the edges interchangeably. The
section will also make use of the notion of a graph’s radius:

Definition 4.3 (Notions of Graph Radius). Define the hop radius x0 hopradG(x0) of some
graph G with x0 ∈ V as the height of a BFS tree from x0 in G. With no x0 given, define
the hop radius of G as the minimum hop radius from all x0 ∈ V, i.e. hoprad(G) =
minx0∈V hopradG(x0).

Likewise, the weighted radius3 from x0 radG(x0) is the maximum shortest-path
distance from x0 to any v ∈ V, and the weighted radius of G with no x0 given is
rad(G) = minx0∈V radG(x0).

The (hop) diameter is twice the (hop) radius. �

The exhibition of the algorithm by Alon et al. follows that given in the work of
Blelloch et al. [Ble+13], but generalises the algorithm by introducing the concept of a β-
bucket-partition-oracle (see below), which helps clarify the main ideas of the approach.
At a high level, the algorithm partitions the graph into low-radius clusters with few
between-cluster edges. If no such partition exists, then the graph is sufficiently well-
connected to build a low-average-stretch spanning tree. Else, the algorithm proceeds
recursively in the clusters, and connects the clusters using the few between-cluster
edges. In this way, only few edges have large stretch (namely those between clusters).

Definition 4.4 (β-bucket-partition-oracle). An β-bucket-partition-oracle, for 1 ≤ β ≤ n,
is an algorithm that takes as input a radius parameter r and an unweighted, undirected
graph G = (V, E) with the edges partitioned into k buckets E = E1 ] . . . ] Ek, and
outputs a partition of G into components V = C1 ] . . . ] Cp such that

2Expressions of the form exp(O(
√

log n log log n)) sit between poly-logarithmic and polynomial, i.e.
for any ε > 0 and integer d with sufficiently large n, logd(n) ≤ exp(O(

√
log n log log n)) ≤ nε.

3This is sometimes also referred to as the eccentricity of x0.

Lukas Gianinazzi
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E1

E2

Components

Figure 4.2: A bucket partition of a graph with two edge buckets.

1. The hop radius of each component Ci is at most r.

2. For every bucket Ei, the number of edges with endpoints in different components
is at most β

r k|Ei|. �

Throughout this chapter, we assume β ≥ log n when calculating optimal parameters
for our algorithms; this matches the lower bound proved by Bartal [Bar98].

Blelloch et al. [Ble+13] provide an efficient PRAM construction of such an oracle
with β ≤ O(log3 n), which can be efficiently used in the EM model by employing
the ball growing procedure from Subsection 2.6.4. An alternative construction by
Miller, Peng and Xu [MPX13] achieves β ≤ O(log n), which we will use instead (see
Section 4.2). We begin by showing how to construct low-stretch spanning trees from
such low-radius decompositions:

Lemma 4.3 (Generalised from [Alo+95]). Given a β-bucket-partition-oracle, there exists an
algorithm AKPW-LSST that computes a spanning tree of the weighted input graph G with
average stretch at most exp(O(

√
log n log β)).

Algorithm 4.1 Alon et al. Low-Stretch Spanning Tree; [Alo+95; Ble+13]
1: procedure AKPW-LSST(G, `)
2: Let τ =

√
log n

/√
log β and ρ = 4βτn3/τ

3: Scale lengths such that mine `e = 1. Let T be the initially empty tree.
4: Split E = E(0)

1 ] . . . such that E(0)
i = {e ∈ E | `e ∈ [ρi−1, ρi]}

5: for t = 0, . . . do
6: Let (C1, . . . , Cp) = Partition(V(t), ρ/4, E(t)

1 , Et−1
2 , . . . , E(0)

t )
7: Add a BFS tree of each component to T
8: Contract all inner-component edges to yield the graph (V(t+1),

⊎
i E(t+1)

i )
9: Remove self-loops (but maintain parallel edges)

10: If the graph has become empty, stop
11: return T

The algorithm is restated in Algorithm 4.1. To gain some intuitive insight, consider
first the unit-weighted case. In each iteration, the inner-cluster edges are stretched by a
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factor of at most ρ
2 because the diameter of the clusters is at most ρ

2 . The remaining
cross-component edges are passed on to the next iteration, where they are either
included in a cluster, incurring an additional stretch factor of ρ

2 on top of the stretch ρ
incurred by routing through the trees in the clusters of either endpoint, or again passed
on. In general, in the t-th iteration, the inner-cluster edges have stretch at most ρt/2 in
the original graph, and the number of edges in the t-th iteration for the unit-weighted
case is (β/ρ)tm. If (β/ρ)t decays sufficiently fast in comparison to the growth of ρt, then
we can hope to achieve a spanning tree of low average stretch.

The weighted case merely extends this idea: Once a bucket of edges is added, its
size decreases geometrically. Heavier buckets are added later because the stretch factor
ρt/2 is decreased by the edge length ρi.

The formal proof of Lemma 4.3 follows in spirit that given by Alon et al. [Alo+95],
but with substantial modifications to accommodate the more general concept of the
bucket partition oracle. Note in particular that the meanings of β, ρ, γ, etc. in this
section differ from those used by Alon et al. [Alo+95]. The proof begins by showing
the ‘sufficient decrease’ of the edge buckets.

Lemma 4.4. For any τ such that ρ ≥ 4βτn3/τ and iteration t, the i-th edge bucket for any

i ≤ t satisfies |E(t−i)
i | ≤

(
4βτ

ρ

)(t−i)
|E(0)

i |.

Proof. Write γ = 4β
ρ . The number of between-component edges in the t-th iteration

depends on the number of active partitions (at most t), which gives a naive bound of
|E(t−i)

i | ≤ γt−i(t− 1)!|E(0)|
i . We will show that the number of active partitions is in fact

always at most τ, and hence |E(t−i)
i | ≤ (γτ)t−i|E(0)|

i , proving the lemma.

For the first τ iterations, the statement holds immediately. If (γτ)τ|E(0)
i | < 1, say

because (γτ)τ ≤ n−3, then it also holds for all further iterations by induction. In
principle, we are interested in finding the smallest τ that satisfies the inequality. It will
however prove advantageous to leave τ variable and find instead find the smallest ρ
such that (γτ)τ ≤ n−3. We have

(γτ)τ ≤ n−3 ⇐⇒ τ log(γτ) ≤ −3 log n ⇐⇒ γτ ≤ n−3/τ ⇐⇒ ρ ≥ 4βτn3/τ

With the decrease of the edge buckets bounded, the next part is to bound the
increase of the stretch incurred edges that remain between iterations.

Lemma 4.5 ([Alo+95]). In any iteration t, if ρ ≥ 8 then the weighted radius of any component
Ci counted with edge lengths ` in the original graph is at most ρt+1.

Proof. The proof proceeds by induction on t. For t = 1, the statement holds imme-
diately: The hop radius of every component in the first iteration is at most ρ/4, and
every edge has length at most ρ, and ρ2/4 < ρ2. Assume then that the statement holds
for all t ≤ k− 1 for some k ≥ 2. Consider any path along the BFS tree computed for
component Ci in iteration k. By construction, the path can have at most ρ/4 hops. Every
vertex along the path may be a supervertex from a contraction in a previous iteration.
By the induction hypothesis, expanding such vertices increases the radius of Ci by an
addition of the diameter of at most 2ρk. Moreover, any edge on the path has length at
most ρk. Since there are at most ρ/4 edges and ρ/4 + 1 vertices along the path, Ci has
weighted radius at most ρk+1/4 + (ρ/4 + 1)2ρk ≤ ρk+1 for 2ρk ≤ ρk+1/4 ⇐⇒ ρ ≥ 8.
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The ingredients are ready to be mixed:

Proof of Lemma 4.3. Assume ρ ≥ 4βτn3/τ and define again γ = 4β
ρ . Begin by bounding

the stretch added to T in any iteration t: By Lemma 4.5, the length of the tree path
between the endpoints of any inner-component edges in iteration t is at most the
diameter 2ρt+1. By Lemma 4.4, the number of edges of length ρi−1 ≤ `e ≤ ρi for
1 ≤ i ≤ t is at most a (γτ)(t−i)-fraction of |E(0)

i |. Hence the stretch added to the total
stretch of T in iteration t is at most

t

∑
i=1

(γτ)t−i 2ρt+1

ρi−1 |E
(0)
i | =

t

∑
i=1

2ρ2(4βτ)t−i|E(0)
i |

Summing over all iterations, swapping summations and recalling that Ei vanishes after
τ iterations gives

∑
e∈E

stretch`T(e) ≤∑
i

τ−1

∑
t=0

2ρ2(4βτ)t|E(0)
i | = 2mρ2 (4βτ)τ − 1

4βτ − 1
≤ 4mρ2(4βτ)τ−1

Now use ρ = 4βτn3/τ from Lemma 4.4 to arrive at a total stretch of at most 4n6/τ(4βτ)τ+1.
Towards optimising this, write

log
(

4n6/τ(4βτ)τ+1
)
= log 4 +

6
τ

log n + τ log(4β) + log(4βτ) + τ log τ

and observe that a choice of τ :=
√

log n√
log β

with β ≥ log n yields

log
(

4n6/τ(4βτ)τ+1
)
≤ O(

√
log n log β)

thereby bounding the average stretch of T to exp
(
O(
√

log n log β)
)
.

Remark. Computing the optimal τ that minimises the total stretch leads to4

τopt =
1

4eβ
exp (W(4eβ(6 log n− 1)))

where W is the positive branch of Lambert’s W function, defined as an inverse of
x 7→ xex. τopt has no representation using elementary functions; the next-best choice
of τ is the one used above, balancing the dominating terms in the sum up to constant
factors. �

The next section develops a bucket partitioning algorithm Partition(G, ρ, E1, . . . , Ek)
with β ≤ O(log n). As part of its implementation, Partition will also provide the
BFS trees inside each component, thus these will not have to be computed. Partition
succeeds with high probability after expending O(log n · (ρ scan(m) + sort(m))) I/Os.
Combining with Lemma 4.3 yields the following theorem:

Theorem 4.1. For graphs of polynomially-bounded edge length ratio U = maxe `e/ mine `e,
AKPW-LSST(G, `) can be implemented to return a spanning tree of average stretch at most
exp(O(

√
log n log log n)) after expending at most O(exp(O(

√
log n log log n)) scan(m))

I/Os.
4Use that the average stretch is convex w.r.t. τ on the domain of interest, and after taking derivatives,

observe that x log x = k ⇐⇒ x = exp(W(k)) since exp(W(k)) log(exp(W(k))) = k by definition of W.
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Proof. The number of edge buckets in total is at most logρ U ≤ O(log n). Since
all buckets are emptied after being involved in at most τ iterations, the total num-
ber of iterations is at most O(log n). Each iteration consists of a call to Partition,
which also returns the BFS trees for each component, followed by edge contrac-
tions and the removal of self-loops. To perform the contraction, we can propag-
ate each component’s label along an Euler tour of every tree, building a list of
vertex-to-component mappings {(u, x), . . .}. In a constant number of sorts and scans,
we can then rename the endpoints of each edge to their component label, and fil-
ter out self-loops. The entire contraction process thus takes at most O(sort(m))
I/Os, which is dominated by the O(ρ scan(m) log2.5 n) from Partition. Noting that
ρ ≤ Õ(n3/τ) = Õ(exp(O(log n

√
log log n/

√
log n))) ≤ exp(O(

√
log n log log n)) com-

pletes the proof.

Remark. The bound exp(c ·
√

log n log log n) scales very poorly with the hidden con-
stant c. To beat the minimum spanning tree, i.e. exp(c ·

√
log n log log n) ≤ n − 1,

for c = 1 requires only n ≥ e as one can confirm with a calculator. But for c ≥ 7,
which roughly matches the hidden constant in the proof of Lemma 4.3 when assuming
β = log n exactly, we already require roughly n ≥ 10120. Hence the algorithm is not
practical for all realistic values of n. �

4.2 A Bucket-Partitioning Oracle

Analogous to the approach taken by Blelloch et al. [Ble+13], we first design a prob-
abilistic bucket partitioning oracle for the single-bucket case, i.e. an algorithm that
partitions G = (V, E) into components such that for any e ∈ E, the probability that e
goes between components is at most β

r where β ≤ O(log n). We will then use this al-
gorithm to construct a probabilistic multi-bucket oracle, and run it as often as necessary
to produce a final 2β-bucket-partitioning-oracle. The algorithm presented here due to
Miller, Peng and Xu [MPX13], who improve upon the ideas of Blelloch et al. [Ble+13] by
greatly simplifying the algorithm and achieving a β of O(log n) instead of O(log3 n).

4.2.1 The Algorithm Split

This section is devoted to the treatment of the single-bucket case. Formally, we will
construct an algorithm Split that satisfies the bucket partitioning desiderata (c.f.
Definition 4.4) with high probability:

Theorem 4.2 ([MPX13]). Given an unweighted and undirected graph G = (V, E) and a
radius parameter r, Split(G, r) computes a partition of G into components V = V1 ] . . . ]Vk
such that

• For any constant d ≥ 1, with probability at least 1− n−d, every Vi has hop radius at
most r.

• For every e ∈ E, the probability that the two endpoints of E lie in different components,
i.e. that e is cut, is at most (d+1) log n

r .

Split requires at most O(r scan(m) + sort(m)) I/Os.
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s

Figure 4.3: Graph Splitting with Artificial Source

At a high level, the algorithm works by attaching an artificial source s with edges
of random length δv to every v ∈ V (c.f. Figure 4.3). It then computes a shortest path
tree from T, letting the subtrees of s define the components V1, . . . , Vk. The key idea is
that the randomisation of δv makes it unlikely for an edge e = {u, v} to be cut between
components: Assume e is cut. This implies that u, v are in different subtrees from s,
and thus the paths from s to u and v differ already at the first vertex xu 6= xv after
s. But because T is a shortest-path tree, the distances δxu + d(xu, u) and δxv + d(xv, v)
must then be within an additive 1 of each other, as otherwise e would be part of the
shortest-path tree. Now if we can select the δv in such a way that this happens with
probability at most O( log n

r ), while also ensuring that the components have radius at
most r, then we have the desired decomposition.

Miller, Peng and Xu’s key ingredient towards this is the exponential distribution:

Definition 4.5 (Exponential Distribution). A random variable X is said to be expo-
nentially distributed with parameter λ > 0, denoted X ∼ Exp(λ), if P[X ≤ x] =
1− exp(−λx) =: FExp(x, λ) for x ≥ 0, and 0 otherwise. �

An elementary consequence is that the distribution is memoryless, i.e. that P[X ≥ x |
X ≥ t] = P[X ≥ x− t] for any x, t ≥ 0.

With this notation, consider the pseudocode of Algorithm 4.2.

Algorithm 4.2 Graph Splitting; [MPX13]
1: procedure Split(G, r)
2: Let d ≥ 1 be some parameter for the radius probability bound

3: Sample δv
i.i.d.∼ Exp

(
(d+1) log n

r

)
for all v ∈ V

4: Add a vertex s to G with an edge to all v ∈ V of length maxu δu − δv
5: Compute a shortest-path tree T from s using edge length 1 for all e ∈ E
6: Let Vi be the vertices of the i-th subtree of T from s
7: return V1, . . . , Vk along with their subtrees from T

The algorithm is closely related to the simultaneous ball growing procedure from
Subsection 2.6.4, except that the cluster centres are selected randomly based on their
randomised distance to the source s and the topology of the graph. In fact, we will show
in Subsection 4.2.2 that T can be computed efficiently without a SSSP computation
based on a modified ball growing procedure.
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We begin by showing that the choice of δv indeed guarantees the low radius
property:

Lemma 4.6. For any constant d ≥ 1, with probability at least 1− n−d, every component Vi
produced by Split(G, r) has hop radius at most r.

Proof. Because the components are built using shortest paths from s, the hop radius
of every component is at most half the maximum distance from any v ∈ V to s. This
in turn is at most maxv δv. To bound the probability that this exceeds r, recall that
δv ∼ Exp(λ) with λ = (d+1) log n

r and compute

P

[
⋃

v∈V

δv ≥ r

]
≤ ∑

v∈V
P [δv ≥ r] = n exp(−λr) = n · n−(d+1) = n−d

Towards bounding the probability that an edge is cut between components, consider
a collection of n i.i.d. exponentially distributed random variables Xi, and denote by
Xn
(k) the k-th order statistic of this collection, that is, Xn

(k) is the random variable giving
the k-th smallest value of the variables X1, . . . , Xn. The difference between adjacent
order statistics is also exponentially distributed:

Lemma 4.7. Let X1, . . . , Xn ∼ Exp(λ) be i.i.d. exponentially distributed random variables.
Then Xn

(1) ∼ Exp(nλ) and for 1 ≤ k ≤ n− 1, Xn
(k+1) − X(k) ∼ Exp((n− k)λ).

Proof. For Xn
(1), compute that for x ≥ 0,

P[Xn
(1) ≥ x] = P[∩n

i=1Xi ≥ x] = (1− FExp(x, λ))n = exp(−nλx)

For the second claim, note that conditioning Xn
(k+1) on Xn

(k) = t gives exactly the same
distribution as considering only the remaining n− k random variables conditioned on
being at least t, i.e. P[Xn

(k+1) ≥ x | Xn
(k) = t] = P[Xn−k

(1) ≥ x | Xn−k
(1) ≥ t]. Hence compute

for x ≥ 0

P[Xn
(k+1) − Xn

(k) ≥ x] =
∫ ∞

0
P[Xn

(k+1) − t ≥ x | Xn
(k) = t]P[Xn

(k) = t]dt

=
∫ ∞

0
P[Xn−k

(1) ≥ x + t | Xn−k
(1) ≥ t]P[Xn

(k) = t]dt

=
∫ ∞

0
P[Xn−k

(1) ≥ x]P[Xn
(k) = t]dt = exp(−(n− k)λx)

which proves the second claim.

Recall that our aim is to show that the probability that any two adjacent vertices
end up in different subtrees from s, i.e. have distance less than one from s, is small.
The crucial lemma that will let us accomplish this is the following, which will help us
bound the probability that the shortest and second-shortest paths to a vertex are close:

Lemma 4.8 ([MPX13]). For arbitrary but fixed values d1 ≤ . . . ≤ dn, let Xi = di − δi for

all i, where δ1, . . . , δn
i.i.d.∼ Exp(λ), and denote by Xn

(k) again the k-th order statistic of the Xi.
Then for any c ≥ 0, P[Xn

(2) − Xn
(1) ≥ c] ≥ exp(−λc).



CHAPTER 4. LOW AVERAGE STRETCH SPANNING TREES 42

x1

x2

u

v

e
s

T
Cut

Figure 4.4: The shortest paths from s to u and v are via different neighbours of s, thus
cutting the edge e.

Proof. Observe that shifting the di by a constant preserves the statement, and hence
w.l.o.g. assume d1 = 0. For all S ⊆ {1, . . . , n}, denote by AS the event that Xi ≤ 0 for
all i ∈ S, and Xj > 0 for all j 6∈ S. Applying total probability, we have

P[Xn
(2) − Xn

(1) ≤ c] = ∑
S

P[Xn
(2) − Xn

(1) ≤ c | AS]P[AS]

The case S = ∅ cannot occur because X1 = −δ1 ≤ 0 always. Consider next the case
|S| = 1. Then X1 ≤ 0 and Xi > 0 for all 2 ≤ i ≤ n, implying Xn

(1) = X1 and thus

P[Xn
(2) − Xn

(1) ≥ c | AS] ≥ P[−X1 ≥ c] = P[δ1 ≥ c] = exp(−λc)

If |S| ≥ 2, then Xn
(1), Xn

(2) ≤ 0, and hence these order statistics are defined only by
the |S| variables that are in S, allowing us to consider only these, conditioned on being
non-positive by conditioning on AS. Note that P[−Xi ≥ x | −Xi ≥ 0] = P[δi ≥ x + di |
δi ≥ di] = P[δi ≥ x] by the elementary properties of the exponential distribution. This
implies that, conditioned on AS, the negations of Xn

(1), Xn
(2) behave as the largest and

second-largest order statistics of |S| i.i.d. exponentially-distributed random variables.
Write these as Y|S|

(n)=̂
(
−Xn

(1) | AS

)
and Y|S|

(n−1)=̂
(
−Xn

(2) | AS

)
respectively. Then by

Lemma 4.7,

P[Xn
(2) − Xn

(1) ≥ c | AS] = P[−Y|S|
(n−1) + Y|S|

(n) ≥ c] = exp(−λc)

Returning to the sum over all S, we have shown

P[Xn
(2) − Xn

(1) ≤ c] = ∑
S

P
[

Xn
(2) − Xn

(1) ≤ c | AS

]
P[AS] ≥ exp(−λc)

With this, we state the proof of Theorem 4.2 as given by Miller, Peng and Xu [MPX13],
but incorporating a minor simplification adapted from Becker et al. [Bec+19].

