
FMI: Fast and Cheap Message Passing for
Serverless Functions

Marcin Copik1, Roman Böhringer1 Alexandru Calotoiu1 Torsten Hoefler1
1Department of Computer Science, ETH Zurich

Abstract—Serverless functions provide elastic scaling with a
fine-grained billing model, making Function-as-a-Service (FaaS)
an attractive programming model. However, for distributed jobs
that benefit from large-scale and dynamic parallelism, the lack of
fast and cheap communication is a major limitation of serverless
computing. Individual functions cannot communicate directly,
group operations do not exist, and users resort to manual
implementations of storage-based communication. This results in
communication times multiple orders of magnitude slower than
those found in HPC systems. We overcome this limitation and
present the FaaS Message Interface (FMI). FMI is an easy-to-use,
high-performance framework for general-purpose point-to-point
and collective communication in FaaS applications. We support
different communication channels and offer a model-driven
channel selection according to performance and cost expectations.
We model the interface after MPI and show message passing can
be integrated into serverless applications with minor changes,
providing portable point-to-point and collective communication
closer to that offered by high-performance systems. In our
experiments, FMI can speed up communication for a distributed
machine learning FaaS job by up to 162x while at the same time
reducing cost by up to 941 times.

I. INTRODUCTION

Function as a Service (FaaS) is an emerging program-
ming paradigm popular in cloud applications. In FaaS, users
focus on writing application code decomposed into a set
of functions. Users are not concerned with deploying code
and managing the underlying compute and storage infrastruc-
ture. Instead, function invocations are executed by the cloud
provider on dynamically provisioned servers. Thus, users never
allocate servers (serverless computing) and are charged only
for computing time and memory resources used (pay–as–
you–go billing). Small, stateless functions do not need to
communicate – they simply write their results to storage, and
future functions can continue from there. Thanks to the fine-
grained billing and execution model, functions have become
a popular programming model for irregular and unbalanced
workloads.

Functions are used for distributed and stateful computations
in data analytics, linear algebra, processing of multimedia,
and machine learning [1–7]. These workloads benefit from
the fast and cheap scalability of ephemeral function workers.
However, these functions must run for a longer time and
have a significant internal state. This makes storing the entire
state and continuing execution later once new inputs become
available inefficient — they need a cheap and fast way of
exchanging data to become an efficient backend for distributed
computations, but they lack a native and high-performance

communication interface. Furthermore, between their reliance
on accessing remote data and their statefulness such workflows
rely on simultanous invocation of multiple functions and are
significantly penalized for failures.

In HPC, communication in a distributed system is done
using the Message Passing Interface (MPI). In contrast to
virtual machines and HPC applications, functions execute in
sandboxes that provide strict isolation but are prevented from
accepting incoming network connections (Sec. III-B1). To
communicate, functions rely on in-memory caches and storage
optimized for serverless functions — these are primarily
designed to improve performance [8] but introduce a user-
managed and persistent component that defeats the purpose
of serverless computing. Instead, users need a flexible choice
between fast and cheap network communication and slower,
more expensive, and more durable storage-based exchange.
Unfortunately, while serverless computing is advertised as an
elastic solution for computing and resource allocations, it is
surprisingly inflexible when it comes to communication. The
performance and price of serverless messaging is already a
pressing problem, as messages exchanged over object storage
come with double-digit millisecond latency and cost of $6 per
million. The situation is even worse if collective communica-
tion is considered.

The importance of collective operations has been noticed
very early on in the HPC community [9, 10], and they
are used in virtually all MPI jobs [11]. Collectives provide
a portable interface for standard parallel programming pat-
terns [12]. Replacing send–receive messages with collectives
makes applications simpler and easier to program, debug, and
maintain while retaining the expressiveness and performance
of direct messages [13]. From the user’s point of view,
collectives provide ”division of labor: the programmer thinks
in terms of these primitives and the library is responsible for
implementing them efficiently” [14]. This separation is even
more important in the black-box serverless world with major
differences between cloud providers.

At the same time, high performance communication requires
finely tuned algorithms according to network topology, number
of participants, message size, application, and even the mem-
ory hierarchy [15–20]. However, the entire communication
hierarchy that includes nodes, racks, sockets, processes, and
caches is hidden from the user in serverless. This provides
an additional motivation for the cloud provider to implement
hierarchical and multi-protocol communication [21], such
that serverless applications benefit from standardized message

passing operations with high-performance implementations
adjusted to the system at hand. The world of collective spe-
cializations is rich and remains concealed behind the system
abstractions, and serverless should benefit from it (Sec. III-C).