Proof Theorem 4.2, correctness of Split. The first property holds by Lemma 4.6.
For the second property, let e = {u, v} be any edge of G, with (w.l.o.g.) d(s, u) ≤

d(s, v) ≤ d(s, u) + 1. Since the components are defined via the subtrees of T, e is
cut if and only if u, v are in different subtrees, i.e. if T contains paths 〈s, x1, . . . , v〉
and 〈s, x2, . . . , u〉 where x1 6= x2 (see Figure 4.4). Note that 〈s, x2, . . . , u, v〉 is also
a path from s to v of length d(s, u) + 1. Hence because T is a shortest-path tree,



CHAPTER 4. LOW AVERAGE STRETCH SPANNING TREES 43

the probability that e is cut is at most the probability that there exist x1 6= x2 with∣∣d(s, x1) + d(x1, v)−
(
d(s, x2)− d(x2, v)

)∣∣ ≤ 1. This expression simplifies to
∣∣∣d(x1, v) + max

x
δx − δx1 −

(
d(x2, v) + max

x
δx − δx2

)∣∣∣ ≤ 1

⇐⇒ |d(x1, v)− δx1 − (d(x2, v)− δx2)| ≤ 1

Since x1 and x2 are defined through the shortest path from s to u resp. v, the probability
of this event is exactly the probability that the smallest and second-smallest values of
{d(x, v)− δx}x∈V are within 1 of each other. Invoking Lemma 4.8 bounds this to at
most 1− exp(−λ) ≤ λ = (d+1) log n

r .

With the correctness of Algorithm 4.2 proven, we now turn towards analysing its
I/O complexity. As a first step, we ensure that the number of bits needed to store each
δv is not too large.

Lemma 4.9. With probability at least 1−O(n−d), the number of bits required for each δv is
at most (d + 2) log2 n. In particular, the number of records needed to store each δv is at most
O(d).

Proof. First, observe that we only require the ordering of the vertices provided by the
δv, not their actual value. Hence it is sufficient to sample only as many bits as needed
to make all values unique.

(d + 2) log2 n bits are not enough whenever two of the δv are within 2−(d+2 log2 n) =

n−(d+2) of each other. By Lemma 4.8 and a union bound over all k ∈ [n − 1], the
probability of this occurring is at most

n−1

∑
k=1

1− exp
(
− (n− k)

rnd+3 (d + 1) log n
)
≤ (n− 1)

(
1− exp

(
− d + 1

nd+2r
log n

))

This should be at most O(n−d) to attain the high-probability bound. Compute

1− exp
(
− d + 1

nd+2r
log n

)
≤ 1

n− 1
n−d

⇐= exp
(
− d + 1

nd+2r
log n

)
≥ exp

(
−n−d−1

)

⇐⇒ (d + 1) log n ≤ rn

which holds for all sufficiently large n. Hence the union bound derived above is at
most O(n−d) and the lemma follows.

Sampling from the exponential distribution accurately when given access to a stream
of random bits has been discussed at length in the literature [Dev86] and can be done
efficiently, given that the number of records per sample is at most O(d) where d is
constant.

We finish proving the I/O complexity of Split in the following subsection, where
we show how to construct the shortest-path tree T using a modified ball-growing BFS
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4.2.2 Delayed Breadth-First Search

The key observation for constructing T efficiently is that only the edges incidient to s
have weights. Moreover, the entire procedure is effectively a ball-growing process with
ball radius r. Hence by modifying the algorithm from Subsection 2.6.4, we can hope to
achieve good performance for small values of r – recall from Section 4.1 that we choose
r = ρ/4 where ρ ≤ exp(O(

√
log n log log n)) ≤ no(1).

Algorithm 4.3 Delayed BFS for Split
1: procedure DelayedBFS(G, δ, s)
2: Let A be the lexicographically sorted arc list of G without {s}
3: Sort all v ∈ V \ {s} by δv as a new list ∆ = {(δv, v), . . .}
4: Sort and partition ∆ = ∆0‖ · · · ‖∆k by integer parts of δv
5: Overwrite ∆← {(δ̃v, v), . . .} where δ̃v is only the fractional part of δv
6: L(0)← {(δ̃v, s, v) | (δ̃v, v) ∈ ∆0}
7: for t = 1, . . . , until done do
8: Let R← {(δ̃v, s, v) | (δ̃v, v) ∈ ∆t} or R← ∅ if t > k
9: for all (δ̃, ·u) in L(t− 1) and (u, v) ∈ A using tandem scan of both lists do

10: Append (δ̃, u, v) to R, remove (u, v) from A
11: Sort R by target and δ̃ lexicographically
12: Remove from R all requests to a target v with no incident (v, ·) in A
13: For duplicate requests to a target, keep only the request with smallest δ̃
14: Set L(t)← R
15: Remove the δ̃ annotations from all L(t) and return {L(t)}t

Lemma 4.10. DelayedBFS computes the shortest-path tree T from line 5 of Algorithm 4.2 in
O(r scan(m) + sort(m)) I/Os, where r is the radius parameter to Split(G, r).

Proof. Consider Algorithm 4.3, a modified simultaneous ball growing procedure similar
to SimultaneousBallGrowing from Subsection 2.6.4. Its correctness follows from the
observation that the BFS level of any vertex v depends only on the integer part of δu,
where u is the first vertex from s along the BFS path from s to v, while the arcs used
for the BFS tree depend only on the tie-braking due to the fractional parts of the δ.

As shown in Lemma 4.9, δ takes at most O(n) records in memory, and hence can be
scanned in O(scan(n)) I/Os. Throughout the execution of the algorithm, ∆ is scanned
exactly once, and all other operations are analogous to Algorithm 2.5. By Theorem 4.2,
the radius of the largest cluster is at most r with high probability. Hence analogous to
Lemma 2.15, DelayedBFS requires at most O(r scan(m) + sort(m)) I/Os.

DelayedBFS provides us with the last ingredient to prove Algorithm 4.2’s I/O
complexity.

Proof of Theorem 4.2, I/O complexity. By Lemma 4.9, sampling the δv and writing these
values to memory takes at most O(dn scan(n)) I/Os. DelayedBFS(G, δ, s) implicitly
constructs the supersource graph, hence we do not need to perform this operation
explicitly. The call to DelayedBFS takes O(r scan(m) + sort(m)) I/Os. The subtrees can
then be identified using an Euler tour on T in O(sort(m)) I/Os. DelayedBFS dominates
the I/O complexity when d is considered constant.
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4.2.3 Constructing the Bucket-Partitioning Oracle

This concludes the treatment of Split, which handles the single-bucket case. In this
section, we show how to use Split to handle the multi-bucket case, following the
original work of Blelloch et al. [Ble+13].

Theorem 4.3 (Following [Ble+13]). There exists a randomised 2β-bucket-partitioning oracle
Partition(V, r, E1, . . . , Ek) for β ≤ (d + 1) log n that succeeds with probability at least
1− n−d and requires O(r scan(m) + sort(m)) I/Os in expectation, or at most O(d log n ·
(r scan(m) + sort(m))) with probability at least 1−O(n−d).

Algorithm 4.4 Bucket Partitioning Algorithm from [Ble+13]
1: procedure Partition(G, r, E1, . . . , Ek)
2: repeat
3: Let C1, . . .← Split((G,

⊎
i Ei), r) together with their BFS trees

4: For every i ∈ [k], compute the number xi of edges from Ei that are cut
5: until For all i ∈ [k], xi ≤ 2(d+1) log n

r k|Ei|
6: return the components from the last call to Split

Proof. Partition(V, r, E1, . . . , Ek) repeatedly invokes Split(Ḡ, r) from Subsection 4.2.1
with Ḡ = (V,

⊎
i Ei) until the number of edges from Ei that are cut is at most β

r k|Ei|,
for all Ei (c.f. Algorithm 4.4). Let Xi be the random variable giving the number of
edges from Ei that are cut after a call to Split. Using the edge cut probability from
Theorem 4.2, E[Xi] ≤ β

r |Ei|, where β = (d + 1) log n. Markov’s inequality states that
P[Xi ≥ 2kE[Xi]] ≤ 1

2k , hence with a union bound over all edge buckets, the probability
that any edge bucket has too many edges cut in an iteration of Partition is at most
1/2. Thus the number of iterations is upper-bounded by a geometric random variable
with p = 1/2, and is at most 2 in expectation and at most O(d log n) with probability at
least 1− n−d. The algorithm succeeds if upon termination, the components have hop
radius at most r, which by Theorem 4.2 occurs with probability at least 1− n−d.

Every iteration makes one call to Split, taking O(n + sort(m)) I/Os, and otherwise
needs to compute the number of edges that are cut. This can be done in O(sort(m))
I/Os by annotating the endpoints of all edges by their components; an edge is cut if its
endpoints have different component annotations.

4.3 The Algorithm of Elkin et al.

The algorithm of Alon et al. [Alo+95] discussed in Section 4.1 yields a tree whose
average stretch is both far away from the theoretical lower bound Ω(log n) asymptot-
ically, as well as impractical for any realistic values of n, since the average stretch is
only improved over a naive minimum spanning tree for enormous n. Recall that the
algorithm relies on carefully balancing the exponential increase of the radius of the
contracted graphs with the exponential decrease of the number of remaining edges.
The exponential radius increase is because we must assume that when taking a path
through a contracted component, this path has length ρ/2.

In practice however, we might be able to build the tree in such a way that paths
between multiple components are not increased by too much. This requires ‘inverting’
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Figure 4.5: Star Decomposition and Supersource Graph

our approach: Instead of building the spanning tree from inside the components,
oblivious to the remainder of the graph, we build the tree on some of the cross-
component edges, and then recursively partition the components in such a way that
the radius bound of the tree does not blow up exponentially.

This idea leads to the algorithm of Elkin et al. [Elk+05]. They grow large components
with few between-component edges, structuring the decomposition such that there is
a central component V0 connected to all the other components (see Figure 4.5). The
low-stretch tree is built on the bridge edges connecting V0 to the other components,
and all components are then decomposed recursively. In every step, the radius of T
increases, because we reroute all paths leaving V0 via the bridge edges. But because
the endpoint of every bridge edge will serve as the centre for the next recursion, we
implicitly keep track of the structure of T, allowing us to be much more careful to
keep this radius increase small. The downside is that current methods for computing
this decomposition efficiently still require an expensive single-source shortest path
computation (c.f. Lemma 2.17) in every recursive call.

Elkin et al.’s algorithm is the (conceptual) basis for the current state-of-the-art
algorithm due to Abraham, Bartal and Neiman [ABN08]. Hence despite the SSSP
requirement implying that we cannot implement these algorithms efficiently, by taking
some steps towards the algorithm of Elkin et al., we can illustrate almost the full extent
of the current understanding of the problem in the literature, and highlight the chief
difficulties that need to be overcome for a cache-efficient implementation.

Formally, we will recursively compute star decompositions of G:

Definition 4.6 ((β, γ)-Star Decomposition; [Elk+05]). Let G = (V, E, `) be a weighted,
undirected graph with edge lengths `. A partition V = V0 ] . . . ] Vk is called a star
decomposition of G with centre x0 (c.f. Figure 4.5) if

• The vertex-induced subgraphs G[Vi] are connected

• For all 1 ≤ i ≤ n there exists a fixed e = {xi, yi} ∈ E with xi ∈ Vi and yi ∈ V0.
This e is called the bridge between V0 and Vi.

Denote by rG(x) the maximum distance from x to any other vertex in G. Let ri =
radG[Vi ](xi) and r = radG(x0). The decomposition is a (β, γ)-star decomposition if, in
addition to the above, 0 < β < 1/2 and
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1. r0 ≤ (1− β)r

2. d(x0, xi) ≥ βr

3. ri + d(x0, xi) ≤ (1 + γ)r �

Properties 1 and 2 ensure that the component V0 has radius not too small or large,
while 3 ensures that the distance from x0 to the periphery of G does not increase too
much when rerouting paths over bridges. By recursively computing star decomposition
of G and ensuring that the number of between-component edges is small, we will be
able to build a low-stretch spanning tree: The bounded radius of G[V0] ensures that the
recursion will terminate quickly, while property 3 ensures that the stretch incurred by
using the bridge edges as spanning tree edges is small. Moreover, only few edges will
need to be rerouted in any given step, since we keep the probability of cutting edges
low. We will give the details later and focus first on obtaining a star decomposition of
G.

Elkin et al. [Elk+05] compute V0 as a ball around x0 and then use a delicate cone-
growing process to build the Vi around it. The procedure depends on slowly growing
each cone in a sequential process, the existence of a cache-efficient implementation is
therefore unlikely. Instead, we rely on Becker et al. [Bec+19], who give a distributed
algorithm for computing star decompositions. They achieve substantial simplifications
over Elkin et al. [Elk+05] by requiring that properties 1–3 hold only with high probabil-
ity and that the number of between-component edges only be small in expectation. At
the heart of the algorithm is a modified version of the graph splitting algorithm from
Subsection 4.2.1.

4.3.1 Star Decomposition due to Becker et al.

Like Elkin et al., Becker et al. [Bec+19] first compute V0 as a ball around x0, but they
do so only after randomising the radius of the ball to reduce the probability that an
edge crosses the ball’s boundary. They then remove V0 from the graph and attach
the artificial source s only to the bridge endpoints xi (c.f. Figure 4.5), randomising
the edge lengths using the exponential distribution. Using this, they show that (i) the
probability that an edge crosses components is small, with an argument analogous to
that in Subsection 4.2.1 but with weighted edges, and that (ii) property 3 is satisfied
with high probability. Formally, by following Becker et al., we will prove the following:

Theorem 4.4 ([Bec+19]). For any weighted, undirected graph G = (V, E, `), the algorithm
StarDecompose(G, x0, γ) outputs with probability at least 1− n−d (for any d > 0) a (1/3, γ)-
star-decomposition of G. The decomposition has the additional property that for any e ∈ E, the
probability that the endpoints of e lie in different components of the decomposition is at most
O( (d+1) log n

γr `e). StarDecompose makes two calls to a single-source shortest path computation
and otherwise requires O(sort(m)) I/Os.

Remark. It is possible to modify the algorithm to produce a (β, γ)-star-decomposition
for any 0 < β < 1/2 by sampling r0 from [βr, (1− β)r] in Algorithm 4.5. This will result
in an algorithm where an edge is cut with probability at most

1
(1− 2β)r

`e +
(d + 1) log n

γr
`e �
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Algorithm 4.5 Star Decomposition; [Bec+19]
1: procedure StarDecompose(G, x0, γ)
2: Compute r ← radG(x0) and sample r0 ∈uar [

r
3 , 2r

3 ]
3: Compute V0 ← Ball(x0, r0) and let X ← {x | {x, y} ∈ E ∧ x ∈ V0 ∧ y /∈ V0}
4: Let λ = (d+1) log n

γr and sample δx ∼ Exp(λ) for all x ∈ X
5: Let Hs ← G[{s} ]V \V0]
6: Attach an edge of length dG(x0, xi) + maxx δx − δxi from s to all xi ∈ X
7: Compute T ← SSSP-Tree(Hs, s)
8: Let Vi be the vertices of the i-th subtree of T from s
9: return V1, . . . , Vk

Note that properties 1 and 2 both hold immediately by the choice of r0. Hence
to show that StarDecompose indeed returns a star decomposition, we only need to
prove property 3, i.e. that rerouting paths leaving V0 via bridge edges does not increase
distances by much.

Lemma 4.11 ([Bec+19]). The decomposition returned by Algorithm 4.5 satisfies property 3 of
Definition 4.6 with probability at least 1− n−d.

Proof. Let i ≥ 1 and v ∈ Vi be arbitrary. By construction,

dHs(s, v) = dG(x0, xi) + dHs(xi, v) + max
x

δx − δxi ≥ dG(x0, xi) + dHs(xi, v)

To upper-bound dHs(s, v), consider the shortest path from x0 to v in G, and let xv be
the first vertex outside V0 on this path. Because 〈s, . . . , xv, . . . , v〉 is also a path in Hs of
length dG(x0, v) + maxx δx − δxv , we have

dHs(s, v) ≤ dG(x0, v) + max
x

δx
︸ ︷︷ ︸
≤γr

−δxv ≤ (1 + γ)r

with probability at least 1− n−d by the calculation from the proof of Theorem 4.2.
Crucially, because Vi is chosen as a shortest-path subtree, we have dHs(xi, v) =

dG[Vi ](xi, v). If we choose v at the periphery of G[Vi] with dG[Vi ](xi, v) = ri, then
combining both bounds yields

dG(x0, xi) + ri ≤ dHs(s, v) ≤ (1 + γ)r

with probability at least 1− n−d.

We are also interested in keeping the probability of cutting an edge small. This prob-
ability can be bounded bounded analogously to Theorem 4.2, but with modifications
to accommodate the weights on all edges.

Lemma 4.12 ([Bec+19]). For any e ∈ E, the probability that e is cut, i.e. that the endpoints of
e lie in different components after execution of Algorithm 4.5, is at most O( (d+1) log n

γr `e).

Proof. We consider the events that e is cut by the ball V0 or lies between components
Vi, Vj with 1 ≤ i, j separately and then apply a union bound.

Lukas Gianinazzi
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Let e = {u, v} ∈ E be arbitrary and assume w.l.o.g. that dG(x0, u) ≤ dG(x0, v).
e is cut by the ball V0 if and only if dG(x0, u) ≤ r0 < dG(x0, v). Using dG(x0, v) ≤
dG(x0, u) + `e we obtain

P[e cut by V0] ≤ P [r0 ∈ [dG(x0, u), dG(x0, u) + `e]] ≤
`e

2r
3 − r

3

=
3
r
`e

because r0 is chosen uniformly at random from [ r
3 , 2r

3 ].
If on the other hand e = {u, v} is cut between components Vi 6= Vj with 1 ≤ i, j, then

by the same argument as in the proof of Theorem 4.2, there must exist two paths from
s to v in Hs (one crossing u, and one not crossing u) whose lengths differ by at most `e.
As in the proof of Theorem 4.2, invoking Lemma 4.8 with values dG(x0, xi) + dG(xi, v)
bounds the probability of this occurring to at most 1− exp(−λ`e) ≤ (d+1) log n

γr `e.
Summing both probabilities in a union bound shows that the probability that e is

cut is at most
3
r
`e +

(d + 1) log n
γr

`e ≤ O
(
(d + 1) log n

γr
`e

)

Lemma 4.13. Algorithm 4.5 requires two shortest path tree computations, in addition to
O(sort(m)) I/Os.

Proof. The computation of r and V0 can be implemented using one call to SSSP-Tree:
From the returned tree, extract r, sample r0, and then in a top-down tree computation
assign to V0 all vertices within distance r0 from x0. Every vertex then knows whether
it is in V0 or not, and hence in O(sort(m)) we can identify the set X. Sampling from
the exponential distribution can be done efficiently as discussed in Lemma 4.9, since
we again only rely on the ordering of the vertices provided by the δv. It is clear that
the remainder of the algorithm can also be implemented in O(sort(m)) I/Os using
top-down tree processing for generating the component assignments.

4.3.2 From Star Decompositions to Low-Stretch Spanning Trees

The next step is to recursively star-decompose the graph, using the bridge edges as
the edges of our low-stretch spanning tree. The simple recursive algorithm is given
as pseudocode in Algorithm 4.6. Its correctness relies on the fact that every star
decomposition uses the bridge endpoints as centre, and by construction takes care not
to increase the radius too much from this centre. Moreover, because V0 is chosen to be
large, the recursion will terminate quickly, helping to mitigate the radius increase.

Algorithm 4.6 Low Average Stretch Spanning Tree from Star Decomposition; [Elk+05]

1: Fix γ = 1
log n throughout

2: procedure Star-LSST(G, x0)
3: If |V| ≤ 2 then return G
4: Compute (V0, . . . , Vk, x1, . . . , xk, y1, . . . , yk)← StarDecompose(G, x0, γ)
5: Compute Ti ← Star-LSST(G[Vi], xi) for i = 0, . . . , k
6: return T as the union of all edges {xi, yi} and trees Ti

The first step in the analysis is to bound the radius increase of T from x0 compared
to G. Our proof for this replaces the recursive graph construction of Elkin et al. [Elk+05]
with a simpler arithmetic argument.
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Lemma 4.14. If an invocation of Star-LSST has recursion depth τ and returns the tree T,
then with probability at least 1− τn−d, radT(x0) ≤ (1 + γ)τradG(x0).

Proof. The proof proceeds by induction on τ. For τ = 1 (i.e. Star-LSST terminates
without any further recursive calls), the statement holds trivially. Assume that the
statement holds for some fixed τ ≥ 1 and consider an invocation of Star-LSST with
recursion depth τ+ 1. Let the xi be as computed in the topmost invocation of Star-LSST.
Then by the induction hypothesis and property 3 of Definition 4.6, with probability at
least 1− n−d it holds that

radT(x0) ≤ max
i

d(x0, xi) + radTi(xi) ≤ (1 + γ)r− ri + (1 + γ)τri

To show that this is indeed bounded by (1 + γ)τ+1r, use the facts that ri ≤ r and, for
k ≥ 1, (τ

k) = (τ+1
k )− ( τ

k−1):

(1 + γ)r− ri + (1 + γ)τri = (1 + γ)r− ri + ri

τ

∑
k=0

(
τ

k

)
γk

≤ (1 + γ)r + r
τ

∑
k=1

(
τ

k

)
γk

≤ (1 + γ)r + r

(
τ

∑
k=1

(
τ + 1

k

)
γk − γ

)

= r
τ

∑
k=0

(
τ + 1

k

)
γk ≤ (1 + γ)τ+1r

This concludes the inductive step, conditioned on the event that our bound for
d(x0, xi) + radTi(xi) holds throughout. The probability for this is at least (1− n−d)τ ≥
1− τn−d (using Bernoulli’s inequality).

We now show that τ is at most logarithmic in n, hence the radius increases not by
much – indeed, since γ = 1

log n , (1 + γ)τ ≤ exp( τ
log n ) ≤ O(1) when τ ≤ O(log n), i.e.

radT(x0) will be at most a constant factor larger than radG(x0).

Lemma 4.15 ([Bec+19]). With probability at least 1− τn−d, Star-LSST has recursion depth
at most τ ≤ O(log n + log U), where U = maxe `e/ mine `e is the length ratio of the graph.

Proof. By properties 2 and 3 from Definition 4.6, for i ≥ 1

ri + d(x0, xi) ≤ (1 + γ)r
d(x0, xi) ≥ βr

}
=⇒ ri ≤ (1 + γ− β)r

Moreover, r0 ≤ (1− β)r < (1 + γ− β)r by property 1. Thus at recursion depth t, the
input graph has radius at most (1 + γ− β)tr. We may assume by rescaling that `e ≥ 1
for all e, and hence the recursion terminates when the radius decreases to strictly less
than 1, i.e. when t > − log r

log(1+γ−β)
. Let U = maxe `e/ mine `e be the length ratio of the

graph; then after rescaling r ≤ nU and hence we arrive at a recursion depth of at most

τ ≤
⌈
− log n + log U

log(1 + γ− β)

⌉
≤ O(log n + log U)

This is predicated on all calls to StarDecompose satisfying Definition 4.6, which occurs
with probability at least (1− n−d)τ ≥ 1− τn−d.
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Combining the small radius of T with the low edge cutting probability from the
star decomposition almost yields the low-stretch spanning tree:

Lemma 4.16 ([Bec+19]). For any edge e ∈ E, the expected stretch of e in the tree T with
respect to the randomness of the algorithm is at most E[stretchT(e)] ≤ O((d + 1) log3 n).

Proof. Let T be the final tree returned by the algorithm. If e is an edge of T, then the
distance between the endpoints of e in T is exactly `e. Else, e must be cut in some
recursive call, and its depth depends only on this call and its descendant recursions.
Hence it suffices to consider the case where e is cut in the first call of Star-LSST to later
extend the argument to all recursive calls. If e is cut in the first call, then pathT(e) must
cross x0, and hence the distance in T between the endpoints of e is at most 2 radT(x0),
which Lemma 4.14 is bounded by 2 · (1 + γ)τr with high probability.5 If e is cut at a
deeper recursion level, then the radius of that subtree is still at most radT(x0), and
hence the argument still applies.

To combine all cases formally, we rely on total expectation: Let e = {u, v} and
compute

E[dT(u, v)] = E[dT(u, v) | e ∈ E(T)]P[e ∈ E(T)] + E[dT | e 6∈ E(T)]P[e 6∈ E(T)]

The probability that e is cut in any given invocation is given by Lemma 4.12 as
O( (d+1) log n

γr `e), and by a union bound, the probability that it is cut in any one of the at
most τ recursions that e is involved in is at most τ times that. Thus

E[dT(u, v)] ≤ `e + 2(1 + γ)τr · O
(

τ
(d + 1) log n

γr
`e

)
≤ O

(
(d + 1) log3 n`e

)

where we use that τ ≤ O(log n), γ = 1
log n and thus (1+ γ)τ ≤ exp(τγ) ≤ O(1). Hence

the expected stretch of e is at most

E[stretchT(e)] ≤ O
(
(d + 1) log3 n`e

`e

)
= O

(
(d + 1) log3 n

)

The lemma ensures that every edge has low stretch in expectation, but we must
still find a single tree that achieves low average stretch over all edges. We show that
we will produce such a tree after at most O((d + 1) log3 n) calls to Star-LSST.

Theorem 4.5. Let G = (V, E, `) be some undirected graph with polynomially-bounded length
ratio maxe `e/ mine `e. There exists an algorithm LSST(G, x0) that outputs with high probabil-
ity a spanning tree T of G such that T has average stretch O(log3 n). LSST expends at most
O(log2 n SSSP(n, m)) I/Os, where SSSP(n, m) ≤ O(n + sort(m) log M

DB ) is the number of
I/Os required to solve the single-source shortest path problem on an undirected graph.

Proof. Applying linearity of expectation to Lemma 4.16 shows that in expectation,
the average stretch of the tree T returned by Star-LSST is O((d + 1) log3 n). By
Markov’s inequality, calling Star-LSST O(d log n) times ensures that at least one of the

5We sweep the formal handling of the case where the bound does not hold under the rug, but it can
be resolved with simple total probability argument if weights are polynomially bounded by choosing d
sufficiently large. The unbounded case can be handled by a more involved construction that contracts all
edges outside a specific length range between the recursions; see the original work of Elkin et al. [Elk+05]
for more information.
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produced trees has average stretch at most O((d + 1) log3 n) with probability at least
1− n−d. Note that we can compute the stretch of every edge by an algorithm similar to
Algorithm 5.1 that will be shown in Section 5.1 using O(log2 m scan(m)) I/Os, which
is less than the I/Os required for the recursive star decompositions.

In total, we perform O(d log2 n) calls to StarDecompose, with each call taking
at most O(SSSP(n, m)) I/Os by Lemma 4.13, since the shortest-path computations
dominate. Recall from Lemma 2.17 that SSSP(n, m) ≤ O(n + sort(m) log M

DB ).

4.4 Towards a Practical Cache-Efficient Algorithm

To the best of this thesis’ author’s knowledge, the only constructions of low-average-
stretch spanning trees published in the literature are those of Alon et al. [Alo+95],
which was discussed in Section 4.1, the star-decomposition based approach due to
Elkin et al. [Elk+05] that was the previous section’s subject, and the state-of-the-art
method due to Abraham, Bartal and Neiman [ABN08] that conceptually builds on top
of the star decomposition technique. Alon et al.’s algorithm admits an asymptotically
cache-efficient implementation, but is not practical, whereas Elkin et al.’s algorithm is
perhaps more practical, but even with the techniques of Becker et al. [Bec+19] still does
not readily admit a cache-efficient implementation when building on current methods.

One might attempt to modify the algorithm to use only approximate shortest
paths.6 But recall that the low probability of cutting edges relies on small differences
between the shortest and second-shortest paths to a vertex, and the fact that these
shortest paths induce a metric: for any u, v ∈ V we have the triangle inequality
d(s, u) ≤ d(s, v) + d(v, u). When using (1 + ε)-approximate shortest paths of length
d̃(s, ·), the triangle inequality weakens substantially to d̃(s, u) ≤ (1 + ε)(d̃(s, v) + `e),
where e = {u, v}. Following the same calculations as Subsection 4.3.1 will show that the
edge cutting probability using (1+ ε)-approximate SSSP is at mostO( (d+1) log n

γ ( `e
r + ε)),

and thus the expected stretch is roughly O((d + 1) log2 n
γ (1 + εr

`e
))

We can use a construction of Elkin et al. [Elk+05] to ensure that the minimum edge
lengths mine `e ≥ Ω( r

n log n ) are large in any invocation to the star decomposition, but

this still leaves an O(εn log n)-term in the expected stretch, requiring ε ≤ polylog(n)
n to

achieve polylogarithmic expected stretch.
This is still too small to achieve good performance; approximate shortest path

algorithms tend to scale with ε−1 or even ε−2 and hence ε ≥ 1
polylog(n) would be

desirable. The next idea is to observe that we only require accurate shortest path
computations in the neighbourhood of the edges that are cut, i.e. on the fringes of the
components. We could for example grow the components with a crude approximation
ratio, and then restart the computation for the component fringes to ‘locally’ refine the
approximation. Becker, Emek and Lenzen [BEL20] devise a scheme that accomplishes
this by carefully contracting the centre of the approximate SSSP tree and restarting the
computation on the remaining vertices. The technique fails however for computing
star decompositions, because we must eventually capture all vertices: Even after many
refinement iterations, the fringes could still have Θ(n) vertices due to the structure of

6We mean (1 + ε)-approximate shortest paths in the sense that for any path 〈s, . . . , v〉 in the tree, the
length of the path is at most (1 + ε) times the distance d(s, v) from s to v along the truly shortest path.

Lukas Gianinazzi
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the graph, and we would then still need to pay for a full SSSP computation.7

Becker, Emek and Lenzen do show how their technique can be used to compute
other kinds of low-average-stretch trees; we will come back to this in Chapter 7.

Borradaile et al. [Bor+20] give a linear-time algorithm for unweighted graphs of
bounded width.8 Their algorithm essentially reduces to a minimum spanning tree
computation on specially-crafted edge weights, and hence can be implemented cache-
efficiently. It might be possible to interleave their algorithm with that of Section 4.1:
Let ϕ(G) denote the bandwidth of G, i.e. the minimum quantity max{| f (u)− f (v)| |
{u, v} ∈ E} achievable over all bijective mappings f : V → N. One can show that
ϕ(G) ≥ Ω( n

hoprad(G)
), hence graphs of low bandwidth have large radius. Intuitively,

this means that the algorithm of Alon et al. performs worst on such graphs, because
the radius of the contracted graph does not decrease as quickly. One might be able to
devise a scheme that interleaves the algorithm of Borradaile et al. at appropriate stages
to improve the stretch of the tree produced by Alon et al.’s algorithm.

Finally, in the context of this thesis, we will observe in Section 5.3 that we will
not actually require a full low-average-stretch spanning tree on G, but rather a forest
of low-average-stretch spanning trees. More concretely, we will be able to split G
into a set of nO(1) disjoint connected components, and compute the spanning trees
inside of these components. While this cannot accelerate the star-decomposition based
algorithm (since we are still dealing with n vertices in total), it can improve the stretch
produced by the algorithm of Alon et al., though only by effectively constant factors in
the exp(O(

√
log n log log n)) term.

7Becker, Emek and Lenzen confirm in private communication that their technique does not appear to
be applicable for computing low-stretch spanning trees.

8In particular, for graphs of cutwidth or bandwidth at most b, they construct spanning trees of
stretch at most O(b2) in linear time with high probability. They also give a polynomial-time dynamic
programming algorithm for graphs of bounded treewidth.
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Chapter 5

Congestion Approximators

In this chapter, we connect low-stretch spanning trees to the minimum congestion flow
problem, through a process due to Madry [Mad11] that we shall refer to as Madry’s
decomposition. The discussion in this thesis is based directly on his work, but tries to
motivate the construction through a slower ‘step-by-step’ approach, while modifying
the necessary parts to achieve a cache-efficient implementation (Madry designs his
scheme in the standard RAM model). Recall from the introduction that we are aiming
to devise an iterative algorithm for solving this problem, where every step f̃ is selected
by approximately minimising the potential function

Φ( f̃ ) = ‖C−1 f̃‖∞ + 2αR(b− B f̃ )

Here, R is an α-congestion-approximator, the focus of this chapter, which we now formally
define as follows:

Definition 5.1 (α-congestion-approximator; [She13]). An α-congestion-approximator for
an undirected, capacitated graph G is a linear operator R : B→ Rk that for any valid
demands b satisfies

‖Rb‖∞ ≤ optG(b) ≤ α‖Rb‖∞

where B ⊆ Rn is the linear subspace of valid demands. For technical reasons, we also
require k ≤ 1

2 n2. �

For the purposes of solving optimisation problems involving R, R can be thought of as
a matrix, but a graph theoretic interpretation is more intuitive and indeed what this
chapter will be working with. Under a graph-theoretic interpretation, R corresponds
to a graph GR = (V, ER,c) that dominates the original graph G = (V, E, c) on all cuts,
but conversely is dominated by the scaled-up graph (V, E, αc) on all cuts. In other
words, for all S ⊆ V,

c
S E↔V\S ≤ c

S
ER↔V\S ≤ αc

S E↔V\S
In the following, the explicit annotation of the edge set is again omitted. Assume
‖Rb‖∞ = optGR

(b) without making this correspondence precise at this point. The
intention is that GR is somehow a much simpler graph than G, making it easy to route
demands in GR. Because GR dominates G on all cuts, the congestion incurred by an
optimal routing in GR under-approximates the congestion of an optimal routing in G:
Let S ⊆ V be a maximally congested of GR in the sense of Theorem 2.1. Then

‖Rb‖∞ = optGR
(b) =

|bS|
cS↔V\S

≤ |bS|
cS↔V\S

≤ optG(b)

54
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At the same time, this under-approximation cannot be too loose: Let S now be a
maximally congested cut of G and compute

α‖Rb‖∞ = αoptGR
(b) ≥ α|bS|

cS↔V\S
≥ α|bS|

αcS↔V\S
= optG(b)

thus we recover exactly the approximation bounds from Definition 5.1.
Consider with this motivation the following terminology:

Definition 5.2 (β-embedding). An undirected, capacitated graph G̃ = (V, Ẽ, c̃) β-
embeds into a graph G = (V, E, c) if for every vertex-induced cut S ⊆ V,

c̃
S Ẽ↔V\S ≤ βc

S E↔V\S �

This definition is closely related to the notion of an ε-graph-sparsifier from Defini-
tion 3.1. Indeed, an ε-graph sparsifier G̃ of G is a graph that (1 + ε)-embeds into G,
but such that G also 1

1−ε -embeds into G̃.
For the purposes of approximating congestions, we seek a graph GR that 1-embeds

into G, but conversely G should α-embed into GR. The crucial difference to graph
sparsifiers is that we additionally desire GR to be so simple that solving the congestion
minimisation problem in GR becomes a trivial, ideally linear-time operation. It will
be much easier to do so when we represent GR as a convex combination {λ(i), G(i)}i
of even simpler graphs G(i) = (V, E(i), c(i)). The graph GR is recovered from the
combination as ER =

⋃
i E(i) and ce = ∑i λ(i)c(i)e . Formally, define

Definition 5.3 ((α, G)-decomposition; [Mad11]). Let G = (V, E, c) be some undirected,
capacitated graph and G be a set of graphs on G. An (α, G)-decomposition of G is a
convex combination {λ(i), G(i)} of graphs G(i) = (V, E(i), c(i)) ∈ G satisfying

1. λ(i) > 0 for all i and ∑i λ(i) = 1

2. G 1-embeds into every G(i)

3. Conversely, every G(i) embeds into G such that the combination α-embeds into G
on average, in the sense that for any cut S ⊆ V,

∑
i

λ(i)c(i)
S E(i)↔V\S

≤ αc
S E↔V\S �

Note that this implies

c
S E↔V\S ≤∑

i
λ(i)c(i)

S E(i)↔V\S
≤ αc

S E↔V\S

for every S ⊆ V because property 2 ensures that every G(i) is connected when G is
connected (recall that this is a basic assumption throughout the thesis), ensuring that
every G(i) has at least one edge crossing the cut S ↔ V \ S. In particular, the convex
combination fulfils exactly the purpose of the imaginary graph GR discussed above.

Lemma 5.1. For any undirected, capacitated graph G = (V, E, c), a convex combination
{(λ(i), G(i))}i of undirected, capacitated graphs G(i) = (V, E(i),c(i)) ∈ G for some G is an
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−1 +1

+1 −1

Figure 5.1: Non-Linearity of Optimal Routing

(α, G)-decomposition of G if and only if G one-emebds into every G(i), and the graph GR,
defined through

GR = (V, ER,c) ER =
⋃

i

E(i) ce = ∑
i

λ(i)c
(i)
e

α-embeds into G, where we fix c(i)e = 0 if e 6∈ E(i).

Proof. Properties 1 and 2 of Definition 5.3 are satisfied by the statement of the lemma.
If {(λ(i), G(i))}i is an (α,G)-decomposition of G, then it follows directly from the
construction of GR that GR α-emebds into G. For the other direction, assume GR
α-embeds into G. Then for any cut S ⊆ V,

αc
S E↔V\S ≥ c

S
ER↔V\S = ∑

i
λ(i)c

(i)

S E(i)↔V\S

and the lemma follows immediately.

A minor caveat in this graph-based construction of congestion approximators is
that require R to be linear for the sake of optimising the potential function Φ( f̃ ), but
optimal routings on GR are not necessarily linear, in the sense that if f (1) and f (2) are
optimal routings of b(1) and b(2), then f (1) + f (2) is not necessarily an optimal routing
of b(1) + b(2). Consider for example the unit-weighted graph and demands shown
in Figure 5.1. Adding both demands together yields the zero demands, but the two
flows add to a cycle flow, which has non-zero congestion. This is further discussed
in Section 7.2; for now it suffices to observe that this problem does not occur when
routing is only performed on trees, which are acyclic. This yields the following lemma,
the proof of which is deferred to the end of Section 5.1.

Lemma 5.2 ([She13]). If there exists an (α, T̃V)-decomposition of some graph G = (V, E, c),
where T̃V is the set of trees on V, then there exists an α-congestion approximator of G.

A useful technique for proving graph embeddings will be in the form of embedding
flows resulting from a special multicommodity flow problem, which we now define.

Definition 5.4 (Minimum-Congestion Concurrent Flow Problem). Given some undir-
ected, capacitated graph G = (V, E, c) along with demands b{u,v} ≥ 0 for all unordered
pairs of vertices {u, v} ∈ {{u, v} | u, v ∈ V}, the minimum-congestion concurrent flow
problem seeks to find flows f {u,v} such that

1. Every f {u,v} routes exactly b{u,v} units of flow between u and v (in some direction),
and satisfies flow conservation everywhere else.



CHAPTER 5. CONGESTION APPROXIMATORS 57

2. The maximum concurrent congestion

max
e∈E

1
ce

∑
{u,v}
| f {u,v}

e |

is minimised.

The value of the problem is the maximum congestion incurred by an optimal assignment
of flows. If demands are only provided for a subset of all vertex-pairs, assume the
remaining demands are zero. �

The concurrent flow problem relates to graph embeddings via the following lemma:

Lemma 5.3. For any two undirected, capacitated graphs Ḡ = (V, Ē, c̄) and G = (V, E, c) on
the same set of vertices, consider the minimum-congestion concurrent flow problem in G of
routing demands c̄ē between the endpoints of every ē ∈ Ē. Ḡ β-embeds into G if and only if the
value of this problem is at most β.

Proof. Consider an arbitrary optimal solution { f {u,v}}{u,v} to the concurrent flow prob-

lem, and let S ⊆ V be an arbitrary cut. The flow f in G given by fe = ∑{u,v} | f {u,v}
e |

routes exactly c̄S Ē↔V\S units of flow across the cut S. At the same time, each edge of G
has congestion at most β, so the flow cannot route more than βcS E↔V\S units of flow
across the cut. Hence c̄S Ē↔V\S ≤ βcS E↔V\S. Since S was chosen arbitrarily, this shows
that Ḡ β-embeds into G.

For the only-if direction, assume Ḡ β-embeds into G. Then for any cut S ⊆ V, the
demand across the cut is exactly c̄S Ē↔V\S. We now invoke a multi-commodity analogue
of Lemma 2.3 [LR99] to conclude that there exists some cut S such that an optimal
solution to the concurrent flow problem has congestion exactly

c̄S Ē↔V\S
cS E↔V\S

≤ β.

Definition 5.5 (Embedding Flow; adapted from [Mad11]). Consider some graphs Ḡ =
(V, Ē, c̄) and G = (V, E, c). We say that a flow f is a β-embedding flow of Ḡ into G if
there exists some (not necessarily optimal) solution { f {u,v}}{u,v} to the concurrent flow
problem of Lemma 5.3 with maximum congestion at most β, such that for all e ∈ E,
| fe| = ∑{u,v} | f {u,v}

e |. By Lemma 5.3, there exists a β-embedding flow of Ḡ into G if and
only if Ḡ β-embeds into G.

The embedding congestion of Ḡ into G is the maximum congestion of an optimal
embedding flow. �

In particular, this means that in order to prove that Ḡ β-embeds into some graph G,
it suffices to find a β-embedding flow of Ḡ into G. This can be an easier problem to
reason about. If for example G is a tree, then the embedding flow of an edge ē from Ḡ
into G can only be routed along pathT(ē), and the overall embedding flow is the sum of
these flows. The embedding-flow formulation also allows computing capacities for G to
achieve a desired embedding factor for Ḡ into G, because the embedding flow of Ḡ into
G corresponds to the capacities in G required for a one-embedding of Ḡ into G. This
will become more clear in Section 5.1, where we give an algorithm for embedding any
graph G into a tree T on the same vertices by computing the corresponding embedding
flow, and then use this flow to define capacities c on T to achieve a 1-embedding of G
into T.
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v∗

ET

E0

pathT(e)

Figure 5.2: Embedding G0 into a Tree

5.1 Embedding into Trees

Trees, being the simplest connected graphs, play a crucial role in finding good (α, G)-
decompositions. In a tree T = (V, ET), every edge eT ∈ ET induces a cut in the sense
that removing eT splits the vertices V into two connected components. Recall that we
assume an arbitrary but fixed orientation on the edges E. We can thus uniquely define
the cut set S ⊆ V induced by eT ∈ ET as the component which eT points towards, i.e.