The community has already identified the lack of support
for efficient group communication as one of the fundamental
limitations of serverless computing [1, 22, 23]. The interface
of collective operations should allow for incorporating system-
specific optimizations without breaking the serverless abstrac-
tion layer, e.g., including point–to–point communication and
adapting hierarchy to task affinity [22]. Serverless applications
can benefit from the high performance and versatility of
collectives, but need a framework that hides the complexity
of the cloud system.

In this work, we provide the first direct general-purpose
communication framework for FaaS: the FaaS Message In-
terface (FMI). FMI is an easy–to–use and high-performance
framework where the implementation details of point-to-point
and collective operations are hidden behind a standardized in-
terface inspired by MPI, providing portability between clouds
and runtime adaption. We use MPI as our guide as it has
established itself as the communication solution for distributed
memory systems. We have implemented and extensively eval-
uated multiple communication channels with respect to both
price and performance and they are all included in the current
library implementation. Having determined that direct com-
munication over TCP is the best solution in all scenarios, we
also implement a general-purpose TCP hole punching solution
to allow functions to communicate directly, even behind NAT
gateways. While we implement FMI on AWS Lambda, the
design of our library is independent of the cloud provider and
can be ported to any serverless service.

Concretely, we make the following contributions:
• We introduce a library for message passing providing

common and standardized abstractions for serverless
point-to-point and group communication.

• We provide analytical models for communication chan-
nels in FaaS and discuss the performance-price trade-offs
of serverless communication.

• We demonstrate the application of FMI to serverless ma-
chine learning and present a reduction of communication
overhead by a factor of up to 162x and reducing cost by
up to 941 times compared to existing solutions.

II. BACKGROUND

Distributed FaaS applications already implement many
group and collective operations patterns across concurrent
functions, prominent examples being MapReduce in data
analytics [3, 24–26], reduce-scatter in machine learn-
ing [1, 4], and scan in video encoding [7].

However, the inter-function communication remains the
Achilles’ heel of serverless. Inspired by the statement: ”Stor-
age is not a reasonable replacement for directly-addressed
networking, even with direct I/O —it is at least one order of
magnitude too slow.” [27], we list different possible commu-
nication channels and in the following sections, we conduct

a detailed performance (Sec. IV) and cost analysis of these
cloud systems (Sec. V):

• Object Storage. These systems offer persistent storage
for large objects with high throughput, strong consis-
tency [28], data reliability [29–31], and a cost linear in
the number of operations and size of stored data.

• Key-Value Storage. NoSQL databases offer low-latency
and high-throughput scaled to the workload [32, 33].
However, these support only small objects (e.g., 400kB
in DynamoDB [32]) and have high costs for write oper-
ations.

• In-Memory and Hybrid Storage. In-memory stores
such as Redis [34] and memcached [35] offer higher
performance at the cost of manual scalability manage-
ment by the user and non-serverless resource provision-
ing. Serverless-optimized storage use multiple tiers of
memory and disk storage [8]. The costs depend on the
size of the memory store and time it remains in use.

• Direct Communication. A direct network connection
could offer higher performance than storage solutions
without incurring any costs. We discuss a prototype
implementation in Sec. III

Today’s serverless functions tend to communicate using
cloud proxies for messaging. Functions cannot establish
direct connections which would provide higher perfor-
mance at lower cost.

III. FAAS MESSAGE INTERFACE

In this section, we discuss FMI, the FaaS Message Interface
for point–to–point and collective communication as well as
the assumptions made by our approach. We then discuss
communication channels we tested as possible options for
FMI (Sec. III-B). We model the interface of FMI after the
proven and tested interface of MPI (Sec. III-E) and implement
a selection of the most common collective operations in
serverless applications (Sec. III-C). We design FMI to be
modular - our design does not make any assumptions on the
underlying cloud system. This is especially important because
we target cloud systems that change quickly and often contain
proprietary components that cannot be reused across platforms.
FMI can be extended with new communication channels,
collective operations, and support for programming languages
other than C/C++ and Python.

A. Assumptions

a) Isolation of serverless functions: Small, stateless
functions work well in isolation by writing their results to
storage and can be scheduled independently from each other.
However, the type of functions used in more complex server-
less workflows [1–7] are neither stateless nor independent of
each other, requiring complex task dependencies. We therefore
dispense with the assumption that FaaS functions should
be considered in isolation — as the evolving nature of the
serverless computing field already makes it deprecated in many
practical scenarios.

b) Simultaneous scheduling: In FMI, we assume that all
functions that will be part of the same communication entity,
or communicator, can be scheduled simultaneously. As soon
as the first function joins the communicator a timer is started.
If all functions that are scheduled to join do not do so before
the timer expires, the all functions exit with an appropriate
error.

c) Fault tolerance: In FaaS, it is possible to retry in-
dividual functions on failure. In FMI there is no recovery
mechanism for individual members of a communicator, and
if a function fails or a communication times out the entire
communicator will exit with an error. However, a user could
implement fault tolerant policies on top of FMI, similar to
approaches used in MPI [].