Definition 5.6 (Tree-Edge Induced Cut). For any undirected graph G = (V, E) with
an arbitrary orientation ~E of the edges E, and a spanning tree T = (V, ET) of G, the
cut XT(eT) ⊆ V induced by a tree edge eT ∈ ET is defined by the connected component
of T after removal of eT such that eT is oriented towards the component. �

For any valid demands b, there exists a unique flow that routes b, hence routing
demands is easy. Moreover, the embedding flow f of a graph G = (V, E, c) into
T is unique: For every tree edge eT ∈ ET, the flow on eT must be exactly | feT | =
cXT(eT)

E↔V\XT(eT).
This suggests a simple recursive algorithm for computing f due to Madry [Mad11],

who adapted it from a related algorithm in an earlier version of Spielman and
Teng [ST14]. To illustrate the approach, root T at some vertex v∗ and assume that
v∗ ∈ pathT(e) for all edges e ∈ E (c.f. Figure 5.2). Then we can collect the required
flow across the tree edges in a bottom-up fashion, because any tree edge {u, v}, where
we assume u is a descendant of v, must route all of the flow that arrives at u from its
descendants (since by assumption all these flows must get routed up via v to the root
v∗), in addition to the flow required to embed any edges of G that are incident to v.
In general, G will also contain edges whose path in T does not cross the root v∗, but
these will be entirely contained in some subtree of v∗, and can thus be routed in the
recursively smaller trees. More pointedly, every recursion of the algorithm partitions
the edges E into

E0 = {e ∈ E | v∗ ∈ pathT(e)} Ei = {e ∈ E | pathT(e) ⊆ Ti}

where T1, . . . , Tk are the subtrees of v∗. Then G0 = (V, E0, c) can be embedded into T as
described above, and the Gi = (V, Ei, c) are embedded recursively into the subtrees Ti.
Selecting appropriate roots v∗ to guarantee fast termination yields the final algorithm,
given in pseudocode form in Algorithm 5.1.
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Algorithm 5.1 Tree Embedding; [Mad11]
1: procedure EmbedTree(G, T)
2: If E(T) = ∅, return the empty flow
3: Identify a splitter vertex v∗ ← FindSplitter(G, T)
4: Root T at v∗

5: Propagate subtree labels Ti to all descendants of v∗

6: Build partition E = E0 ] . . . ] Ek
7: . Now begin processing G0 /
8: Compute for all v ∈ V the value dv = c{v} E0↔V\{v}
9: ∀v ∈ V, let σv ← ∑u∈V(Tv) du where V(Tv) are the descendants of v, including v

10: For every edge {u, v} ∈ E(T) where u is a descendant of v, let | f (0)e | ← σu
11: . Recurse on subtrees /
12: For all subtrees Ti of v∗, compute f (i) ← EmbedTree(Gi, Ti)
13: return f = ∑k

i=0 f (i)

14: procedure FindSplitter(G, T)
15: Construct an Euler tour on T, initialise w← 0
16: for all arcs (u, v) along the tour, starting with v being some leaf do
17: Label the arc with the current sum of weights w
18: If this is the first arc into v, increment w by 1 + degG(v)
19: . The size of some subtree is now given by the arc label of the incoming arc from the

tree, minus the arc label of the outgoing arc into the tree /
20: Using the Euler tour, compute for each vertex the size of all its subtrees
21: Scan all vertices to identify some splitter v∗, and return v∗

Lemma 5.4 (Tree Embedding; [Mad11]). Let T = (V, ET) be a tree and G = (V, E, c) be
some graph. There exists an algorithm EmbedTree(G, T) that computes the unique embedding
flow f of G into T in O(log2 m · scan(m)) I/Os.

Proof. We begin by proving correctness of the algorithm EmbedTree given in Al-
gorithm 5.1. Define for any tree T′ on V the size of T′ as sizeG(T′) = ∑v∈V(T′)(1 +
degG(v)). A splitter v ∈ v∗ is a vertex such that all subtrees T1, . . . , Tk of v∗ (without
v∗) have size at most one-half the size of T, i.e. for all i ∈ [k], sizeG(Ti) ≤ 1

2sizeG(T).
Lemma 5.5 below proves that v∗ always exists and can be found in O(sort(m)) I/Os.

Now consider the partition E = E0 ] . . . ] Ek described above, and let Gi be the
induced graphs on the edges Ei. We claim that EmbedTree correctly computes an
embedding of G0 into T. Consider any tree edge eT ∈ ET. The required embedding
flow of G0 into T on eT is given by (c.f. Figure 5.2)

| f (0)eT | = cXT(eT)
E0↔V\XT(eT)

= ∑
e∈E0

eT∈pathT(e)

ce

By construction of E0, pathT(e) contains the tree edge eT = {u, v}, where we let u be
the descendant of v, if and only if an endpoint of e is a descendant of u, or u itself. Let
Tu be the tree rooted at u and containg exactly all descendants of u, including u. Then
the sum collapses to

| f (0)eT | = ∑
e∈E0

e∩V(Tu) 6=∅

ce = ∑
w∈V(Tu)

c{w} E0↔V\{w}
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which is exactly the value σu computed by the algorithm EmbedTree, and the value
assigned to | f (0)eT |. Hence EmbedTree correctly computes the embedding of G0 into T.

With a simple inductive argument, one can then show that after the recursive calls
of EmbedTree, the flow f returned by the algorithm is indeed the embedding flow of G
into T.

For the number of I/Os required, observe that the Euler tour only needs to be con-
structed once (requiring O(sort(m)) I/Os), and can then be maintained in O(scan(m))
I/Os when splitting the tree. Given the Euler tour (with the first incoming and last
outgoing arc of each vertex labelled), all operations except partitioning the edges E are
easily implemented in O(scan(m)) I/Os. To accelerate the partitioning of the edges,
we maintain E as an edge list sorted by incidence to the Euler tour (with each edge
appearing only once in the list, for its endpoint that is earliest along the tour), and label
each edge by the signed number of hops in the tour between its endpoints. Then when
building the partition, we scan the edge list together with the subtree sizes produced by
FindSplitter(G, T). Whenever the number of hops to the other endpoint of an edge
is larger than the remaining number of hops in the subtree, we move the edge to E0,
else we keep it in Ei. Note that the sorted order of the edge list thereby remains intact
for all Ei. This implies also that we can compute the values dv and σv in O(scan(m))
using another scan of the Euler tour.

Hence after an initial O(sort(m)) I/Os to construct the tour and labelled edge list,
each level of the recursion requires only O(scan(m)) I/Os. By the choice of v∗, the
recursion has depth at most log2(n + m), leading to an total of O(log2 m · scan(m))
I/Os.

Lemma 5.5 (Tree Splitters). Consider any tree T = (V, ET) with arbitrary weights w on the
vertices, and denote for any subtree T′ by size(T′) = ∑v∈V(T′) wv the weight of the subtree T′.
Then the tree T contains a splitter vertex v∗ ∈ V such that for all subtrees Ti induced by the
removal of v∗ from T, size(Ti) ≤ 1

2size(T). Moreover, v∗ can be found in O(sort(m)) I/Os.

Proof. We first prove existence of a splitter for any tree T with arbitrary weights w.
Assume towards a contradiction that T contains no splitter, and consider the tree walk
defined by the following function ω : V → V: Start the walk at any leaf. To take a
step ω(u) from some vertex u, walk to the neighbouring vertex ω(u) = v that roots
a subtree of maximum weight among all neighbours of u, breaking ties according
to some arbitrary, predefined order. We claim that this process eventually enters a
two-cycle (see Figure 5.3).

ω
u, v

Figure 5.3: Tree walk entering a two-cycle.
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Indeed, note that ω : V → V is a function (i.e. ω(u) always takes the same value,
irrespective of the history of the walk), and since V is finite, iterating ω must enter
a cycle v1, . . . , vk, v1 of length k ≥ 2, since ω(u) 6= u for all u. Moreover, ω being a
function implies that in one revolution along the cycle, every vertex must be visited
exactly once, and hence v1, . . . , vk, v1 is also a cycle in T. But T is acyclic, thus it must
hold that k = 2.

Let then u, v be the vertices defining the cycle, let Tv be the subtree of u rooted
at v, and likewise let Tu be the subtree of v rooted at u. Note that this ensures that
Tu and Tv are disjoint, but when connected with {u, v} make up the entire tree T.
At the same time, since by the walking process, Tu and Tv are heaviest subtrees of v
and u respectively, and since T by assumption contains no splitter, it must hold that
size(Tu) >

1
2size(T) and size(Tv) >

1
2size(T). This is a contradiction, because it must

also hold that size(Tu) + size(Tv) = size(T). Hence T must contain some splitter vertex
v∗.

To find v∗, proceed as in FindSplitter from Algorithm 5.1, using the weights w
instead of 1 + degG(v). It is not hard to see that the algorithm correctly computes
all subtree sizes by appropriately traversing the labelled arcs, and thus also correctly
identifies a splitter v∗. Constructing the Euler tour takes O(sort(m)) I/Os, which
dominates the cost of EmbedTree.

Note that we can also use the flow f ← EmbedTree(G, T) to assign capacities ce = fe
to the tree edges such that G one-embeds into T. This will be the main application of
EmbedTree for the purpose of building congestion approximators; the example below
illustrates the approach.

Sherman [She13] proves that a maximum spanning tree provides an m-congestion-
approximator. We follow this, but incorporate the results developed above to pull
everything together in an example.

Lemma 5.6 (Maximum Spanning Tree Congestion; [She13]). Let G = (V, E, c) be some
undirected, capacitated graph, and let T = (V, ET) be a maximum spanning tree in G, with
capacities c given by c← EmbedTree(G, T).

Then the matrix R ∈ R(n−1)×n with one row for each tree edge eT ∈ ET given by

(R)eT ,v =

{
1
ceT

if v ∈ XT(eT)

0 otherwise

is an m-congestion-approximator.

Proof. We prove that a maximum spanning tree T with capacities c← EmbedTree(G, T)
m-embeds into G and then rely on the proof of Lemma 5.2 given below.

First, note that by construction of c, G one-embeds into T. At the same time, for
any tree edge eT ∈ ET, ceT = ∑e∈(XT(eT)

E↔V\XT(eT)) ce ≤ mceT because T is a maximum
spanning tree. In particular, the identity embedding flow of T into G has congestion
at most m. Thus T m-embeds into G by Lemma 5.3, the lemma then follows from
Lemma 5.2, proved below.

Remark. One can tighten the bound to m− n + 2 by noting that the graph must be
connected, hence for every tree edge eT and induced cut XT(eT)↔V \ XT(eT), at least
n− 2 edges must reside entirely within XT(eT) or V \ XT(eT), hence at most m− n + 2
edges can cross the cut. �
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Let us finally prove Lemma 5.2 from the previous section to show how we will
construct congestion approximation operators R from arbitrary (α, T̃)-decompositions.

Proof of Lemma 5.2; [She13]. We show how to construct an α-congestion-approximator
R for an arbitrary (α, T̃V)-decomposition {(λ(i), T(i))}i of some graph G = (V, E, c),
where we recall that T̃V is the set of trees on V. Write T(i) = (V, E(i)

T ) and let c(i) be
the capacity vector of T(i). Now define R to be the matrix containing one row for each
edge e ∈ E(i)

T of each tree T(i) given as in Lemma 5.6 by

(R)e,v =

{
1
c
(i)
e

if v ∈ XT(i)(e)

0 otherwise

We claim that R is an α-congestion-approximator. Indeed, consider any tree T(i) and
any edge e ∈ E(i)

T of this tree, with the corresponding induced cut XT(i)(e). Then
because G one-embeds into every T(i),

|(Rb)e| =
bX

T(i)
(e)

c
(i)

X
T(i)

(e)
E(i)T↔ V\X

T(i)
(e)

≤
bX

T(i)
(e)

cX
T(i)

(e) E↔V\X
T(i)

(e)

≤ optG(b)

where we use Lemma 2.2 in the last step. In particular, ‖Rb‖∞ ≤ optG(b).
To show α‖Rb‖∞ ≥ optG(b), consider the graph GR = (V, ER,c) of Lemma 5.1. We

route b in each tree T(i) as f (i) and then use the flow f = ∑i λ(i) f (i) to route b in GR.
This incurs a congestion on any edge e ∈ ER of

congcf (e) =

∣∣∣∣∣
∑i λ(i) f (i)e

∑i λ(i)c
(i)
e

∣∣∣∣∣

If we interpret the λ(i) as a probability distribution on the T(i), then this is equivalent
to stating that the congestion on e ∈ ER is at most the expected flow on e, divided by
the expected capacity of e. As in Lemma 2.5, there must exist a joint outcome of both
random variables, i.e. a single tree T(i), that attains

congcf (e) ≤
f (i)e

c
(i)
e

= congc
(i)

f (i)(e) ≤ ‖Rb‖∞

since R accounts for the congestion on all edges of all trees. By Lemma 5.1, GR
α-embeds into G, and hence if S is a maximally-congested cut of G in the sense of
Theorem 2.1, then

α‖Rb‖∞ ≥
αbS

c
S

ER↔V\S
≥ αbS

αc
S E↔V\S

= optG(b)

5.2 Using Multiple Trees

Can we do better than an m-congestion-approximator when using trees? For a single
tree, it unfortunately turns out that the answer is ‘not much’:
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Lemma 5.7 (Lower Bound for Tree Embedding). For any n and m ≥ Ω(n), there exists
a unit-weighted n-vertex and m-edge graph G(n, m) such that for any spanning tree T of
G(n, m) with capacities c← EmbedTree(G(n, m), T), the identity embedding flow of T back
into G(n, m) has maximum congestion at least Ω(

√
m).

Proof. Consider first the complete graph Kq on q vertices, and let Tq be a tree in Kq.
Any leaf of Tq is incident to q− 1 edges of Kq, but only one edge of Tq, hence this edge
incurs identity embedding congestion q− 1 ≥ Ω(q).

Now let G(n, m) be some graph containing Kq as a subgraph, where we fix q to be
as large as possible while ensuring (q

2) + (n− q) ≤ m such that G(n, m) has no more
than m edges. One may compute q = Θ(

√
m− n) = Θ(

√
m). Any spanning tree of

G(n, m) must also contain a spanning tree of Kq, and thereby must contain an edge of
identity embedding congestion at least Ω(

√
m).

The lemma implies that when constructing spanning trees T such that G one-embeds
into T, using construction of R given above cannot be sufficient to yield a tight
congestion approximator.

This finally motivates the use of a convex combination in Definition 5.3 containing
more than a single spanning tree to approximate congestions in arbitrary graphs. This
section is dedicated to presenting a direct decomposition into spanning trees TG, which
is the first step of Madry’s decomposition for approximating congestion of arbitrary
graphs. It will then become clear why even this does not suffice, with the further steps
of the decomposition then presented in Section 5.3 and Section 5.4.

Similar to how low-stretch spanning trees in some graphs always contain an edge
of high stretch, but admit low average stretch, we can hope to achieve low average
embedding congestion for our congestion-approximating trees, and then combine
multiple trees together in a convex combination so that the embedding congestion of
the entire combination approaches the average congestion of its members. Note that
this is exactly the goal of the flow packing procedure from Section 2.4: If the trees T(i)

are spanning trees of G, then the embedding flow of G into the T(i) is also a flow in G,
and using flow packing on these flows corresponds to building a convex combination
of trees T(i) such that the weighted combination has overall low embedding congestion.

In somewhat greater detail, the idea is to use the (F, G)-system induced by the
identity embedding flows of the spanning trees TG into G. An identity embedding flow of
a subgraph H = (V, EH,c) into G = (V, E, c), EH ⊆ E is simply the embedding flow
that routes the flow required for each e ∈ EH on the edge itself, i.e. | fe| = ce. Using the
flow packing from Theorem 2.2 for these identity embedding flows produces exactly a
decomposition of G into trees:

Lemma 5.8. Given a β-oracle for the (F, G)-system induced by the identity embedding flows
of the spanning trees TG of G into G, running the flow packing algorithm from Theorem 2.2
and collecting the trees produced by the oracle as {(λ(i), T(i))} yields a (β · (1 + 3δ), TG)-
decomposition of G.

Proof. Construct the graph GR = (V, ER,c) of the convex combination of trees as in
Lemma 5.1, and let f (i) be the identity embedding flow of T(i) into G, assuming all
common edges of the T(i) are oriented equally. Then f = ∑i λ(i) f (i) is the identity
embedding flow of GR into G, and for any edge e ∈ E, since all flows f (i) have the
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same sign on e,

cong f (e) =
1
ce

∣∣∣∣∣∑i
λ(i) f (i)e

∣∣∣∣∣ = ∑
i

λ(i)cong f (i)(e) ≤ β · (1 + 3δ)

by Theorem 2.2. Hence by Lemma 5.3, GR (β · (1 + 3δ))-embeds into G, which
with Lemma 5.1 implies that the convex combination of trees is a (β · (1 + 3δ), TG)-
decomposition of G.

To solve the (relaxed) system with the approach from Theorem 2.2, we need to
define an oracle for querying this identity-embedding (F, G)-system with edge weights
w, which is where the connection to low-stretch spanning trees will be made. Formally,
we prove the following lemma:

Lemma 5.9 ([Mad11]). Given (i) an undirected and capacitated graph G = (V, E, c), (ii) an
edge weight vector w, and (iii) an algorithm that, for any edge lengths, computes a spanning
tree of average stretch at most β on a multigraph with at most n2 edges, there exists an algorithm
that finds a spanning tree T ∈ TG such that G 1-embeds into T and the identity embedding
flow f of T into G satisfies ∑e∈E wecong f (e) ≤ 2β‖w‖1.

Proof. Let T be some for now arbitrary spanning tree in G with capacities c ←
EmbedTree(G, T) such that G 1-embeds into T. Note that for any tree edge eT ∈ ET

ceT = cXT(eT)
E↔V\XT(eT)

= ∑
e∈E

eT∈pathT(e)

ce

Hence the identity embedding flow f of T into G produces weighted congestion

∑
e∈E

wecong f (e) = ∑
eT∈ET

weTcong f (eT) = ∑
eT∈ET

weT

ceT

ceT

= ∑
eT∈ET

weT

ceT
∑
e∈E

eT∈pathT(e)

ce =

= ∑
e∈E

ce ∑
eT∈pathT(e)

weT

ceT

= ∑
e∈E

westretch
`
T(e)

!
≤ 2β ∑

e∈E
we

where we set `e =
we
ce

and we recall the definition of stretch from Definition 4.1. Thus
the problem of finding an oracle for a flow packing of the TG identity embedding
flows is equivalent to finding a tree of low total stretch w.r.t. edge lengths `e =

we
ce

, but
additionally weighted by edge weights we. Madry [Mad11] follows Alon et al. [Alo+95]
in reducing this weighted problem to the usual formulation of the low-stretch tree
problem by duplicating some edges to yield a multigraph.

Let Ḡ = (V, Ē) be the multigraph containing de = 1 + b mwe
‖w‖1
c copies of every edge

e. The total number of edges increases only by a constant factor:

|Ē| = ∑
e∈E

1 +
⌊

we

‖w‖1

⌋
≤ m +

m
‖w‖1

∑
e∈E

we = 2m ≤ n2

where the last inequality follows from the fact that G is a simple graph. Now let T be
some spanning tree of Ḡ with total stretch β|Ē| w.r.t. edge lengths `. Hence

∑
ē∈Ē

stretch`T(ē) = ∑
e∈E

destretch
`
T(e) ≤ β|Ē|
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Lower-bounding de yields

de ≥
mwe

‖w‖1
=

2mwe

2‖w‖1
≥ we

|Ē|
2‖w‖1

=⇒ ∑
e∈E

westretch
`
T(e) ≤ 2β‖w‖1

and hence a spanning tree T of Ḡ with average stretch β on edge lengths ` satisfies
∑e∈E wecong f (e) ≤ 2β‖w‖1, where f is the identity embedding flow of T into G.

Remark. Recall that both of our low-stretch tree algorithms require the edge length
ratio U` := maxe `e/ mine `e to be polynomially bounded. If we refer back to the proof
of Lemma 2.6, we observe that we can be as large as exp(O(β)), while the smallest edge
weights might forever remain at 1. Since β� Ω(log n) for both algorithms, the length
ratio might not be polynomially bounded. We resolve this in Lemma 5.12, somewhat
paradoxically by increasing the lengths by some additive factor proportional to ‖w‖1.�

We refer to the process of building a convex combination of trees using the oracle
defined above as tree packing. Recall from Theorem 2.2 that the number of packing
iterations, and hence the number of calls to the low-stretch tree algorithm, depends
on the tightness of the oracle defined in Definition 2.4 to be the number of edges with
congestion at least one-half the maximum congestion. Even if all tree edges satisfies
this criterion, all m− n + 1 non-tree edges of G do not (since their congestion is zero),
hence the tightness κ for any tree packing is bounded by n− 1. Recall that the number
of iterations of flow packing, and hence the number of calls to the low-stretch tree
algorithm, scales roughly with m

κn . This only becomes sublinear after sparsification of
G (see Chapter 3).

Is sparsification enough to yield a sublinear number of calls to the LSST algorithm?
Unfortunately, the answer is no:

Lemma 5.10 (Tree Packing Oracle Tightness). For any m ≥ Ω(n), there exist m-edge
graphs on which the packing oracle defined in Lemma 5.9 has tightness at most O(√mβ).

Proof. Assume the oracle has tightness k. Use w = 1 in Lemma 5.9 to compute

1
2

k ·max
e

cong f (e) ≤∑
e
cong f (e) ≤ 2βm =⇒ β ≥ k

4m
·max

e
cong f (e)

Lemma 5.7 shows that there exist graphs on n vertices and m edges such that
maxe cong f (e) ≥ Ω(

√
m).Plugging this into the equation above yields

β ≥ k
4m

Ω(m− n) ≥ Ω(k) =⇒ k ≤ O(β)

In the absence of possibly profound structural restrictions on the sparsified graphs that
we perform the flow packing on, we would need at least (c.f. Theorem 2.2)

4β(1 + 3δ)m log m
kδ2 ≥ 4(1 + 3δ)

√
m log m

δ2 ≥ Ω(
√

m log m)

calls to the flow packing oracle, and hence also to the low-stretch spanning tree
algorithm. For m ≤ n polylog(n), this is still on the order of

√
n. With each call to the

LSST taking at least Ω(scan(n)) I/Os, we could only hope to achieve an algorithm of
Ω(scan(n1.5)) I/Os – far from being nearly linear.



CHAPTER 5. CONGESTION APPROXIMATORS 66

ET \ K

K
⋃

ek∈K XT(ek)
E↔V \ XT(ek)

Figure 5.4: j-sliced Tree

5.3 Slicing Trees

To remedy this, Madry proposes to ‘slice’ the trees into smaller subtrees at the heavily-
congested edges by removing these edges eT from the tree T and instead replacing
them with all cross-cut edges XT(eT)

E↔V \ XT(eT). This ostensibly sacrifices the easy
routability of trees, but we will recover a (recursive) decomposition into trees later in
Section 5.4. We define a sliced tree as follows:

Definition 5.7 (j-sliced Tree; [Mad11]). Let G = (V, E) be some graph and let T =
(V, ET) be a spanning tree on G. Let K ⊆ ET with |K| ≤ j be some subset of the tree
edges. The j-sliced tree HG(T, K) = (V, EH) is the graph on the vertices V connected by
the edges (c.f. Figure 5.4)

EH = (ET \ K) ∪
(
⋃

ek∈K

(
XT(eT)

E↔V \ XT(eT)
))

i.e. HG(T, K) contains parts ET \ K of the tree, together with all edges that cross the cut
induced by a tree edge from K.

The set of j-sliced trees in G is denoted by HG[j]. �

Slicing trees along heavily congested edges gives us the necessary freedom to
achieve low tightness. To illustrate the approach, consider the subset of tree edges
with congestion at least one-half the maximum congestion κ := {e ∈ E | cong f (e) ≥
1
2 maxe′ cong f (e′)}. We want to grow this set by adding some edges from T to the
slicing set K to produce the graph HG(T, K). The only tool we are given for this is
to reduce the term for the maximum congestion by moving the maximally congested
edges to K, at the expense of making the resulting graph more difficult to work with
(if we move all edges to K, we are left with the original graph G, which is not a useful
decomposition). The trick is that if κ is small, e.g. contains only a single edge, then by
moving only these edges to K, the maximum congestion decreases by a factor of at
least one-half, whereas if κ is large, then we already have large tightness and are done.

Iterating on this, we can partition the edges into buckets with congestion at least 2−i

times the maximum congestion, and we want to find a bucket containing many edges
(the number of edges defines the tightness of the oracle), but such that the number of
edges in all higher-congested buckets is small (these are the edges moved to K). What
remains to be done is to analyse this formally, and to balance the size of K with the
tightness of the oracle.

Lemma 5.11 ([Mad11]). Let β be as in Lemma 5.9. There exists a (2β + 1)-oracle with
tightness 1 ≤ k ≤ n − 1 for the flow system induced by the identity embedding flows of
HG [(k− 1)blog2 mUc], where U = maxe ce/ mine ce is the capacity ratio of the graph G.
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Proof. Let T = (V, ET) be the tree as produced by Lemma 5.9. For the tree edges
ET \ K, use the capacities c as produced by EmbedTree(G, T), and for all other edges
of HG(T, K), use the original capacities c. Now begin by proving that for any choice
of K, HG(T, K) satisfies ∑e∈E wecong f (e) ≤ (2β + 1)‖w‖1, where f is again the identity
embedding flow of HG(T, K) into G. This part is a simple calculation:

∑
e∈E

wecong f (e) =∑
e∈ET\K

wecong f (e) +∑
e∈E\ET

we cong f (e)︸ ︷︷ ︸
≤1

≤ 2β‖w‖1 + ‖w‖1 = (2β + 1)‖w‖1

Proceed by constructing the set K as outlined above. Observe that maxe cong f (e) ≤
mU, which would be the congestion incurred at the least-capacity edge if all other
edges are of maximum capacity and routed over this edge. Moreover, for any tree
edge eT ∈ ET, cong f (eT) ≥ 1 because the edge capacities in T are always at least as
large as those of G. This implies that the tree edges can be fully split into buckets
Ei = {eT ∈ ET | 2−(i+1)mU < cong f (eT) ≤ 2−imU} for i = 0, . . . , blog2 mUc. Let Ej be
the bucket with the smallest j that satisfies |Ej| ≥ k, or let j = blog mUc if no such
bucket exists.

By moving the first j− 1 buckets to K, maxe cong f (e) reduces to at most 2−jmU
(where f is now the embedding flow of this HG(T, K) to G) because all edges of
HG(T, K) that are not in ET \ K now have congestion exactly 1. Thus after this, |Ej|
is exactly the tightness of the oracle. The number of edges in K is |K| = ∑

j−1
i=0 |Ei| ≤

j(k− 1) ≤ (k− 1)blog2 mUc because by construction of j, none of these buckets contains
more than k− 1 edges, and j ≤ blog2 mUc.

If |Ej| ≥ k, then the tightness holds immediately by the above construction. If
however no such bucket was found, then j = blog2 mUc and hence the maximum
congestion after constructing HG(T, K) is 2, thus the oracle has tightness n− 1 ≥ k
regardless.

The dependency on the capacity ratio U is not hugely important, because the
external memory model assumes that the edge capacities have constant encoding size
and thus U ∈ O(1). However, we must still resolve the conundrum remarked earlier:
We also require the length ratio U` := maxe `e/ mine `e to be polynomially bounded
for the low-stretch spanning tree computations. It turns out that both problems can be
resolved with a modification of the edge lengths due to Sherman [She13]. First, note
that U in the previous lemma was only used to bound the maximum congestion on
any edge. Shifting the edge lengths will let us ensure that the congestion is always at
most Õ(m), while at the same time increasing the minimum edge length mine `e such
that U` becomes polynomially bounded.

To see this, observe that the maximum congestion of T from Lemma 5.9 is in
fact 2β‖w‖1/b if we ≥ b for all e, because then b maxe cong f (e) ≤ ∑e∈E wecong f (e) ≤
2β‖w‖1. Shifting weights such that b becomes proportional to ‖w‖1 thus decreases
the maximum edge congestion drastically, while also increasing mine `e enough to
guarantee U` ≤ poly(n). The following lemma makes this precise:

Lemma 5.12 ([She13; Mad11]). Let β be as in Lemma 5.9. There exists a (4β + 1)-oracle
with tightness 1 ≤ k ≤ n− 1 for the flow system induced by the identity embedding flows of
HG [(k− 1)blog2(4βm)c]. Moreover, if the capacities of G are polynomially bounded, then
the length ration U` = maxe `e/ mine `e, where ` are the lengths of the graph passed to the
low-stretch tree algorithm, is also polynomially bounded.
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Proof. Modify the calculation from Lemma 5.9 to use the length function `′e =
we+a

ce
(for

some a fixed below) in the construction of the low stretch spanning tree:

∑
e∈E

wecong f (e) ≤ ∑
e∈E

(we + a) cong f (e) ≤ · · · ≤ 2β (‖w‖1 + am)

and hence

max
e∈E

cong f (e) ≤ ∑
e∈E

cong f (e) ≤ 2β

(‖w‖1

a
+ m

)

Choose a = ‖w‖1
m to arrive at ∑e∈E wecong f (e) ≤ 4β‖w‖1 and maxe cong f (e) ≤ 4βm. In

other words, the modified length function is a 4β-oracle for HG[0], and the resulting
tree has maximum congestion at most 4βm. Using this bound instead of mU in
Lemma 5.11 results in a (4β + 1)-oracle with tightness k for the embedding flows of
HG [(k− 1)blog2(4βm)c].

Finally, observe that mine `e ≥ mine
‖w‖1
mce
≥ ‖w‖1

poly(n) and maxe `e ≤ maxe we + a ≤
(1 + 1/m)‖w‖1. Thus U` ≤ (1 + 1/m) poly(n) ≤ poly(n).

The final flow-packing oracle algorithm is given in pseudocode form in Algorithm 5.2.

Algorithm 5.2 A Flow-Packing Oracle for the (α, HG)-decomposition

1: procedure SlicedTreeOraclek(G, w)
2: Let `′e =

we
ce
+ ‖w‖1

mce
for every e ∈ E

3: Let Ḡ = (V, Ē) be the multigraph s.t. Ē has 1 + b mwe
‖w‖1
c copies of all edges e ∈ E

4: Compute a spanning tree T of Ḡ of average stretch at most β w.r.t. `′

5: Compute the embedding capacities c using EmbedTree(G, T)
6: Sort the edges e of T by their embedding congestion ce/ce in descending order
7: Split this list into buckets Ei = {e ∈ E | 4βm · 2−(i+1) < ce/ce < 4βm · 2−i}
8: Find the smallest j such that |Ei| ≥ k, or let j = blog2 4βmc otherwise
9: Let K =

⋃j−1
i=0 Ei and construct HG(T, K)

10: return the identity embedding flow of HG(T, K) into G
11: procedure SlicedTreeDecomposet(G)
12: Let k = b28βt−1m log mc
13: Run RelaxedFlowPacking(G, δ = 1/2) with the oracle SlicedTreeOraclek

14: return the convex combination {λ(i), H(i)
G (T, K)}

Combining the oracle from Algorithm 5.2 with Theorem 2.2 yields the following
summarising theorem:

Theorem 5.1 ([She13; Mad11]). Assume there exists an algorithm that computes, for any
multigraph of at most n2 edges, a spanning tree of average stretch at most β. Then there
exists an algorithm SlicedTreeDecomposet that for any undirected, capacitated graph G =

(V, E, c) and Ω
(

βm log m
n

)
≤ t ≤ O(βm log m), computes an

(
O(β), HG

[
O( βm log2 m

t )
])

-
decomposition of G containing at most t many sliced trees.

SlicedTreeDecomposet makes O(t) calls to the low-stretch tree oracle, and otherwise
requires O(t log m scan(m)) I/Os.
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Proof. We prove the theorem with explicit constants. By Theorem 2.2, the number of
trees in the decomposition for an oracle of tightness k is

t =
4(4β + 1)(1 + 3δ)

kδ2 m log m 0 < δ ≤ 1/2

Choose e.g. δ = 1/2, then t ≤ 28βk−1m log m =⇒ k ≤ 28βt−1m log m. Since we require
1 ≤ k ≤ n− 1, this also constrains

28

n− 1
βm log m ≤ t ≤ 28βm log m

Now invoke Algorithm 2.2 with SlicedTreeOraclek for k = b28βt−1m log mc, adding
every tree constructed by the oracle to the decomposition along with the coefficient λ(i)

used by the flow packing procedure. In every iteration, the flow packing procedure
adds a new sliced tree to the decomposition, hence the decomposition will contain at
most t many sliced trees. By Lemma 5.12, the number of edges on which these trees
are sliced is at most

(k− 1) · blog2(4βm)c ≤ 28βt−1m log m log2(4βm) ≤ O
(

βm log2 m
t

)

Due to Theorem 2.2, the cut approximation ratio of the final decomposition is at most

(4β + 1)(1 + 3δ) ≤ 14β + 7/2 ≤ O(β)

The cost of SlicedTreeOraclek is dominated by the call to EmbedTree (which takes
O(log2 m scan(m)) I/Os), in addition to the construction of a low stretch spanning
tree. Hence finding the entire decomposition requires at most t calls to the low-stretch
spanning tree algorithm, in addition to the O(t log m scan(m)) I/Os required on top of
this by the calls to SlicedTreeOraclek.

As the statement of the theorem indicates, we will be interested in keeping the
number of sliced trees produced by the decomposition small. Another gadget available
to us towards this goal is the following ‘sparsification’ result, used implicitly by
Sherman and formalised here:

Lemma 5.13. If {λ(i), G(i)}i∈[t] is an (α, G)-decomposition of G, then for any δ ∈ (0, 1),
removing the δt graphs of smallest coefficient λ(i) and scaling up the remaining λ(i) to sum to
one yields a ( α

1−δ , G)-decomposition of G.

Proof. Write ∑δt
i=1 λ(i) for the sum over the coefficients of the δt smallest λ(i). Assume

towards a contradiction that ∑δt
i=1 λ(i) > δ. On average, the coefficients in the sum

have value 1
δt ∑δt

i=1 λ(i) > 1/t, hence there must exist some λ(i) among the δt smallest
coefficient of value strictly greater than 1/t. But then the remaining (1− δ)t coefficients
must sum to strictly more than (1− δ)t 1

t = 1− δ, which together with the first δt
smallest coefficients is more than one, arriving at a contradiction.

Thus the δt smallest coefficients can only sum to at most δ, and the remaining
coefficients must sum to at least 1− δ. Hence we scale the λ(i) of the remaining graphs
by at most 1

1−δ and the lemma follows.
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p(1)e

p(2)e

e

j-sliced tree

⋃
ek∈K XT(ek)

E↔V \ XT(ek)

K

almost-2j-tree

ET \ K

PE

Figure 5.5: Construction of an almost-2j-tree (right) from a j-sliced tree (left), with
pathT(e) and the corresponding portal vertices p(1)e , p(2)e indicated for a cut edge on the
left, and the corresponding embedding flow of e from HG(T, K) into IG(T, K) on the
right.

5.4 From Sliced Trees to j-Trees

j-sliced trees have a well-defined structure, but it is still not evident how to efficiently
compute optimal routings in such sliced trees. Even then, directly routing in j-sliced
trees would still run into the non-linearity of routing discussed in the preamble to
Lemma 5.2, and so we seek to recover a decomposition into trees T̃V on the vertices V
of G.

The mechanism that accomplishes this is an algorithm to one-embed the j-sliced
trees into j-trees, which are graphs consisting of j many disjoint trees connected through
an arbitrary j-vertex graph (recall Figure 1.2). This will be a two-step process: First,
every j-sliced tree is one-embedded into an almost-2j-tree, which is the union of a single
tree and an arbitrary 2j-vertex graph. As a second step, these almost-2j-trees are then
embedded into O(j)-trees.

Lemma 5.14 ([Mad11]). There exists an algorithm AlmostTreeify takes a j-sliced tree
HG(T, K) and finds an almost-2j-tree IG(T, K) that is three-embeddable into HG(T, K), and
such that HG(T, K) is one-embeddable into IG(T, K). AlmostTreeify requiresO(log m scan(m))
I/Os.

Proof. Write G = (V, E, c), T = (V, ET), and let c be the capacities of HG(T, K). Recall
that XT(ek)

E↔V \ XT(ek) denotes the set of edges from E that cross the cut XT(ek)
induced by an edge ek ∈ K ⊆ ET. For any e ∈ XT(eT) ↔ V \ XT(eT) and any ek ∈ K,
let p(1)e , p(2)2 ∈ V be the first and last vertices on the path pathT(e) in T between the
endpoints of e that are incident to an edge in K. Refer to these vertices portals between
the slices crossed by the cut edge e ∈ XT(ek)

E↔V \ XT(eT), and call {p(1)e , p(2)e } = ep
the portal edge of e. Let PE be the set of portal edges, i.e.

PE =
{{

p(1)e , p(2)e

} ∣∣∣ e ∈
(
XT(ek)

E↔V \ XT(ek)
)

for some ek ∈ K
}

Likewise, denote by PV the set of all portal vertices, i.e. the set of endpoints of the
edges in PE. Note that every portal vertex in PV is incident to an edge in K, hence there
can be at most 2|K| ≤ 2j vertices in PV .
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ep

ET \ K

PE
⋃

ek∈K XT(ek)
E↔V \ XT(ek)

Figure 5.6: Embedding flow of a portal edge back into HG(T, K).

Now define IG(T, K) as the graph consisting of the edges in ET \ K and all portal
edges PE, i.e. (c.f. Figure 5.5)

IG(T, K) =
(

V,
(
ET \ K

)
∪ PE

)

Observe that by construction, there is a path between the endpoints of every cross-cut
edge e ∈ XT(ek)

E↔V \ XT(ek), and every tree slice of the sliced tree is also contained
in IG(T, K), hence the IG(T, K) is connected. As such, it contains a spanning tree, and
together with the subgraph (PV , PE), it forms an almost-2j-tree.

To compute the set of portal vertices PV and portal edges PE, we use a recursive tree
splitting algorithm similar to EmbedTree from Lemma 5.4. When routing a cross-cut
edge e through the splitter vertex v∗, we use the Euler tour to identify the two portal
vertices of e, i.e. the first ancestors of either endpoint that are endpoints of an edge in
K. The entire construction requires O(log m scan(m)) I/Os as argued in Lemma 5.4.

Finally, to guarantee mutual embeddability of IG(T, K) into HG(T, K) and vice-
versa, we need to define appropriate capacities for the edges in the almost-2j-tree. To
that extent, denote the set of edges e for which ep is a portal edge as e ∈ Π(ep), i.e.
Π(ep) is the set of cut edges which are routed through the portal edge ep (we can track
this set during the construction of the portal edges without any additional overhea).
We use the symbol i to denote the capacities that we define for IG(T, K). The idea is to
use that by construction of HG(T, K), the original graph G one-embeds into T, hence
we can route the embedding flow of the cut edges (XT(ek)

E↔V \ XT(ek)) through the
three edges ET \ K in IG(T, K) up to and then through their portal edge. Define to that
extent the capacities i for IG(T, K) as follows:

ie =

{
2ce if e ∈ ET \ K

∑e′∈Π(e) ce′ otherwise, i.e. e ∈ PE

With this choice, HG(T, K) one-embeds into the almost-2j-tree IG(T, K): For the tree
edges eT ∈ ET \ K, we use the identity embedding, using up ce units of capacity and
leaving the remaining ce for the cut edges. For these, we route the flow along the tree
edges in ET up to and then through the corresponding portal edge (c.f. Figure 5.5) –
the choice tree and portal edge capacities ensures one-embeddability.

An embedding of IG(T, K) into HG(T, K) can be constructed as follows: For the tree
edges eT ∈ ET \K, an identity embedding flow has congestion two. For the portal edges
ep ∈ PE, use that the capacity iep of the portal edge in IG(T, K) is given by the sum of

capacities of cut edges e′ = {u, v} ∈ Π(ep) with pathT(e′) = 〈u, . . . , p(1)e , . . . , p(2)e , . . . , v〉.
Hence 〈p(1)e , . . . , u, v, . . . , p(2)e 〉 (c.f. Figure 5.6) is a path in HG(T, K) between the end-
points of the portal edge ep, and we can route ce′ units of flow along this path with



CHAPTER 5. CONGESTION APPROXIMATORS 72

Deleted
W2

W \W2

Figure 5.7: A graph after recursively deleting all degree-one vertices.

congestion 1 on the non-tree edges. Doing this for all such edges e′ ∈ Π(ep) routes
all of iep . At the same time, the congestion on the tree edges eT ∈ ET \ K increases
by at most an additional 1, because their capacities c← EmbedTree(G, T) are chosen
to accommodate the routing of all cut edges e′. This results in an overall embedding
factor of three.

The construction is summarised in Algorithm 5.3.

Algorithm 5.3 From j-sliced Trees to Almost-2j-Trees
1: procedure AlmostTreeify(HG(T, K))
2: Build the star-tree T̃
3: Using recursive tree splitting, compute the set of portal edges PE
4: Compute EI ← (ET \ K) ∪ PE and capacities i

5: return (V, EI , i)

We proceed to the second step of transforming IG(T, K) into an O(j)-tree. The
leaves of IG(T, K), if any, can be reused as leaves in JG(T, K), so we can recursively clip
off the leaves from IG(T, K) until obtaining some subgraph GW on W ⊆ V that contains
only vertices of degree at least two in GW . Consider from these in particular the vertices
W2 ⊆W of degree exactly two. W2 gives rise to a set of disconnected paths or cycles,
and breaking every cycle at some edge results in a forest on W2. By reattaching the
clipped-off vertices and suitably connecting this forest using an arbitrary graph on at
most 6j− 2 vertices, we will obtain JG(T, K).

Lemma 5.15 ([Mad11]). There exists an algorithm Treeify that, given an almost-2j-tree
IG(T, K) = (V, EI , i), finds a (6j− 2)-tree JG(T, K) = (V, EJ , j) that is three-embeddable
into IG(T, K), and such that IG(T, K) is one-embeddable into JG(T, K).

Proof. Let GW = (W, EW) be the graph obtained by repeatedly removing from IG(T, K)
all vertices of degree one, until only vertices of degree at least two in GW remain. We
distinguish two cases:

Case (i): There exists at least one vertex of degree strictly greater than two. Let
W2 ⊆ W be the set of vertices of degree exactly two. The core of JG(T, K), which
is the arbitrary (6j − 2)-vertex graph, will be built on W \W2 (c.f. Figure 5.7). To
that extent, decompose GW into a set of edge-disjoint paths {P (i)}i such that the (not
necessarily distinct) endpoints of every path are in W \W2, and the inner vertices of
every path are from W2 only. Write P (i) = 〈v(i)1 , . . . , v(i)ki

〉. To ensure that JG(T, K) is
acyclic except on W \W2, we remove from every path an edge of minimum capacity
e(i)min = arg mine∈P(i) ie, and instead add an edge between the endpoints of P (i) (if the
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endpoints are distinct and the edge does not already exist) to retain connectivity. The
resulting graph may be described as follows:

JG(T, K) =

(
V, EIJV \WK∪

(
⋃

i

(
P (i) \ {e(i)min}

)
∪
{
{v(i)1 , v(i)ki

}
}))

where EIJV \WK are the edges of EI where at least one endpoint lies in V \W.
Let us now prove that JG(T, K) is indeed a (6j − 2)-tree: First, JG(T, K) acyclic

except on W \W2, because any cycle must include only vertices from W, but the only
edges with both endpoints in W are those added in the above construction. Assume for
now that the cycle includes at least one vertex from W \W2. If this cycle includes even
one vertex from W2, then the corresponding two edges must have been part of one of
the paths P (i) whose endpoints are also both part of the cycle, hence by construction
the cycle must have been split. Hence the cycle can include only vertices from W \W2,
or only vertices from W2. But the latter case is not possible, since the graph is connected
and contains at least one vertex of degree strictly greater than two.