B. Communication Channels

While communicators are responsible for data conversion
and serialization, channels are the medium for data exchange
and operate on raw memory. We broadly classify them in direct
and mediated channels. In mediated channels, the communica-
tion between participants is done over storage or other indirect
means.

We provide implementations of both types. Mediated chan-
nel examples are object storage (AWS S3), key-value database
(DynamoDB), in-memory cache (Redis), and we create direct
channels using TCP connections. FMI could be extended with
UDP transport protocol by using QUIC to provide reliability
and security [36]. Indeed, programmers can add new channels
to the library with little effort and immediately benefit from
other existing FMI features - such as the implementations of
collective operations. However, if a channel provides more
specialized mechanisms, such as support for the reduction
operation, these can be added by overriding default collective
algorithms.

Ideally, cloud providers would provide direct communi-
cation between functions as a service, but until such time,
we provide the a method that allows direct communication
using TCP in the current serverless ecosystem. We first
summarize communication over Network Address Translation
(NAT), highlight the obstacles towards using it in the serverless
ecosystem, and suggest hole punching as a solution.

1) Network Address Translation (NAT): Function instances
are placed in sandboxes behind a NAT gateway [37]. The
gateway hides the endpoint by rewriting the internal address
with an external one in packet headers. An outgoing commu-
nication creates an entry in the translation table. This enables
replies sent to the external address to be forwarded to the
intended recipient. Packets are dropped when there is no
entry in the translation table, therefore the party initiating the
communication can be behind a NAT gateway, but not the
recipient. Thus, when both parties are behind a NAT gateway,
direct communication is not possible.

2) Hole Punching: One technique to circumvent the re-
stricted direct communication for endpoints behind a NAT is
hole punching [38, 39]. This approach relies on a publicly
reachable relay server to create mappings in the translation

Function A

Address: 192.168.10.1

1 1

Internal IP Port

192.168.10.1 40,000

Internal IP Port

10.0.0.10 50,000

Functions connect to the hole punching server, NAT table entries are created.

Hole punching server sends connection information of the other function.

Both functions initiate a connection with the new information.

External IP Port

203.0.113.2 40,001

1

External IP Port

203.0.113.3 50,001

22

3

Gateway

Function B

Address:10.0.0.10

Gateway

Address: 203.0.113.2

NAT Table

Address: 203.0.113.3

NAT Table

Hole

Punching

Server

Address: 203.0.113.10

11

2

3

Fig. 1: Network Address Translation (NAT) Hole Punching.

table and exchange the other party’s address with each par-
ticipant. Then, both participants attempt to connect roughly at
the same time using the existing address mappings from the
previous step (Fig. 1).

In our implementation of direct channels, we observed
unpredictable delays of up to 40 ms, which we suspect
are caused by Nagle’s algorithm [40]. We therefore disable
the algorithm on sockets used for direct communication by
default, while allowing for it to be enabled if the performance
improvements outweigh the delays.

C. Collective Communication

Decades of research into collective operations have led to
many optimized communication protocols. Collective algo-
rithms have different time, memory, and energy trade-offs [41].
When communication via cloud storage is considered, the
cost of operations becomes another fundamental characteristic
and limitation. Modern collective operations are extensively
tuned: MPI collectives are specialized for network transport
protocols [42–45], network topology [46–50], and even for
specific needs of applications, such as bandwidth and sparsity
optimizations in machine learning [19, 51–53].

Cloud providers must be the ones to apply such opti-
mizations as the abstraction layer prevents users from un-
derstanding the system’s architecture, and the opportunities
for improvement are no less complex than for MPI: Server-
less heterogeneity is increasing with RMA [54] as well as
GPUs [55, 56], and the dynamically changing topology of
workers presents additional challenges [57–59].

We implement the following collective operations from
the MPI standard [60]: broadcast, barrier, gather,
scatter, reduce, allreduce, and scan. The algo-
rithms selected differ depending on the communication chan-
nel used While we provide a prototype implementation of
algorithms, these should be modified and updated according
to the user’s needs and the cloud system configuration. For
example, the runtime of the scan operation can be improved
by using a depth-optimal but work-inefficient algorithm [61]
but is impractical on channels with a high data movement
cost. Furthermore, dedicated collective operations can be im-

plemented for highly dynamic task-based applications where
the number of function workers frequently changes [62].

Mediated channels. In broadcast, the root process
uploads the object to the object storage, and other functions
download it, benefiting from the scalable bandwidth of the
storage. In barrier, each function uploads a 1-byte object
and polls until all data is available. In the context of collective
operations implemented over storage, polling is implemented
using the list operation on the storage – this counts the number
of objects, and succeeds when the count equals the number of
functions in the communicator. In gather, functions upload
their buffers to storage and the root node polls for data
while scatter follows an inverted communication pattern.
Similarly, in reduce and allreduce, the root node is
responsible for downloading data and applying the reduction.
Finally, in scan each function polls for the partial result
generated by its predecessor, applies the scan operator and
uploads the result.