Second, we show that the number of vertices |W \W2| in the core is at most 6j− 2:
Let WT be the set of vertices from GW that are incident only to the edges of the spanning
tree ET \ PE. Because IG(T, K) is an almost-2j-tree, we have |WT| ≥ |W| − 2j. Moreover,
the number of edges in T restricted to GW is at most 2|W| − 2, hence

2|WT ∩W2|+ 3|WT \W2| ≤ ∑
v∈WT

degGW
(v) ≤ 2|W| − 2 ≤ 2|WT|+ 4j− 2

and thus with |WT| = |WT ∩W2|+ |WT \W2|, we have

|WT \W2| ≤ 4j− 2

In particular, the core of JG(T, K) consists of the vertices W \W2, for which we have

|W \W2| = |WT \W2|+ |W \ (WT ∪W2)| ≤ 4j− 2 + 2j ≤ 6j− 2

Hence JG(T, K) is indeed a (6j− 2)-tree.
Finally, we must define appropriate capacities j for this (6j− 2)-tree. Denote by

π({v(i)1 , v(i)ki
}) = {j | P (j) = 〈v(i)1 , . . . , v(i)ki

〉} the set of indices of the paths that start and

end at v(i)1 and v(i)ki
. Then for any e ∈ EJ , let

je =





ie if e ∈ EIJV \WK
ie + i

e(i)min
if e ∈ P (i) for some i

∑i∈π(e) ie(i)min
otherwise

To show that IG(T, K) one-embeds into JG(T, K), we construct the corresponding
embedding flow explicitly. For any edge e ∈ EIJV \WK, we use the identity embedding,
incurring embedding congestion 1. Likewise, we use the identity embedding for all
edges of the paths P (i), except the edge e(i)min = {u, v}, which we embed along the path
〈u, . . . , v(i)1 , v(i)ki

, . . . , v〉 (c.f. Figure 5.8). Note that by construction of je, this also incurs

embedding congestion one, as none of the edges along the routing of e(i)min are from
EIJV \WK.
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IG(T, K)→ JG(T, K) JG(T, K)→ IG(T, K)

Figure 5.8: Embedding IG(T, K) into JG(T, K) and vice-versa.

For the three-embedding of JG(T, K) into IG(T, K), use the identity embedding
for all edges except the {v(i)1 , v(i)ki

}. By choice of the e(i)min, this does not overflow the
capacities by more than a factor of two. For the remaining edges e, route for every
i ∈ π(e) exactly e(i)min units of flow along the path P (i), increasing the congestion on
these edges by at most one. In total, the congestion on all edges of IG(T, K) is not more
than three.

Case (ii): All vertices in GW have degree exactly two. Because GW is connected, this
implies that GW is just one cycle, and removing any edge emin of minimum capacity
iemin and setting je = ie + iemin for all other edges of the cycle as above will suffice. Note
that the final graph is a proper tree.

Algorithm 5.4 From Almost-2j-Trees to (6j− 2)-Trees
1: procedure Treeify(IG(T, K))
2: Label each vertex by whether or not it is incident to a portal edge
3: Perform leaf elimination on T up to the first labelled vertex in each subtree
4: Call the remaining graph GW , construct W2 ← {v ∈W | degGW

(v) = 2}
5: Compute Euler tours on the subgraph induced by W2
6: Identify edges E2 ⊆ PE incident to exactly one vertex of W2
7: Build {P (i)}i as described below
8: Compute the edges e(i)min
9: Compute j and return JG(T, K)

Lemma 5.16. Treeify can be implemented in O(sort(m)) I/Os.

Proof. Observe that recursive deletion of the degree-one vertices deletes exactly all
vertices of IG(T, K) that are not involved in any cycle. The only cycles of IG(T, K)
are those formed by the portal edges PE together with the tree T. We claim that
leaf elimination on T, stopping once a vertex is incident to an edge PE \ ET, correctly
performs this recursive deletion in O(sort(m)) I/Os. Indeed, it is not hard to see that
this leaf elimination cannot delete vertices that would have been part of a cycle. At the
same time, the resulting graph has no degree-one vertices left; if it did, then this vertex
must be incident only to an edge PE \ ET, but this violates the assumption that T is a
spanning tree.

Next, we can compute in O(sort(m)) I/Os whether the remaining graph GW has
any vertices of degree strictly greater than two. If not, we can easily identify the edge
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emin and build the tree JG(T, K) in O(scan(m)) I/Os, so consider only the case where
W2 is non-empty. To find the path decomposition {P (i)}i, extract in O(sort(m)) I/Os
the vertex-induced subgraph on W2. Since every vertex has at degree at most two, we
can proceed as in Lemma 2.8 to build an Euler tour around every path in O(sort(m))
I/Os. Then in O(scan(m)) I/Os, extract the leafs of every path, i.e. the vertices that
we still need to connect to W \W2. In O(sort(m)) I/Os, identify the edges incident
to exactly one vertex of W2, and sort these edges by that vertex. A tandem scan of
the sorted edges together the vertices extracted from the Euler tours yields the paths
{P (i)}i.

This leaves us with a delimited list of edges in path order. In O(scan(m)) I/Os
we can now identify the edges e(i)min for all paths, and in another scan produce the
new capacities je for all edges, including the newly added edges {v(1)1 , v(2)ki

}. A final
O(sort(m)) I/Os merges all newly-added parallel edges and sums their capacities.

Note that the total number of edges does not increase during the entire treeification
process:

Lemma 5.17. Given an m-edge j-sliced tree HG(T, K), the treeification of this tree through
AlmostTreeify followed by Treeify results in a (6j− 2)-tree with at most m edges.

Proof. Consider first AlmostTreeify. For every edge added by the construction, i.e.
every portal edge, at least one cross-cut edge from HG(T, K) is removed, hence the
total number of edges of the resulting almost-2j-tree cannot be more than m.

Likewise, Treeify removes at least one edge e(i)min for every edge it adds. Hence the
total number of edges is still at most m.

5.5 Decomposing Recursively

This concludes the discussion of how to decompose G into a convex combination of
O(j)-trees. We now just need to apply this decomposition recursively to the core of
ever O(j)-tree in such a way that the total number of trees does not explode. Recall
that Lemma 5.13 allows us to drop a substantial fraction of the trees without increasing
the overall approximation ratio too much. Following Sherman [She13], the algorithm
will thus proceed as follows: For some parameter η, we will compute a decomposition
into n

η -trees. We will then keep only η trees, so that in total we are left with at most
n trees in total when the recursion is done. The procedure is given as pseudocode in
Algorithm 5.5.

In the following, we substitute Sherman’s inductive proof with a number of lemmas
that will better permit us to study the decomposition’s I/O complexity.

Lemma 5.18. ComputeTrees(G, η) has recursion depth log n/ log η, and at the end of the
i-th level of recursion, there are at most ηi graphs in total, each having at most n/ηi vertices and
O
(

n
ηi−1 log2 n

ηi−1

)
edges.

Proof. Consider the first level of recursion. After sparsification by Theorem 3.2, G̃ has
at most m̃ ≤ O(n log2 n) edges. Hence by Theorem 5.1, there exists some constant c1
such that the sliced trees returned by SlicedTreeDecomposet(G̃) are sliced in at most

c1 ·
βm̃ log m̃

t
=

n
6η
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Algorithm 5.5 Recursive j-Tree Decomposition; [She13]
1: procedure ComputeTrees(G, η)
2: G̃ = (V, Ẽ, c̃)← Sparsify(G, ε = 1/2)
3: Scale up the capacities of G̃ by 2
4: If G̃ has at most n− 1 edges, return G̃
5: Let n← |V|, t← 24 · 28 · ηβ|Ẽ| log |Ẽ| . c1 is 28 from Theorem 5.1
6: {λ(i), H(i)

G (T, K)}i ← SlicedTreeDecomposet(G̃)

7: Keep only the η trees of largest λ(i), throw away the rest
8: Rescale the λ(i) to sum to 1
9: I(i)G (T, K)← AlmostTreeify(H(i)

G (T, K)) for all i
10: J(i)G (T, K)← Treeify(I(i)G (T, K)) for all i
11: for all i ∈ [η] do
12: Let C(i) be the core of J(i)G (T, K)
13: If C(i) is non-empty, compute {λ(j), T(j)}j ← ComputeTrees(C(i), η)

14: Let F(i) be the forest of J(i)G (T, K), i.e. with all core edges removed
15: Append {λ(i), F(i), {λ(j), T(j)}} to the output distribution of trees
16: return the final distribution of trees

edges. After treeifying all sliced trees, we are left with ( n
η − 2)-trees (c.f. Lemma 5.15),

of which only the η ‘most significant’ trees are kept. Thus by induction, the number of
graphs after the i-th level of recursion is at most ηi, each of which has a core consisting
of up to n/ηi vertices. The number of edges in the cores is at most O

(
n

ηi−1 log2 n
ηi−1

)
due

to sparsification at the previous level and the fact that treeification does not increase the
number of edges (Lemma 5.17). Finally, note that after n ≤ ηi ⇐⇒ i ≥ log n/ log η
recursions, the tree decomposition is complete.

Lemma 5.19. With high probability, ComputeTrees(G, η) returns an (α, T̃V)-decomposition
of G, where α ≤ O(β2 log n/ log ηn log3 log n/ log η n)-decomposition of G.

Proof. Note that all involved algorithms succeed with probability at least 1− n−d for
any d. The number of calls to these algorithms is polynomially bounded, hence one
can choose d such that ComputeTrees succeeds with high probability.

Now consider the first level of the recursion. Sparsify(G, ε = 1/2) returns a graph
G̃ with capacities c̃ such that for any cut S, 1

2 cS E↔V\S ≤ c̃S Ẽ↔V\S ≤ 3
2 cS E↔V\S. Hence

after scaling up the capacities of G̃ by a factor of two, G one-embeds into G̃ while
G̃ three-embeds into G. Hence G also one-embeds into every J(i)G (T, K), and thus the
sliced tree decomposition of G̃ is also a sliced tree decomposition of G in the sense of
Definition 5.3.

We then throw away a (1− η/t)-fraction of the sliced trees, increasing the embedding
factor of the decomposition from O(β) to O(βt/η) ≤ O(β2 log3 n) by Lemma 5.13.
The treeification increases this by a further constant factor. Hence by induction over the
recursion depth τ = log n/ log η, the final decomposition is an (α, T̃V)-decomposition
of G with

α ≤
τ−1

∏
i=0

O(1)β2 log3(nη−i) ≤ nO(1/log η)β2τ log3τ n
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where the nO(1/log η) is removed for sufficiently large n by merging it into the ‘lost’

∏τ
i=0

log nη−i

log n from the naive bound of log nη−i used above.

Lemma 5.20. ComputeTrees(G, η) requires

O
(

log2 n sort(m) +
η

log η
β log4 n ·

(
LSST(n,O(n log2 n)) + log3 n scan(n)

))

I/Os, where LSST(n, m) is the number of I/Os required to compute a tree of average stretch at
most β on a graph of n vertices and m edges.

Proof. For the initial recursion, we expend O(log2 n sort(m)) I/Os when sparsifying the
graph by Theorem 3.2. By Lemma 5.18, in all later levels of recursion, every n-vertex
graph has at most O(ηn log2(ηn)) edges. Let therefore T(n) denote the number of I/Os
performed by ComputeTrees(G, η) on a graph of n vertices and at most O(ηn log2(ηn))
edges.

During such a call, we sparsify G in O(log2 n sort(n log2 n)) ≤ O(log4 n scan(n))
I/Os to have only m̃ ≤ O(n log2 n) edges. We then compute a decomposition into
t ≤ O(nβ log3 n) sliced trees. This decomposition takes

O(t · (LSST(n, m̃) + log m̃ scan(m̃))) ≤ O(ηβ log3 n · (LSST(n, m̃) + log3 n scan(n)))

I/Os. The η ‘most significant’ trees are extracted in O(sort(t)) I/Os and treeified
individually in O(log m̃ scan(m̃)) I/Os each.

Keeping only the dominating terms, we obtain the following recurrence:

T(n) ≤ ηT(n/η) +O
(

ηβ log3 n
(
LSST(n,O(n log2 n)) + log3 n scan(n)

))

which is bounded by

T(n) ≤ O
(

η

log η
β log4 n

(
LSST(n,O(n log2 n)) + log3 n scan(n)

))

Adding the I/Os required for the initial sparsification completes the proof.

Remark. For η ≤ n1/M, using the I/O master theorem for recursive algorithms [Dem+18]
gives a tighter bound, replacing a τ = log n/ log η factor by M in the bound of T(n).�

Corollary 5.21. For any constant k, an expO(k
√

log n log log n)-congestion-approximator
R can be computed with high probability in O(log2 n sort(m) + scan(n1+1/k)) I/Os.

Proof. Use η = n1/2k in Lemma 5.19 and Lemma 5.20 together with the low–average-
stretch spanning tree algorithm from Theorem 4.1. Then observe that for constant k,
exp(O(

√
log n log log n)) ≤ n1/2k for sufficiently large n. Hence by hiding all lower-

terms in a n1/2k-factor, we obtain a total of O(log2 n sort(m) + n1/2k scan(n1+1/2k)) I/Os.
Note that by Lemma 5.2, the tree decomposition of G immediately yields a conges-

tion approximator R, although we must still ensure that the number of rows is at most
1
2 n2 to satisfy Definition 5.1. Due to the recursive construction, many trees share the
same outer edges (with the same capacities), and we can at least conceptually collapse
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all these into a single row. The total number of rows is then the sum of the number of
non-core, i.e. forest, edges, which is at most

τ

∑
i=1

ηi−1
(

n
ηi−1 −

n
ηi

)
= τ(1− 1/η)n = k(n− n1−1/k) ≤ kn

This is indeed less than 1
2 n2 for sufficiently large n (for smaller n, we can use Lemma 5.13

with δ = 1/2).

We will however avoid constructing R explicitly as a matrix: even after collapsing
shared rows, matrix-vector products would still require O(n2) arithmetic operations.
We can improve on this by exploiting the tree structure that defines R.

Recall that R as defined in the proof of Lemma 5.2 has n− 1 rows for each tree, one
row per tree edge, and such that (Rb)e is just the (signed) congestion on the edge e
when routing b in the tree to which e belongs. Hence to compute Rb, we can route b
in all trees, and do so by exploiting the recursive structure of the trees. The demand
flowing across every edge is the sum of the demands in the cutset XT(e) ⊆ V, which
can easily be computed in O(sort(n)) I/Os using the leaf elimination technique from
Lemma 2.11. We will perform this leaf elimination on the outer forest part of every
level of the decomposition, and then recurse on the core. This is made more precise in
Lemma 5.23.

We will also have to compute products of the form RTx. Note that RT has one row
per vertex and one column for every tree-edge of every tree. Hence x is a vector of
values xe for each tree edge e, and (RTx)v is the sum over xe

ce
over all edges e where

v ∈ XT(e). If we orient the edges e towards the leaves, then we can again collect all
these terms using leaf elimination – we just need to ensure that this orientation is
consistent with the leaf elimination used for computing Rb. Recall that since b are
valid demands, for any S ⊆ V, bS = −bS\V . Hence flipping the orientation of an edge
will correspond to changing the sign in the computation of (Rb)e.

The idea of using leaf elimination is due to Sherman [She13], but the presentation
here is more explicit about keeping ComputeR and ComputeRT consistent. The (high-
level) pseudocode for both procedures is given in Algorithm 5.6.

We first prove correctness and performance of ComputeRT, since this algorithm
requires us to define the sets XT(e) by giving an orientation of the tree edges.

Lemma 5.22. Given the decomposition ComputeTrees(G, η) and values x on the edges of the
decomposition, ComputeRT computes RTx in O( log n

log η η sort(n)) I/Os.

Proof. We first show how to use leaf elimination on the tree T to compute the vertex
values ψ. Begin by modifying the Euler tour construction to maintain the values xe

ce
on

the arcs. The modified construction still requires O(sort(n)) I/Os.
Now perform leaf elimination on T, starting the Euler tour traversal at some leaf.

When traversing the last outgoing arc (v, w) with value xe
ce

from some vertex v, output
νv = f (v, {ν1, . . . , νk}) = xe

ce
+ ∑k

i=1 νi (note that this function is efficiently tree-foldable).
This corresponds to the sum of the values xe′

ce′
for all edges e′ in the ‘lower’ subtree of v,

plus the value on the outgoing arc (v, w). When done with the tour, subtract again the
value of this outgoing arc for all vertices.

One can see now that the resulting vertex values correspond exactly to the desired
(RTx)v when orienting the edges away from the leaves during leaf elimination.
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Algorithm 5.6 Computing Rb and RTx efficiently; [She13]

1: procedure ComputeR({λ(i), F(i), {λ(j), T(j)}j}i, b)
2: for all λ(i), F(i){λ(j), T(j)}j in the decomposition do
3: Let b′ be b restricted to the core
4: Compute µ′ ← ComputeR({λ(j), T(j)}j, b′)
5: Build a tree T by connecting the forest F(i) via a new vertex s
6: Route b on f on T using leaf elimination
7: Let µ be µ′ concatenated with the congestions incurred on F(i)

8: return the concatenation of all µ
9: procedure ComputeRT({λ(i), F(i), {λ(j), T(j)}j}i, x)

10: for all λ(i), F(i){λ(j), T(j)}j in the decomposition do
11: Let x′ be x restricted to the core
12: Compute ψ′ ← ComputeRT({λ(j), T(j)}j, x′)
13: Build a tree T by connecting the forest F(i) via a new vertex s
14: Using leaf elimination, compute vertex potentials ψ
15: Concatenate ψ′ to ψ
16: return the concatenation of all ψ

Let T(n) be the number of I/Os used during ComputeRT when all trees in the
decomposition have at most n vertices. The decomposition contains at most η forests,
hence we obtain the recurrence T(n) = ηT(n/η) +O(η sort(n)), where sort(n) is from
the cost of constructing an Euler tour on the at most n− n/η ≤ n forest edges. This is
bounded by O(τη sort(m)) for τ = log n/ log η; the lemma follows.

Remark. For η ≤ n1/M, the I/O master theorem [Dem+18] again gives a tighter bound
of O(Mη sort(n)). �

The orientation of the edges in the decomposition is now defined depending on the
leaf elimination traversal order. We now show how to compute Rb using the same leaf
elimination traversals:

Lemma 5.23. Given valid demands b and the decomposition ComputeTrees(G, η), ComputeR
computes Rb in O( log n

log η η sort(n)) I/Os.

Proof. To route b in some tree T, perform leaf elimination on T to sum the values bv into
σv at each v ∈ V. When traversing the last outgoing arc (u, v) from some vertex u, let
its congestion (Rb)e be −σv/ce, where e = {u, v}. Note that bXT(e) = −bV\XT(e) = −σv,
hence this leaf elimination correctly computes (Rb)e. The number of I/Os follows the
same reasoning as for Lemma 5.22.

5.6 Expander Graphs

For special cases, we can design much simpler congestion approximators than Madry’s
rather involved decomposition. In some cases however, such as planar graphs or grid
graphs, even simpler methods than Sherman’s algorithm suffice for computing exact
maximum flows.1 A non-trivial result is that we can efficiently compute approximate

1These graphs can be traversed cache-efficiently [TZ02], and hence standard algorithms for these cases
are immediately efficient.
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maximum flows on graphs of large conductance (defined below) due to an observation
of Sherman [She13].

Definition 5.8 (Conductance). Let G = (V, E, c) be some undirected, capacitated graph.
For any S ⊆ V, the volume of S is the sum of weighted degrees in S, i.e. volG(S) =

∑v∈S c{v}↔V\{v}. The conductance ϕ(S) of S is the ratio

ϕ(S) =
cS↔V\S

min{volG(S), volG(V \ S)}

The conductance of G is the minimum conductance of any cut S ⊆ V. �

Lemma 5.24 (Congestion Approximation in Expanders; [She13]). Let G = (V, E, c) be
an undirected, capacitated graph of conductance φ. Then the diagonal matrix R ∈ R×n with
(R)v,v = c−1

{v}↔V\{v} is a φ−1-congestion-approximator.

Proof. By Lemma 2.2,

|(Rb)v| =
|bv|

c{v}↔V\{v}
≤ optG(b)

At the same time, any cut S ⊆ V has demand at most

|bS| ≤ ∑
v∈S
|bv| = ∑

v∈V
|(Rb)v|c{v}↔V\{v} ≤ ∑

v∈V
‖Rb‖∞c{v}↔V\{v} = ‖Rb‖∞volG(S)

and thus if w.l.o.g. volG(S) ≤ volG(V \ S) then

|bS|
cS↔V\S

= ϕ(S)−1 |bS|
volG(S)

≤ ϕ(S)−1‖Rb‖∞ ≤ φ−1‖Rb‖∞

which holds in particular for the maximally congested cut of Theorem 2.1.

Expander graphs are essentially families of graphs where the second-largest ei-
genvalue λ2 of the graph Laplacian is large. Cheeger’s inequality relates this to the
conductance of these graphs:

1
2

λ2 ≤ ϕ(G) ≤
√

2λ2

Note that computing c{v}↔V\{v} can be easily done in O(sort(m)) I/Os on the arc
list representation of the graph. Hence for expander graphs, we immediately have a
O(λ−1

2 )-congestion-approximator that requires only O(sort(m)) I/Os to construct, and
O(scan(n)) I/Os to evaluate Rb and RTx.