Direct channels. This case is similar to the MPI use-
case, so broadcast, gather, scatter, and reduce are
implemented with a binomial tree to avoid the bandwidth
limitations of a single function. Allreduce uses recursive
doubling [15], barrier is implemented as an allreduce
with one-byte input and the no-op reduction operator and
scan is implemented with a two-phase tree-based opera-
tion [63, 64].

D. Implementation

The FMI library has been implemented in roughly 1,900
lines of C++ code. The open-source framework is available
as prebuilt Docker images with necessary dependencies. Fur-
thermore, we provide Infrastructure–as–a–Code in the form
of AWS Lambda layers and CloudFormation templates [65].
However, our approach is platform agnostic and should run in
any serverless environment such as KNative without changes.
FMI users can use layers to integrate the message-passing
library into serverless applications without any build steps.
Furthermore, we implement a hole-punching library and server
TCPunch as to the best of our knowledge, there is no open-
source solution for C/C++ available. TCPunch supports hole
punching for full cone, restricted cone, and port restricted
cone NAT implementations. The library does not contain any
FMI-specific logic and exposes a simple interface (Listing 1),
allowing other applications to integrate TCPunch 1.

Listing 1 Example usage of the TCPunch client library.
#include <tcpunch.h>
// Client 1
int sock_fd = pair("faas_job_key",

"hole_punch_server_addr");
int n = send(sock_fd, pBuf, size, 0);
// Client 2
int sock_fd = pair("faas_job_key",
"hole_punch_server_addr");

int n = recv(sock_fd, recv_buffer, size, 0);

1For details on the source code and configuration of hole punching and
message passing, we refer readers to a technical report: [anonymized]

E. Interface

The FMI interface is heavily inspired by MPI, helping
programmers familiar with MPI use the library without ad-
justment. The interface is designed with high degree of com-
patibility: we primarily extend the MPI interface with modern
C++ features, e.g., we remove the need for explicit typing in
many operations (Listing 2).

Listing 2 Example usage of the FMI C++ interface.
#include <fmi.h>
// The functions are part of a communicator comm
// Here, the communicator contains 3 functions
// Each function has an unique id: 0,1,2
// Defining send buffer:
FMI::Comm::Data<std::vector<int>> vec({0, 1, 2});
// Defining receive buffer:
FMI::Comm::Data<std::vector<int>> recv(1);
// Collective operation
comm.scatter(vec, recv, 0);
// Test that each function got the correct data
assert(recv.get()[0] == my_id);

As in MPI, all message-passing operations are based on the
concept of a communicator. Each communicator is uniquely
named and is based on a group of N FaaS functions, each
one with a unique identifier in the range [0, N) [66]. There-
fore, an application can create multiple communicators with
different numbers of peers, different lifetimes and providing
the flexibility needed to support the many communication
patterns of serverless. For collectives that reduce data, such
as (all)reduce and scan, users can provide an arbitrary
function object to be used as a reduction operation.

Concurrent invocation of multiple parallel functions can be
implemented in existing FaaS systems, and we envision that
future serverless runtimes will provide such an option natively.

Languages. Support for new languages can be easily
added to the system by implementing a wrapper around
the communicator library. We demonstrate the support for
Python, a language popular in serverless, with the help of the
Boost.Python library (Listing 3).

IV. COMMUNICATION CHANNEL PERFORMANCE

An ideal communication channel for serverless functions
should support both low latency and high throughput com-
munication. While many cloud technologies can be used for
serverless communication, none of them fulfills all of the
requirements (Tab. I).

Listing 3 Example usage of the FMI Python interface.
import fmi
// The functions are part of a communicator comm
// Here, the communicator contains 3 functions
// Each function has an unique id: 0,1,2
// Defining a datatype:
dtype = fmi.types(fmi.datatypes.int)
// Root function sends data:
if my_id == 0:

comm.bcast(42, 0, dtype)
// All other functions receive data:
else:

assert comm.bcast(None, 0, dtype) == 42

Channel Latency Bandwidth Cost Scalability Max. Message Push vs Pull? Message Persistence Serverless?

Object Storage Very High Low Low Provider-side 5 TB Pull 3 3
NoSQL Database High Very Low High Provider-side 400 kB Pull 3 3
In-Memory Cache Low High Low User-side 512 MB Pull – 7
Direct TCP Very Low High Free User-side Unlimited Push 7 3

TABLE I: Serverless communication channels. In the following sections, we quantify the differences and characterizations.

Additional requirements for serverless storage include elas-
tic scaling with serverless parallelism and efficient support for
arbitrary object sizes [67]. The latter is necessary to support
the different communication patterns of serverless applications
that can involve both fine-grained messaging and exchanging
large data objects. Furthermore, serverless storage can offer
message persistence for additional fault tolerance. In-memory
caches can access some past messages while the instance is
running, but will be lost upon releasing the resource.

An aspect to consider is that not all communication channels
support push messages — messages where the receiver blocks
and waits for the data to arrive. Instead, the intended recipient
must actively and frequently poll the channel to verify if the
expected message is available — also known as pull messages.
Active polling introduces additional complexity (Sec. IV-A)
and adds an important performance-cost trade-off (Sec. V).

Finally, not all systems support a truly serverless deploy-
ment where no resource provisioning by the user is required.
Estabilishing direct communication channels should be offered
as a service for serverless by the cloud provider. Until such a
service is available, hole punching can be used as a viable al-
ternative. Many tenants can use hole punching simultaneously,
and the service scales horizontally according to the traffic.
Therefore, while direct communication currently requires de-
ploying a hole punching server, the server requires minimal
resources as its only responsibility is to accept connection
requests.

On the other hand, setting up the Redis cluster requires
a significant amount of work, and right-sizing the cluster is
the user’s responsibility. The system traffic must be monitored
since an underprovisioned Redis cluster will not lead to fail-
ures but instead cause performance degradation, complicating
server management further.

To understand the performance implications of selected
cloud communication channels, we consider two scenarios:
With a single sender and a single receiver, we examine
point–to–point communication, the basic building block of all
communication operations (Sec. IV-B). Then, we consider a
one-to-many scenario with one sender and a variable number
of receivers. This benchmark intentionally stresses bandwidth
scalability of the different channels (Sec. IV-C), so we explic-
itly do not use algorithmical optimizations in this step.

A. Benchmarking Setup

We analyze the following communication channels in the
AWS cloud: S3 (object storage), ElastiCache Redis (in-
memory data store), DynamoDB (NoSQL key-value store),
and direct TCP communication with NAT hole punching. For

all of them, we implement the message exchange in serverless
Lambda functions written in C++. We assign 2 GiB of RAM
to Lambda functions to decrease the likelihood of functions’
co-location in a single virtual machine [68], and we run the
experiments in the cloud region eu-central-1.

The S3 and DynamoDB stores do not require additional
configuration beyond creating cloud resources. We use the
pay–as–you–go billing model for DynamoDB, and we deploy
Redis on the cache.t3.small instance with 1.37 GiB
RAM and two vCPUs. The hole punching server requires little
resources as it only needs to store a few bytes per connection
during the setup, and we deploy it on t2.micro instance (1
GiB RAM, one vCPU). This comes with a cost of slightly less
than 1.5¢ per hour.

Polling. To communicate over S3, DynamoDB, or Redis, the
producer creates an object or an item in a predetermined loca-
tion. Unfortunately, there is no explicit notification mechanism
to inform the consumers that data is available. It is possible
to launch new functions in an asynchronous manner on data
update, but one cannot notify an existing function. For small,
short running functions this provides no issue. However, for
large stateful functions repeatedly stopping and resuming is
inefficient. Therefore, consumers need to repeatedly poll the
store using the predetermined key until they get a successful
response. We implement a hybrid backoff strategy to reduce
the number of required GET operations, as each one million
of reads costs approximately $0.5. For the first 100 retries,
the backoff time is linearly increased from 1 ms to 100 ms,
resulting in relatively short communication times for small
files. Afterward, we set the backoff time to 2 times the number
of retries, i.e., 202 ms, 204 ms, and bound the maximum
number of retries to 500. This backoff strategy is not necessary
in the ElastiCache Redis implementation as here polling does
not incur additional costs.

B. Point–to–Point

To measure point–to–point communication, we execute a
ping-pong benchmark and report half of the round-trip time.
For storage-based communication, the time includes both put
and get requests. For small messages (Fig. 2a), inter-function
TCP can achieve microsecond latency. For large messages
(Fig. 2b), direct communication over TCP is the fastest option
with a reasonably symmetrical density, concentrated around
the mean. The times for Redis follow a similar distribution
around a higher mean. S3 has a higher median communication
time, with values not symmetrically centered around the mean.
The distribution shows a long right-hand tail.

14.24ms 8.36ms

0.68ms 0.31ms

(a) One byte message.

144.67ms

8.81ms

2.07ms

(b) 1 MB message.

Fig. 2: Point–to–point communication latency for messages with one byte (left) and 1 MB (right), 1000 repetitions.

10 3 100 101 102 103

Data Size [KB]

0

100

200

300

400

500

Ba
nd

wi
dt

h
[M

B/
s]

S3
Redis
DynamoDB
TCP

Fig. 3: Bandwidth of point–to–point communication with
varying sizes.