Chapter 6

Sherman’s Approximate Maximum
Flow Algorithm

Recall from the introduction that the aim throughout the thesis is to develop an
algorithm for solving the maximum flow problem by iteratively taking almost-optimal
steps f (i). Each step is selected by approximately minimising a potential function that
involves the congestion approximator R, namely

f (i) ≈ arg min
f
‖C−1 f‖∞ + 2α‖R(b− B f )‖∞

Thus, we will develop two algorithms: An algorithm Route that adds together all the
steps while ensuring that the final solution satisfies the constraints B f = b exactly, and
an algorithm AlmostRoute that minimises the potential function to find the steps f (i).
When we are done, we will also want to return a cut S ⊆ V that certifies the optimality
of our solution by Lemma 2.2: Since |bS|

cS↔V\S
≤ optG(b), if the final solution f has

congestion at most ‖C−1 f‖∞ ≤ (1 + ε) |bS|
cS↔V\S

, then certainly ‖C−1 f‖ ≤ (1 + ε)optG(b)
also. To efficiently construct the certificate S, we will rely on the dual problem from
Section 2.3.

In somewhat greater detail, we will in Section 6.2 develop AlmostRoute to satisfy
the following guarantees:

Theorem 6.1 ([She13]). There exists an algorithm AlmostRoute(G, b, ε) that, given 0 <
ε ≤ 1/2 and an undirected graph G with an α-congestion-approximator R for it, returns a flow
f and vertex-induced cut S ⊆ V such that

∥∥∥C−1 f
∥∥∥

∞
+ 2α ‖R(b− B f )‖∞ ≤ (1 + ε)

|bS|
cS↔V\S

≤ (1 + ε)optG(b)

The algorithm makes at most O(α2ε−3 log n log α) iterations, each of which requires a multi-
plication by R and RT in addition to O(scan(m)) I/Os.

Note that AlmostRoute does not route all the demand b exactly. We will therefore
construct the algorithm Route that invokes AlmostRoute in such a way that the residual
demands left by AlmostRoute quickly become small and trivial to route in G.

Formally, Route satisfies the following:

81
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Theorem 6.2 ([She13]). There exists an algorithm Route(G, b, ε) that, given 0 < ε ≤ 1/2

and an undirected graph G with an α-congestion approximator for it, returns a flow f satisfying
B f = b and vertex-induced cut S ⊆ V such that

optG(b) ≤
∥∥∥C−1 f

∥∥∥
∞
≤ (1 + ε)

|bS|
cS↔V\S

≤ (1 + ε)optG(b)

The algorithm makes at most O(log m) calls to AlmostRoute and additionally requires
O(log m scan(m)) I/Os with overwhelming probability 1− exp(−Ω(m)).

Note in particular that for the s-t flow problem where bs = −1, bt = 1, and bv = 0 for
all other vertices, S is a (1 + ε)-minimum s-t cut.

We begin with discussing the workings of Route.

6.1 The Algorithm Route

The initial call to AlmostRoute provides us with a flow f (0) and cut S such that f (0)

already has low congestion, but does not satisfy all demands exactly. But because the
potential function overemphasises the cost of the residual demands by factor of two,
the initial call to AlmostRoute already pays for the congestion of routing the remaining
demands: Since f (0) is within a factor of (1 + ε) from optimal, we have
∥∥∥C−1 f (0)

∥∥∥
∞
≤ (1+ ε)optG(b)− 2α

∥∥∥R(b− B f (0))
∥∥∥

∞
≤ (1+ ε)optG(b)− 2optG(b− B f (0))

and hence even if we route the remaining demands b− B f via f̃ only within a factor
of 2 from optimal, we still satisfy

∥∥∥C−1( f + f̃ )
∥∥∥

∞
≤ ‖C−1 f‖∞ + 2optG(b− B f ) ≤ (1 + ε)optG(b)

At a high level, Route will therefore have the following structure: (i) Construct
the flow f (0) and the corresponding certificate cut S, (ii) iteratively route the residual
demands almost-optimally, whith the congestion of the resulting flows f (i) already paid
for by the initial flow. Once these residual demands are very small, we can (iii) route
them within a factor m of optimal along a maximum spanning tree (recall Lemma 5.6)
to satisfy the demands exactly, while ensuring that all previous iterations have already
paid for the congestion incurred by this final flow.

To make this work, after routing f (0) within (1 + ε) of optimal, we route all further
f (i) within (1 + 1/2) of optimal, rather than the factor 2 that the previous iteration has
paid for. We thereby accumulate ‘slack’ towards allowing the final flow to be routed
within a factor of m from optimal.

The algorithm is shown in Algorithm 6.1. To show that the iterations converge
quickly towards an optimal solution, we will make use of the following lemma:

Lemma 6.1 ([She13]). For 1 ≤ i ≤ τ,
∥∥∥Rb(i+1)

∥∥∥
∞
≤ 1/2

∥∥∥Rb(i)
∥∥∥

∞
.

Proof. Let f be an optimal routing of b(i+1), and let f (i) be the routing of b(i) returned
by AlmostRoute in the i-th iteration. Note that f + f (i) is a routing of b(i), since
B( f + f (i)) = b(i+1) + B f (i) = b(i). Hence

optG(b
(i)) ≤

∥∥∥C−1( f (i) + f )
∥∥∥

∞
≤
∥∥∥C−1 f (i)

∥∥∥
∞
+
∥∥∥C−1 f

∥∥∥
∞
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Algorithm 6.1 The Algorithm Route; [She13]
1: procedure Route(G, b, ε)
2: Let f (0), S← AlmostRoute(G, b, ε), let b(1) ← b− B f (0)

3: Define τ = dlog2(2m)e
4: for t = 1, . . . , τ do
5: Let f (t) ← AlmostRoute(G, b(t), 1/2), let b(t+1) ← b(t) − B f (t)

6: Compute a maximum spanning tree T of G with capacities c as edge weights
7: Compute the flow f (τ+1) that routes b(τ+1) along T
8: return ∑τ+1

i=0 f (i) and S

The optimal routing f satisfies
∥∥∥C−1 f

∥∥∥
∞
= optG(b

(i+1)) ≤ α
∥∥∥Rb(i+1)

∥∥∥
∞

Recall also that by Theorem 6.1,
∥∥∥C−1 f (i)

∥∥∥
∞
≤ 3

2
optG(b

(i))− 2α
∥∥∥Rb(i+1)

∥∥∥
∞

Combining both yields

optG(b
(i)) ≤ 3

2
optG(b

(i))− α
∥∥∥Rb(i+1)

∥∥∥
∞

and hence
α
∥∥∥Rb(i+1)

∥∥∥
∞
≤ 1

2
optG(b

(i)) ≤ α

2

∥∥∥Rb(i)
∥∥∥

∞

Divide by α and the lemma follows.

We are now ready to state the proof of Theorem 6.2.

Proof of Theorem 6.2. Denote by σ(t) = 2α‖R(b(t) − B f (t))‖∞ the ‘slack’ left by the t-th
iteration. Because by Lemma 5.6, routing along a maximum spanning tree incurs
congestion at most m times optimal, the flow returned by Route satisfies

∥∥∥∥∥C−1
τ+1

∑
i=0

f (i)
∥∥∥∥∥

∞

≤
τ+1

∑
i=0

∥∥∥C−1 f (i)
∥∥∥

∞

≤ (1 + ε)
|bS|

cS↔V\S︸ ︷︷ ︸
‖C−1 f (0)‖∞

+moptG(b
(τ+1))︸ ︷︷ ︸

‖C−1 f (τ+1)‖∞

+ 3/2
τ

∑
i=1

optG(b
(i))−

τ

∑
i=0

σ(i)

where we rely on correctness of AlmostRoute from Theorem 6.1, i.e. that for 1 ≤ i ≤ τ,
‖C−1 f (i)‖∞ ≤ (1 + 1/2)optG(b(i)). Now by definition of an α-congestion-approximator,
σ(i) ≥ 2optG

(
b(i) − B f (i)

)
= 2optG

(
b(i+1)

)
and hence

∥∥∥∥∥C−1
τ+1

∑
i=0

f (i)
∥∥∥∥∥

∞

≤ (1 + ε)
|bS|

cS↔V\S
+ moptG(b

(τ+1))− 1/4
τ−1

∑
i=0

σ(i)

At the same time, by induction with Lemma 6.1,

moptG(b
(τ+1)) ≤ mα

∥∥∥Rb(τ+1)
∥∥∥ ≤ mα2−τ

∥∥∥Rb(1)
∥∥∥ ≤ m2−τ−1σ(0)
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and hence choosing τ = dlog2(2m)e guarantees
∥∥∥∥∥C−1

τ+1

∑
i=0

f (i)
∥∥∥∥∥

∞

≤ (1 + ε)
|bS|

cS↔V\S
+

1
4

σ(0) − 1
4

τ−1

∑
i=0

σ(i) ≤ (1 + ε)
|bS|

cS↔V\S

which proves both correctness and the claimed number of iterations.
A maximum spanning tree can be computed inO(sort(m)) I/Os with overwhelming

probability (c.f. Lemma 2.21). Routing demands on trees can be implemented using
leaf elimination to sum the demands at every vertex in O(sort(m)) I/Os. The flow
along the tree edges can then be computed in a constant number of sorts and scans
similar to Algorithm 5.1. Apart from the calls to AlmostRoute, an iteration of Route
requires O(scan(m)) I/Os to sum the flows. With τ ≤ O(log m), this adds up to a total
of O(log m scan(m)) I/Os besides the calls to AlmostRoute.

Remark. The analysis suffers from the difficulty of proving a lower bound for ∑τ−1
i=0 σ(i)

and uses only the first term in the sum. When implementing the algorithm in practice,
it makes sense to maintain the current sum 1/4 ∑t

i=0 σ(i) at the end of the t-th iteration,
and stop early when it exceeds mα

∥∥∥Rb(t+1)
∥∥∥ ≥ moptG(b(t+1)). �

6.2 The Algorithm AlmostRoute

This section develops the solver AlmostRoute to find the steps f (i) with

f (i) ≈ arg min
f
‖C−1 f‖∞ + 2α‖R(b− B f )‖∞

Here we finally get to make use of the congestion approximator R and tie together all
the methods developed in this thesis. While AlmostRoute will use gradient descent,
escaping the combinatorial formulation of the maximum flow problem, we will still rely
on the combinatorial graph representation of R to compute Rb and RTv – matrix-vector
multiplication would be too expensive for an almost linear I/O algorithm.

After (almost) minimising the potential, we will then again jump back to the convex
programming formulation to generate vertex potentials ψ for the dual problem (the
maximally congested cut problem) from the gradient, and use these together with
CongestedCut from Section 2.3 for generating the certificate cut S ⊆ V.

Let us focus now on minimising the potential function for finding f (i). Since the
supremum norm is not differentiable, Sherman follows standard practice of replacing
it by the smooth ‘smax’ function, which closely approximates it. We have

smax(x) = log

(
∑

i
exi + e−xi

)
∇ smax(x) =

1
∑i exi + e−xi

(
ex1 − e−x1

...

)

and obtain the following potential function, where the scalars have been moved inside
of smax to slightly simplify the analysis later.

Φ( f ) = smax
(

C−1 f
)
+ smax (2αR(b− B f ))

Towards performing gradient descent, compute also by linearity of R

∇Φ( f ) = C−1
(
∇ smax

(
C−1 f

))
− 2αBTRT (∇ smax (2αR(b− B f )))

The following lemma will help us bound the number of gradient descent steps:
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Lemma 6.2 (Fact 2.3 without proof in [She13]). For all x, y ∈ Rd, the smax function sat-
isfies

1. ‖x‖∞ ≤ 1
λ smax(λx) ≤ ‖x‖∞ + 1

λ log(2d) for all λ > 0

2. ‖∇ smax(x)‖1 ≤ 1

3. (∇ smax(x))T x ≥ smax(x)− log(2d)

4. ‖∇ smax(x)−∇ smax(y)‖1 ≤ ‖x− y‖∞

We defer the proof of this to Subsection 6.2.1.
The first statement implies that when replacing ‖ · ‖∞ with an smax, we may incur

an error of up to an additive log(2d). To circumvent the additive error and minimise
to within (1 + ε), we can scale scale f , b by some appropriate factor λ. Indeed, say
we have minimised the smax potential Φ(λ f ) to within a multiplicative (1 + δ) of its
optimal value ν̃ (in the smoothed smax potential) for the scaled demands λb, i.e.

smax
(

λC−1 f
)
+ smax (2αλR (b− B f )) ≤ (1 + δ)ν̃

ν̃ is bounded by the second inequality of property 1 when noting that C−1 ∈ Rm×m for
m ≤ 1

2 n2 and R ∈ Rn×k for k ≤ 1
2 n2: Let fopt be an optimal routing of b. Then

1
λ

ν̃ ≤ ‖C−1 fopt‖∞︸ ︷︷ ︸
=optG(b)

+
1
λ

log(2m) + 2α‖R(b− B fopt)‖∞︸ ︷︷ ︸
=0

+
1
λ

log(n2)

and hence property 1 implies

‖C−1 f‖∞ + 2α‖R(b− B f )‖∞ ≤
1 + δ

λ
ν̃ ≤ (1 + δ)

(
optG(b) +

4
λ

log n
)

By definition of a congestion approximator, ‖Rb‖∞ ≤ optG(b) ≤ α‖Rb‖∞. Hence if
λ ≥ 8 log n

εoptG(b)
≥ 8 log n

εα‖Rb‖∞
, then

1 + δ

λ
ν̃ ≤ (1 + δ)

(
optG(b) +

1
2

εoptG(b)
)
≤ (1 + ε)optG(b)

for δ ≤ ε/4. While we could aggressively set λ to 8 log n
ε‖Rb‖∞

(because ν̃ ≥ ‖Rb‖∞), this
could increase the number of iterations until we achieve a good-enough solutions, and
hence we begin the search for the ‘correct’ scaling λ at the lower bound 8 log n

εα‖Rb‖∞
and

interleave scaling of λ with gradient descent steps in such a way that performance is
improved by almost a factor of α.1

A final consideration is the selection of an appropriate termination condition and
the generation of a certificate in the form of a cut S in the sense of Theorem 2.1 without
an expensive graph traversal, for which we will rely on the dual problem described in
Section 2.3. In the proof of AlmostRoute, we will never make use of the above scaling
intuition explicitly, but use it implicitly from the way in which scaling is interleaved
with the descent steps to ensure Φ( f ) ≥ Ω(ε−1 log n), allowing the proof to work
entirely in the formulation of the maximally-congested cut.

1Sherman claims that more careful scaling can additionally remove a factor of ε−1, but the specifics of
how this should be done are not given.
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Algorithm 6.2 The Algorithm AlmostRoute; [She13]
1: procedure AlmostRoute(G, b, ε)
2: Initialise f ← 0, let λ← 8

εα‖Rb‖∞
log n, scale b← λb

3: repeat
4: while λ < 16 log n

ε‖Rb‖∞
and Φ( f ) ≤ 16ε−1 log n do

5: Scale λ← 17
16 λ, f ← 17

16 f , b← 17
16 b

6: Compute δ← ‖C∇Φ( f )‖1
7: For all e ∈ E, set fe ← fe − δ

1+4α2 sign(∇Φ( f )e)ce
8: until δ ≤ ε/4

9: Let ψ = RT∇ smax(2αR(b− B f )) be vertex potentials
10: Let ψ̃ = ‖CBTψ‖−1

1 ψ and compute S← CongestedCut(G, b, ψ̃)
11: return λ−1 f and S

The resulting algorithm is stated in Algorithm 6.2.2 There is some additional
complexity in the way that the steps are chosen to accelerate the descent, it will become
clear why this is so in the analysis with Lemma 6.3.

Lemma 6.3 ([She13]). Every gradient step (line 7) except the last reduces the potential value
by at least Ω(ε2α−2).

Proof. Let h be the step taken in line 7, i.e. he = − δ
1+4α2 sign(∂eΦ( f ))ce. We are

interested in proving an upper bound on Φ( f + h). To do so, the proof will follow the
proof of the usual descent lemmas based on the fundamental theorem of calculus and
Hölder’s inequality, but then combine the result with the properties from Lemma 6.2
to achieve a tighter bound. The fundamental theorem of calculus provides

Φ( f + h) = Φ( f ) +
∫ 1

θ=0
∇Φ( fθ)

Thdθ where fθ = f + θh

which we rewrite into

Φ( f ) +∇Φ( f )Th +
∫ 1

θ=0
〈∇Φ( fθ)−∇Φ( f ), h〉dθ

and proceed to upper-bound 〈∇Φ( fθ) −∇Φ( f ), h〉. Define for the sake of brevity
the functions d(x, y) = ∇ smax(x)−∇ smax(y) and r( f ) = 2αR(b− B f ). Then using
〈x, y〉 ≤ ‖x‖1‖y‖∞ from Hölder’s inequality, compute

〈∇Φ( fθ)−∇Φ( f ), h〉 =
〈

d(C−1 fθ , C−1 f ), C−1h
〉
+ 2α

〈
d
(
r( f ), r( fθ)

)
, RBh

〉

≤
∥∥∥d(C−1 fθ , C−1 f )

∥∥∥
1

∥∥∥C−1h
∥∥∥

∞
+ 2α

∥∥d
(
r( f ), r( fθ)

)∥∥
1 ‖RBh‖∞

Now using property 4 from Lemma 6.2, bound this and simplify as

〈∇Φ( fθ)−∇Φ( f ), h〉 ≤
∥∥∥C−1( fθ − f )

∥∥∥
∞

∥∥∥C−1h
∥∥∥

∞
+ 4α2 ‖RB( f − fθ)‖∞ ‖RBh‖∞

= θ
∥∥∥C−1h

∥∥∥
2

∞
+ 4α2θ ‖RBh‖2

∞

≤ θ
∥∥∥C−1h

∥∥∥
2

∞
+ 4α2θ

∥∥∥C−1h
∥∥∥

2

∞
= θ

δ2

1 + 4α2

2Some minor adjustments to Sherman’s algorithm have been made: The scaling condition ensures
that the algorithm eventually stops scaling, and it is specified how the cut S is computed.
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where the last line follows from the observation that (C−1h)e =
δ

1+4α2 and ‖RBh‖∞ ≤
‖C−1h‖∞. This is because h is a routing of the demands Bh and thus ‖RBh‖∞ ≤
optG(Bh) ≤ ‖C−1h‖∞. Substituting this bound into the integral derived earlier and
evaluating yields

Φ( f + h) ≤ Φ( f ) +∇Φ( f )Th +
1
2

δ2

1 + 4α2

Finally, ∇Φ( f )Th = − δ2

1+4α2 because

∇Φ( f )Th = ∑
e
−(∂eΦ( f ))sign(∂eΦ( f ))ce

δ

1 + 4α2

= ∑
e
−|∂eΦ( f )|ce

δ

1 + 4α2 = −‖C∇Φ( f )‖1
δ

1 + 4α2

= − δ2

1 + 4α2

and thus our final bound for Φ( f + h) is

Φ( f + h) ≤ Φ( f )− δ2

2 + 8α2

Noting that δ > ε/4 whenever a step is taken (except for the last step) completes the
proof.

Lemma 6.4 ([She13]). Algorithm 6.2 performs at most O(ε−3α2 log n log α) gradient steps.

Proof. After the initial scaling, Φ(λ f ) has a value of at most 16ε−1 log n + 4 log n
(by Lemma 6.2, property 1, and using that R has at most 1

2 n2 rows), and whenever
the scaling loop finishes, Φ(λ f ) ≤ 17ε−1 log n. In either case, by Lemma 6.3, after

at most O( ε−1 log n
ε2α−2 ) = O(ε−3α2 log n) gradient steps, the value of Φ(λ f ) decreases

below the scaling threshold again, or the algorithm terminates. Since λ is bounded
from above such that the algorithm scales at most O(log α) times, there are at most
O(ε−3α2 log n log α) gradient steps until λ stops scaling, at which point a further
O(ε−3α2 log n) gradient steps would reduce the value of Φ(λ f ) below a value of zero.
This is a contradiction with the positivity of Φ(λ f ), thus the algorithm must reach
δ ≤ ε/4 before then and terminate; the lemma follows.

Lemma 6.5 ([She13]). When Algorithm 6.2 terminates, it outputs a flow f and vertex-induced
cut S ⊆ V such that

‖C−1 f‖∞ + 2α‖R(b− B f )‖∞ ≤ (1 + ε)
|bS|

cS↔V\S
≤ (1 + ε)optG(b)

Proof. Let f , b be the flow as return by the algorithm, i.e. with any scaling undone,
and let λ be its final value. The proof proceeds as follows: We use that ψ̃ is a
feasible solution of the maximally congested cut dual program for λb, and show that
λbTψ̃ ≥ 1

1+ε Φ(λ f ). Since we are able to construct a cut S from ψ̃ and the congestion
of S is at most optG(λb) by Lemma 2.2 (the max-flow min-cut theorem), this shows
Φ(λ f ) ≤ (1 + ε)λbTψ̃ ≤ (1 + ε)λ |bS|

cS↔V\S
≤ (1 + ε)optG(λb). Then dividing by λ and

using Lemma 6.2 will complete the proof.
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First we establish that upon termination, we can assume Φ(λ f ) ≥ 16e−1 log n
without loss of generality, despite this condition not necessarily being satisfied, either
because λ reaches is upper bound or because the last step can decrease the potential
below the scaling threshold: To remedy these issues, observe that by Lemma 6.3, the
last step can only improve the solution, and hence we can prove correctness after
undoing the last step without loss of generality. Moreover, by property 1 of Lemma 6.2,
λ−1Φ(λ f ) ≥ optG(b) ≥ ‖Rb‖∞, and hence if λ ever reaches its upper bound, then it
must hold Φ(λ f ) ≥ 16ε−1 log n regardless.