For the next experiment, we vary message size from 1 byte
to 1 MiB and present the median bandwidth (Fig. 3). Direct
communication remains the fastest communication channel
for all data sizes, with the difference to cloud storage be-
ing smaller for larger sizes: the relative overhead of the
cloud proxy becomes smaller compared to the transmission
time. While other authors have reported high bandwidths for
S3 [67], our measurements include both the send–receive (put–
get) communication and the overhead of polling.

0.001 1 10 100 1000 10 10
Data Size [KB]

10 3

10 1

101

103

Ag
gr

eg
at

e
Ba

nd
wi

dt
h

[M
B/

s]

S3
Redis
DynamoDB
TCP

Fig. 4: Bandwidth of one-to-many communication with vary-
ing message size and 8 receivers.

C. One–To–Many

To test a one-to-many communication, we use one Lambda
producer that sends messages to multiple consumers. This ex-
periment allows us to assess bandwidth limitations and perfor-
mance with multiple functions receiving from one source. In
each experiment, consumers create a direct TCP connection to

the producer to acknowledge the reception of a message. The
producer stops time measurement upon receiving confirmation
from all consumers, and we subtract the TCP latency measured
in the previous benchmark (Sec. IV-B) from the result. An
alternative approach would require estimating the clock drift
between distributed Lambda functions [69, 70], but tuning
these protocols in the noisy serverless environment is difficult.

We vary the message size, and present the aggregated
bandwidth across all 8 receivers in Fig. 4. While direct
communication results in the highest bandwidth, the difference
to Redis and S3 decreases with the number of participants. The
results are similar to the point–to–point benchmark for small
data sizes. For messages larger than 10 KiB, there is a strong
increase in communication time due to bandwidth limitations.
Both Redis and S3 show good scaling in this benchmark, as
the latter offers automatic scaling with the number of users.

We also investigated the feasibility of increasing the number
of consumers beyond 64. S3 handles scalability with 128 con-
sumers well, but we observe irregular failures on Redis with
128 and 256 consumers, likely due to resource limitations.
Our hole punching server easily supported the connection
setup with 256 functions, even with a t2.micro instance.
However, the producer’s bandwidth becomes the bottleneck
as the number of consumers grows, highlighting the need for
specialized algorithms for collective communication.

V. THE PRICE OF PERFORMANCE

When modeling and designing HPC collectives [16, 71],
time, memory, and energy trade-offs [41] must be considered.
In the serverless world, we must also consider the price of
cloud operations. The price–performance trade-off has always
been a major issue in serverless [72]: allocating more powerful
instances decreases computation time and resource occupancy,
but it does not always lead to lower costs. Therefore we
must include both the cost of data transfer and the runtime
of functions spent in transmitting data. To model the time,
we use the alpha-beta model — one of the simplest ways to
describe parallel communication. This model considers α, the
latency of the communication channel, and β, the inverse of
its bandwidth . The time to send a message of size s becomes
T = α+ s · β.

To compare direct and mediated channels we consider
the latency and bandwith of two functions in a point-to-

Bandwidth Value Latency Value

1/β(s3) 50 MB/s α(s3) 14.7 ms
1/β(ddb) 7 MB/s α(ddb) 8.9 ms
1/β(redis 100 MB/s α(redis) 0.88 ms
1/β(direct) 400 MB/s α(direct) 0.39 ms

TABLE II: Performance model parameter values for AWS (S3,
DynamoDB, ElastiCache Redis, and Lambda).

point communication. We report parameter values for AWS
in Tab. II. The results show that in-memory store outperforms
object storage in both bandwidth and latency, but they are both
inferior to direct communication.

We consider the cost per second of executing serverless
functions, hosting in-memory cache, and using cloud storage
(Tab. III). We do not incorporate the fixed fee per function
invocation in this analysis, as these costs are the same for each
communication channel and are negligible for long-running
functions.

Direct communication. As we have seen in Sec. IV-C, TCP
communication has no inherent cost, but limited bandwidth –
and thus the increased communication time might generate
higher costs. The cost of direct communication is limited to
the runtime spent in communication by participating FaaS
functions, but we consider the hole punching service needed
by adding the cost of the virtual machine (phps) running the
service.

Mediated channels. For object storage or in-memory data
stores, we define a minimal transfer time as the least time
it takes for a piece of data to be written to the intermediary
storage by a function and then read by another - therefore
assuming there is no time spent waiting and polling for the data
to become available. The actual transfer time will be longer in
practice, as the functions sending and receiving are unlikely to
be perfectly synchronized. This will require additional polling
on the part of the receiving function, and therefore result in
delays. When using object storage such as S3 or DynamoDB
for communication, there are no additional infrastructure costs
because the system is managed by the provider and charged on
a per-use basis. We further assume that all data is ephemeral
and immediately deleted after execution, which leads to neg-
ligible storage costs. We therefore only pay for the up- (ps3,u,
pddb,u) and downloads (ps3,d, pddb,d). For communication over
an in-memory data store, only infrastructure costs for the store
are incurred (predis), and these only depend on how long the
instance is running.

Cost of FaaS functions. The total cost of communication is
the sum between the cost to run the FaaS functions during the
communication and the cost of moving the data through the
channel. While the function runtime is not directly influenced
by the channel choice, this choice influences the communica-
tion time, which in turn determines this cost. One exchange
with P participants, each with M GiB of RAM, that takes t
seconds on average has a cost that can be calculated as follows:

cfunction = P ∗ t ∗ pfaas ∗M (1)

Item Value ($) Description

pfaas 1.67 · 10−5 Lambda GiB per s.
phps 3.72 · 10−6 t2.micro EC2 instance per s.
predis 1.05 · 10−5 cache.t3.small ElastiCache per s.
ps3,d 4.3 · 10−7 S3 GET per request.
ps3,u 5.4 · 10−6 S3 PUT per request.
pddb,d 7.62 · 10−8 DynamoDB read per 1kB.
pddb,u 1.5 · 10−6 DynamoDB write per 1kB.

TABLE III: Price components of the model for AWS in
eu-central-1, US dollars.

Channel Time (ms) FaaS ($) Channel ($) Total ($)

S3 16.70 1.12 5.83 6.95
DynamoDB 151.76 10.10 1,580.00 1,590.10
Redis 10.88 0.73 0.16 0.84
Direct 2.89 0.19 0.01 0.20

TABLE IV: Price analysis for communication over S3, Dy-
namoDB, ElastiCache Redis, direct TCP communication.

The cost of Lambda instances increases linearly with the
memory they are allocated, hence the M term in the cost
equation. Although the average used for the time t may not
necessarily be representative for the individual experienced
communication times, it remains a useful approximation given
the large number of FaaS functions serverless systems com-
monly handle.

Price-performance analysis. We now compute the cost and
time required by each communication channel to communicate
1MB between two 2GiB Lambda functions a million times by
instantiating the models previously described and present the
results in Tab. IV. The direct communication is more than
four times cheaper and faster than all alternatives, making it
the best choice from a modeling standpoint. Furthermore, the
cost of running the hole punching service will be shared by
many function instances, making it negligible in practice.

VI. EVALUATION

We now evaluate the performance and efficiency of our
message-passing interface. We focus our evaluation on col-
lective operations, as the point-to-point performance has been
analyzed in Sec. IV-B. First, we examine the scaling of
FMI Collectives on AWS Lambda (Sec. VI-A). Then, we
verify FMI’s performance in a comparison against MPI on
virtual machines (Sec. VI-B), which allows us to quantify the
overheads brought by the serverless environment (Sec. VI-C).
Finally, we demonstrate how the integration of FMI into a
serverless machine learning framework helps improve perfor-
mance and decrease costs (Sec. VI-D).

A. Performance of FMI Collectives in FaaS

To evaluate FMI’s collectives on a FaaS platform, we use
AWS Lambda functions with 2 GiB RAM. For Redis, we use
one cache.t3.small (1.37 GiB RAM, 2 vCPUs) instance,
and we set the polling interval for S3 to 20ms. We evaluate
collective operators with the following operations:

2 4 8 16 32 64 128 256

100

101

102

Co
m

m
un

ica
tio

n
Ti

m
e

[m
s]

allreduce

2 4 8 16 32 64 128 256

100

101

102

bcast

Direct
Redis
S3

2 4 8 16 32 64 128 256

100

101

102

gather

2 4 8 16 32 64 128 256
Functions

100

101

102

Co
m

m
un

ica
tio

n
Ti

m
e

[m
s]

reduce

2 4 8 16 32 64 128 256
Functions

100

101

102

scan

2 4 8 16 32 64 128 256
Functions

10 1

100

101

102

103
scatter

Fig. 5: Evaluation of FMI collectives on AWS Lambda.

• allreduce: Adding an integer per process.
• bcast: Broadcasting an integer.
• gather: The root process receives 5,000 integers in total.
• reduce: Adding an integer per process.
• scan: Prefix sum with an integer per process.
• scatter: The root process sends 5,000 integers in total.
The Redis and direct communication experiments are re-

peated 30 times, while for S3 we use only ten repetitions due
to cost.