With this out of the way, obtain a lower bound on λbTψ̃ by computing

δΦ(λ f ) ≥ ‖C∇Φ(λ f )‖1‖λC−1 f‖∞

≥ ∇Φ(λ f )Tλ f (Hölder’s inequality)

= 〈∇ smax(λC−1 f ), λC−1 f 〉 − 2α〈RT∇ smax(2αλR(b− B f )), λB f 〉
= 〈∇ smax(λC−1 f ), λC−1 f 〉 − 2α〈ψ, λB f 〉 (†)

At the same time, using Lemma 6.2, property 3,

〈∇ smax(λC−1 f ), λC−1 f 〉+ 2α〈ψ, λ(b− B f )〉 (‡)
= 〈∇ smax(λC−1 f ), λC−1 f 〉+ 〈∇ smax(2αλR(b− B f )), 2αλR(b− B f )〉

≥ Φ(λ f )− 4 log n ≥ Φ(λ f )(1− ε/4)

where we again use that R has at most 1
2 n2 rows and that Φ(λ f ) ≥ 16ε−1 log n.

Subtracting (†) from (‡) leaves only

2αλψTb ≥ Φ(λ f )(1− ε/4− δ)

Now bound ‖CBTψ‖1 as follows:

2α‖CBTψ‖1 = ‖∇ smax(λC−1 f )−∇ smax(λC−1 f ) + 2αCBTψ‖1

≤ ‖∇ smax(λC−1 f )‖1 + ‖∇ smax(λC−1 f )− 2αCBTψ‖1

≤ 1 + δ

where we used Lemma 6.2, property 2, for the first of the two norms, and the definition
of δ for the second. Hence with δ ≤ ε/4 and ε ≤ 1/2,

λbTψ̃ ≥ Φ(λ f )
1− ε/4− δ

1 + δ
≥ Φ(λ f )

1
1 + ε

Constructing the cut S as in Algorithm 2.1 such that

Φ(λ f ) ≤ (1 + ε)λbTψ̃ ≤ (1 + ε)λ
|bS|

cS↔V\S
≤ (1 + ε)optG(λb)

and dividing by λ together with property 1 from Lemma 6.2 completes the proof.

Remark. Let us reflect again on the scaling operations: The fact that Φ(λ f ) ≥ Ω(ε−1 log n)
is used to implicitly bound the additive error introduced by the use of smax – if Φ(λ f )
were to be smaller, then the 4 log n term would begin to dominate.

The scaling factor 17
16 on the other hand is somewhat arbitrary. Can we do better by

being more careful about how we scale? Unfortunately, the answer is no, at least not
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with the construction of AlmostRoute as given here. Consider for example scaling by
(1 + η) for some η fixed throughout the execution. The number of scaling iterations
would be at most log α/ log(1 + η) ≤ O(η−1 log α) for 0 < η ≤ 1

2 , and the number of
gradient steps until the scaling threshold is reached again is at most O(ηε−3α2 log n).
Note that the value of η cancels out, hence we modifying η will not lead to an
improvement in asymptotic runtime.

Nevertheless, Sherman claims that more careful scaling can decrease the runtime to
O(ε−2 · · · ), but does not make clear how this would be done. By the above argument,
it could be possible to find some optimal way of varying η between iterations, perhaps
in combination with other modifications to the algorithm, in the hope of improving
performance. �

6.2.1 Proof of Lemma 6.2

The first three properties of smax claimed in Lemma 6.2 are elementary:

Proof of Lemma 6.2, 1 – 3.

1. Let |xi| = ‖x‖∞ and use ex ≥ 0:

|xi| = log
(

e|xi |
)
≤ smax(x) ≤ log

(
d · 2e|xi |

)
≤ |xi|+ log(2d)

This shows the case for λ = 1; it is trivial to then apply scaling by λ.

2. The statement follows directly from the triangle inequality |exi − e−xi | ≤ |exi |+
|e−xi |.

3. By convexity, smax(x− x) ≥ smax(x)−∇ smax(x)Tx. With smax(0) = log(2d)
this yields ∇ smax(x)Tx ≥ smax(x)− log(2d) as desired.

The fourth property, namely that ‖∇ smax(x)−∇ smax(y)‖1 ≤ ‖x− y‖∞ for all
x, y, requires some more elaborate insight from convex optimisation ([Bec17], chapter
5). In general, this property is referred to as L-smoothness:

Definition 6.1 (L-smoothness; [Bec17]). A function f : Rn → R is L-smooth (in D ⊆
Rn), for L ≥ 0, if it is differentiable (in D) and satisfies

‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x− y‖

for all x, y (in D), where ‖ · ‖∗ is the dual norm of ‖ · ‖.3 �

Note that the 1-norm is the Hölder-congruent norm to the supremum norm and thus
its dual. The key observations for the purpose of proving 1-smoothness of smax with
respect to the supremum norm can be summarised in the following lemma, which
takes some shortcuts through the more general theory developed in Beck [Bec17] (in
fact, this condition is also necessary):

Lemma 6.6 (Sufficient Condition for L-Smoothness; [Bec17]). If f is convex and 〈d,∇2 f (x) ·
d〉 ≤ L‖d‖2 for all x, d ∈ Rn, then f is L-smooth on Rn.

We defer the proof for later and focus first on applying the lemma to smax.
3That is, ‖x‖∗ = maxv{〈x, v〉 | ‖v‖ = 1}.



CHAPTER 6. SHERMAN’S APPROXIMATE MAXIMUM FLOW ALGORITHM 90

Proof of Lemma 6.2, 4. We prove a somewhat stronger result, namely 1-smoothness of
the unsymmetric LogSumExp function given by S(x) = log (∑i exi). Instantiating S(·)
with [x,−x] recovers the symmetric function, so this comes without loss of generality.
One may compute that the Hessian of S is given by

∇2S(x) = diag(σ(x))− σ(x)σ(x)T σ(x)i =
exi

∑j exj

Then compute

〈d,∇2S(x) · d〉 = dTdiag(σ(x))d− (σ(x)Td)2

≤ dTdiag(σ(x))d

≤ ‖σ(x)‖∞‖d‖2
∞ ≤ ‖d‖2

∞

which by Lemma 6.6 proves 1-smoothness of S and thereby also smax.

Finally, let us prove Lemma 6.6:

Proof of Lemma 6.6; based on [Bec17]. By Taylor’s theorem, because f is differentiable
there exists for any x, d ∈ Rn a ξ ∈ Rn such that

f (x + d) = f (x) +∇ f (x)Td +
1
2
〈d,∇2 f (ξ) · d〉 ≤ f (x) +∇ f (x)Td +

L
2
‖d‖2

where we make use of the assumption that 〈d,∇2 f (ξ) · d〉 ≤ L‖d‖2. We continue by
proving that any f satisfying this inequality is L-smooth. For notational convenience,
define the Bregman distance4

D f (x, d) = f (x + d)− f (x)−∇ f (x)Td

From the inequality, it must hold that D f (x, d) ≤ L
2 ‖d‖2 for all x, d. Because f is convex,

we also have f (x + d) ≥ f (x) +∇ f (x)Td and hence D f (x, d) ≥ 0, for all d. In other
words, we have the property that for any x, d, 0 ≤ D f (x, d) ≤ L

2 ‖d‖2.
To prove L-smoothness, we need to obtain terms of the form ∇ f (x)Tv and ∇ f (y)Tv

for v independent of x, y so that we can obtain statements about the dual norm of
∇ f (x)−∇ f (y); however all expressions so far have v dependant on x or d, which we
can fix to e.g. d = y− x. To get around this, we additionally shift d by some δ under
our control. Formally, fix any x, d and write for some δ ∈ Rn

D f (x, d + δ) = f (x + d + δ)− f (x)− 〈∇ f (x), d + δ〉

Bounding f ((x + d) + δ) through the inequality at the beginning of this proof yields

D f (x, d + δ) ≤ f (x + d)− f (x)− 〈∇ f (x), d + δ〉+ 〈∇ f (x + d), δ〉+ L
2
‖δ‖2

= D f (x, d) + 〈∇ f (x + d)−∇ f (x), δ〉+ L
2
‖δ‖2

4The Bregman distance is defined in the context of strictly convex functions, so this is a slight abuse
of terminology in the interest of providing some context.
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With the very specific choice of δ = − 1
L‖∇ f (x + d)−∇ f (x)‖∗v where v is chosen

such that ‖v‖ = 1 and 〈∇ f (x + d)−∇ f (x), v〉 = ‖∇ f (x + d)−∇ f (x)‖∗ (i.e., v is the
vector defines the dual norm of ∇ f (x + d)−∇ f (x)), we obtain

0 ≤ D f (x, d + δ)

≤ D f (x, d) +
1
L
‖∇ f (x + d)−∇ f (x)‖∗〈∇ f (x + d)−∇ f (x), v〉

+
1

2L
‖∇ f (x + d)−∇ f (x)‖2

∗

= D f (x, d)− 1
2L
‖∇ f (x + d)−∇ f (x)‖2

∗

Hence after rearranging terms and applying the upper bound on D f (x, d),

1
2L
‖∇ f (x + d)−∇ f (x)‖2

∗ ≤ D f (x, d) ≤ L
2
‖d‖2

Using d = y− x, multiplying by 2L and taking the square root completes the proof.

6.3 Discussion

AlmostRoute scales with ε−3, which is significantly worse than the ε−2 or even e−1

that convex optimisation solvers typically take. The upside is that the bound does
not depend on any initial guess. Sidford and Tian [ST18] design a coordinate-descent
based solver that terminates after time

O
(

m1+o(1) +

√
n‖C−1 fopt‖2

ε
polylog(n)

)
≤ O

(
m1+o(1) +

√
nm
ε

polylog(n)
)

in the standard RAM model, where fopt is a flow that routes b optimally and we
assume a polylogarithmic congestion approximator. When ‖C−1 fopt‖2 ≤ m1+o(1)√

nDB , the
coordinate-descent based solver vastly improves upon AlmostRoute. In general how-
ever, coordinate descent relies on random access to f , hence the algorithm will not
always be cache-efficient a priori. More involved analysis of Sidford and Tian’s solver
might however show that it can be implemented cache-efficiently with some modifica-
tion.

In later work, Sherman [She16] notes that one can employ the multiplicative weights
update method to obtain a solver that scales with ε−2. His construction abstracts away
the underlying details, but if we interpret his claim that the iterations are ‘simple’ as
requiring only O(scan(m)) I/Os apart from applying R and RT, then the result should
carry over immediately to the EM model.



Chapter 7

Conclusion and Future Work

Combining Route with the congestion approximator built around the low-stretch span-
ning tree from Theorem 4.1 finally yields an asymptotically cache-efficient algorithm
for solving the maximum flow problem:

Theorem 7.1. For any constant k ≥ 1 and any ε ≤ 1/2, the maximum flow problem can
approximated to within a factor of (1− ε) from optimal on undirected graphs with polynomially
bounded capacities in O(scan(m1+1/k)ε−3) I/Os. The algorithm returns a cut S ⊆ V that
certifies the approximate optimality.

Proof. Use the congestion approximator from Corollary 5.21, and note that for con-
stant k and large enough m, O(log2 n sort(m)) ≤ O(scan(m1+1/k)). Combine this with
ComputeR and ComputeRT for η = n1/2k in Theorem 6.1 and Theorem 6.2, and use that
the lower-order terms are dominated by m1/2k asymptotically.

For expander graphs, Lemma 5.24 even yields

Theorem 7.2. The maximum flow problem can approximated to within (1− ε) on undirected
graphs in O(λ−2

2 log λ−1
2 log2 nε−3 scan(m)), where λ2 is the second-largest eigenvalue of the

graphs’s Laplacian.

Unfortunately, as already discussed for the low-stretch spanning tree in Theorem 4.1,
the term exp(O(

√
log n log log n)) hidden in the bound for general graphs scales

poorly with its constant factors. The algorithm will only yield a speedup over more
naive methods when n is astronomically large.

7.1 Towards a Practical Algorithm

Is the entire framework discussed in this thesis doomed to be impractical? Assume
we had some algorithm that computes a spanning tree of optimal average stretch
O(log n) in only O(sort(m)) I/Os, and that we could also sparsify our graphs to only
O(n log n) edges. Running Route would then take ‘only’ Õ(ε−3 log8k+2 n scan(m1+1/k))
I/Os for any constant k, while we could construct R in Õ(log7 n scan(n1+1/k)) I/Os
after initial sparsification of G (we let Õ hide lower-order terms). The exponents in the
polylogarithmic terms are still substantial, but likely subject to future improvement:
(i) AlmostRoute scales with α2. Even if this cannot be reduced to α, this still implies
that any improvements to the term α will count double towards improving the overall
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performance. Moreover, (ii) throwing away a substantial portion of the sliced trees
while increasing the embedding factor α by O(β polylog(n)) in each iteration is a
somewhat primitive way of working around the large number of trees generated by
the flow packing. An improved procedure for generating the convex combination of
trees might be able to do away with this additional increase of α, thus improving the
convergence of AlmostRoute while additionally decreasing the number of queries to
the LSST algorithm.

While using flow packing for generating the convex combination is an elegant
reduction, it comes at the cost of requiring us to find embedding flows of the trees into
G to update the flow packing weights w. This was the reason for using low-stretch
spanning trees as part of the flow packing oracle. Indeed, Lemma 5.9, where we relate
the low-stretch trees to flow packing, explicitly requires an identity embedding flow,
because it requires the embedding congestions to update the weights of the flow
packing procedure. The identity embedding flow only exists for spanning trees, but
finding low-stretch spanning trees is much harder than finding arbitrary low-stretch
trees.

This should seem unnecessarily restrictive: the congestion approximator R only
has to approximate the value of the cuts in G, but not their structure. Hence it does
not make sense for us to restrict ourselves to spanning trees in the vital part of the
construction; there must exist some better method for packing a convex combination of
cut-approximating trees. As a first step towards this, it might be possible to conceive a
way of quickly building a cut-preserving complete graph on V, such that any spanning
tree on the complete graph is actually an arbitrary tree on V, and analyse the flow
packing in this setting.

We could also consider the possibilities of using projected trees [BEL20]. These are
trees on a superset of V, where each vertex of V maps to a set of vertices of the tree, and
every edge of the tree likewise maps back to an edge in G. Thus we can easily obtain
embedding flows of these trees into G by using the mapping of the edges, which allows
us to use the flow packing routine to generate a convex combination of these trees. But
now have to deal with there being multiple tree vertices for each v ∈ V across which
we have to distribute the demands bv when approximating congestions. Since we must
ultimately build a linear congestion approximator R, we cannot do this depending on
the demands b, but must devise some allocation scheme that applies equally well to
any demands b. This is challenging because the definition of stretch in this case is that
for any {u, v} ∈ E, the exist some representatives of u, v in the projected tree between
which the path is short, but in order to have some constant scheme of allocating the
demands, we would require the paths between all representatives of u, v to be short.

Nevertheless, the projected tree is sufficiently close to our desired tree (since it is a
low-stretch tree that is efficiently constructable and easily embeds into G) that there
might be some method of making this construction work. One would presumably need
to modify the flow packing to account for the allocation scheme that distributes b over
the vertices of the tree.

Ultimately, we can hope that future insight will be able to do away with or drastically
improve the flow packing procedure, substituting it for something more directly
applicable that does not require us to have embedding flows of our trees into G. This
hypothetical scheme might then also produce fewer graphs in the decomposition,
which will most likely also lead to more practical exponents in the polylogarithmic
terms.

As a last resort, we can replace all of Madry’s decomposition (Chapter 5) with a
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different congestion approximation scheme. Räcke, Shah and Täubig [RST14] show
how to compute a single tree in almost-linear time O(m1+o(1)) that O(log4 n)-embeds
into G.1 The algorithm relies internally on computing approximate maximum flows.
In a surprising result, Peng [Pen16] resolves this ‘chicken-and-egg situation’ using a
circular reduction on recursively larger graphs by interleaving with ultra-sparsifiers [ST14;
Kol+10] at the right moment. Multiple constructions of such ultra-sparsifiers have been
found, but these again rely on low-stretch spanning trees. Blelloch et al. [Ble+13] show
however that sparse low-stretch subgraphs suffice for their parallel construction of
an ultra-sparsifier, hence this problem should be solvable in a cache-efficient manner.
Their construction is based on a modification of the low-stretch spanning tree algorithm
discussed in Section 4.1, improving the average stretch from exp(O(

√
log n log log n))

to polylog(n) for their low-stretch subgraphs. Unfortunately, the exponents in the
polylogarithm are still considerable. Whether their approach would make Peng’s
circular reduction a practical and cache-efficient algorithm would remain to be seen.

Finally, we note that related maximum flow algorithms, namely those of Kelner
et al. [Kel+14] and Kyng et al. [Kyn+19], suffer from the same difficulties that we
encountered in this thesis: In the case of Kelner et al., we require an oblivious routing
scheme on G, which is essentially a congestion approximator that additionally preserves
the structure of G, i.e. constructing an oblivious routing scheme is at least as hard
as constructing R. Kyng et al. observe that a non-linear congestion approximator
will inherently lead to better performance of their version of AlmostRoute, and show
how to construct and use what they call an adaptive preconditioner, which can be
thought of as an non-linear congestion approximator. Their construction again revolves
around a low-stretch spanning tree to build a modified ultra-sparsifier with additional
guarantees.

All of this points to the following conclusion: Either an improved algorithm for low-
stretch spanning trees is found, presumably making all related algorithms immediately
cache-efficient, or the decomposition is improved to not require spanning trees, making
the maximum flow problem cache-efficient in practice but leaving related problems
open. The only known algorithms for constructing low-stretch spanning trees are those
of Alon et al. [Alo+95], Elkin et al. [Elk+05], and Abraham, Bartal and Neiman [ABN08],
of which only the first has a cache-efficient counterpart. Entirely new methods might be
needed to make progress in the external memory (and parallel or distributed) setting.

7.2 Decomposing into Non-Trees

If computing low-stretch spanning trees is hard, can we decompose into graphs that
are not trees? We answer this question partially in the negative by showing that the
combinatorial formulation of a congestion approximator R as a combination of simple
graphs on which we perform optimal routing exists only for trees. This is fundamentally
because we require R to be linear. Consider again Figure 7.1, as previously given in
Chapter 5. For a linear operator R, Rb− Rb is zero, but if we add the routing of −b in
a cyclic graph to that of b, we might obtain a non-zero flow. Can we maybe select the
flows according to some clever scheme that avoids this issue? It turns out that this is
impossible for cyclic graphs.

1This ostensibly contradicts our lower bound from Lemma 5.7. Recall however that the bound
discusses identity embedding flows; the scheme of Räcke, Shah and Täubig does not rely on identity
embeddings.
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Figure 7.1: Non-Linearity of Optimal Routing

In more precise terms, if Rb is a flow resulting from routing b optimally on some
combination of graphs, then these graphs must be trees, or R cannot be linear.

Lemma 7.1. Let f : Rn → Rm be some function that maps valid demands b to optimal flows f
that route b with minimal congestion in some cyclic graph. Then f cannot be a linear function.

Proof. Consider the n-vertex cycle, and let 〈u, v, w〉 be any path in this cycle. Let b(1)

be the demands given by bu = −1, bv = 1, and zero everywhere else. There is a unique
optimal routing of b(1) in the cycle of congestion one-half. Now repeat the same process
for b(2) being bv = −1, bw = 1, and zero everywhere else.

If we consider the added demands b = b(1) + b(2), then there still exists an optimal
routing of congestion one-half, but the flow f = f (b(1)) + f (b(2)) has congestion one:
The flow on the path 〈u, v, w〉 is zero, whereas it is one on the remaining edges of the
cycle. Thus optimal routing in cyclic graphs cannot be linear.

This implies that we can only construct congestion approximators that have a
graph-theoretic interpretation as routing flows optimally in some simpler graph, when
these simpler graphs are trees.

Less pessimistically, if we want to use combinatorial congestion approximators that
are not composed of trees, then we cannot use optimal routing on these approximators,
but must at least interleave with other schemes such that routing only occurs on the
acyclic parts of the decomposition. Alternatively, we could consider modifying the
AlmostRoute solver to handle non-linear congestion approximators, following Kyng
et al. [Kyn+19]. However, this closely marries the congestion approximator to the
solver, whereas we would ideally keep both algorithms independent to provide a more
general framework.

7.3 Handling Directed Graphs

Linear congestion approximators can only exist on undirected graphs, since we re-
quire that R(−b) = −Rb. Can we nevertheless use our algorithm for approximate
undirected max-flow to compute approximate maximum flows on directed graphs?
Madry [Mad11] gives a reduction from directed to undirected maximum flow. Unfor-
tunately, if we modify his construction to handle the approximate case, we see that
we would in general need a prohibitively tight approximation ratio ε to obtain good
results:

Lemma 7.2 (Directed to Undirected Max-Flow; [Mad11]). Given an algorithm MaxFlow
that computes a (1− ε)-maximum flow on an undirected, capacitated graph G in T(n, m, U)
I/Os, where U = max ce/ min ce, there exists an algorithm DirectedMaxFlow that computes
flow on any directed, capacitated ~G in T(~n,O(~m),~n · ~U) + sort(~m) I/Os, such that the flow
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has value ~ν at least
~ν ≥ (1− ε)opt~G(

~G)− ε

2 ∑
e∈~E

~ce

See Madry for a proof in the exact case; the modification to the EM model and
approximate maximum flows is straightforward.

It is surprising that such a reduction exists at all, and this motivates the speculation
that improved reductions may eventually be designed, even though current methods
do not indicate how this might be accomplished.
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