The results are summarized in Figure 5. For Redis, we
observe a significant increase in communication times starting
at 64 functions and even timeouts at 128 functions. This
demonstrates the limitation of using a provisioned service
where the user is responsible for scaling resources, and the
correct instance size is not always known a priori. Choosing
the minimal size that supports a given workload can be time-
consuming and expensive because the communication times
gradually increase, which often leads to overprovisioning. For
S3, we limit the evaluation to 32 functions for cost reasons due
to the many GET requests, further exacerbated by stragglers
and short polling intervals. Like resource provisioning with
Redis, the user has to select the polling configuration.

Direct TCP communication enabled by FMI is necessary
to achieve high performance collective operations.

B. Comparison of FMI and MPI in Virtual Machines

To compare the performance of FMI and MPI, we deploy
both on virtual machines for an unbiased comparison, since
MPI is not available on FaaS platforms.

Setup. We execute the MPI benchmarks on t2.xlarge
virtual machines, running Ubuntu 20.04.1 VMs with 16 GiB
of RAM and 4 vCPUs. Virtual machines are configured to use
the Amazon Time Sync Service which improves the precision
of the time measurements. We configure Open MPI to use
one rank per node when using up to eight peers, and we

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
0

500

1000

1500

2000

2500

3000

3500

4000

Co
m

m
un

ica
tio

n
Ti

m
e

[
s]

5443 6261 8683

allreduce

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
0

500

1000

1500

2000

2500

3000

3500

4000
56196339 5610

bcast

Open MPI
FMI

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
0

500

1000

1500

2000

2500

3000

3500

4000
4401 62616370

gather

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
Ranks (VMs)

0

500

1000

1500

2000

2500

3000

3500

4000

Co
m

m
un

ica
tio

n
Ti

m
e

[
s]

4026 10550

reduce

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
Ranks (VMs)

0

500

1000

1500

2000

2500

3000

3500

4000
6125 105465909 8773

scan

2 (2) 4 (4) 8 (8) 16 (8) 32 (8)
Ranks (VMs)

0

500

1000

1500

2000

2500

3000

3500

4000
5037

scatter

Fig. 6: Comparison of FMI with Open MPI in virtual ma-
chines.

use up to 4 processes per node otherwise. We use Open
MPI 4.0.3 wih the default configuration, which uses the TCP
transfer layer for communication. Similarly, we used a non-
tuned FMI installation with the fastest channel. For this and the
next experiment, FMI was compiled with our Docker image,
and we use gcc 9.3.0 with the flag -O3 to compile MPI
benchmark. While the Amazon cloud does not provide any
concrete numbers for the network bandwidth, we observed 1
Gbit/s when benchmarking the bandwidth between two VMs
with iperf.

Performance The performance and variance of FMI col-
lectives is comparable to Open MPI (Fig. 6). We repeat
the evaluation of each collective operation 1,000 times, after
discarding a first warm-up measurement, and use a barrier
before each experiment. These results also show that co-
location and using shared memory is beneficial as Open MPI
is able to reach similar communication times for 8 and 16
ranks in some of the experiments. Our implementation of
the collectives is competitive and our framework does not
introduce significant overhead.

FMI is competitive with established MPI implementa-
tions, bringing the HPC message-passing performance
closer to the serverless world.

C. Evaluating the Overhead of FaaS Platforms

Thanks to FMI, we can quantify the performance losses
incurred by the serverless environment by comparing opera-
tions executed in virtual machines (IaaS) and FaaS. Figure 7
compares the results of FMI communication in serverless
(Sec. VI-A) with FMI and Open MPI performance on virtual
machines (Sec. VI-B). The VM-based benchmark results in
significantly lower communication times, even if the used
software and communication algorithms are identical. This
suggests that the performance of FaaS is currently hampered
by opaque traffic limitations caused by the cloud infrastructure.

2 4 8 16 32
10 1

100

101

Co
m

m
un

ica
tio

n
Ti

m
e

[m
s]

allreduce

2 4 8 16 32
10 1

100

bcast

EC2 VMs (FMI Direct)
Lambda Functions (FMI Direct)
EC2 VMs (Open MPI)

2 4 8 16 32

100

gather

2 4 8 16 32
Functions

10 1

100

101

Co
m

m
un

ica
tio

n
Ti

m
e

[m
s]

reduce

2 4 8 16 32
Functions

10 1

100

scan

2 4 8 16 32
Functions

10 1

100

scatter

Fig. 7: Comparison of collectives on AWS EC2 and AWS
Lambda with minimal message sizes.

x105x62x40x48x90x162

Fig. 8: Performance comparison of FMI and the LambdaML
DynamoDB communication time. The annotation denotes the
speedup of the median communications time provided by
FMI. No measurements beyond 64 functions are provided for
DynamoDB due to outliers and timeouts.

D. Practical Case Study: Distributed Machine Learning

To demonstrate the benefits of integrating FMI into server-
less applications, we use LambdaML, a state-of-the-art frame-
work for distributed machine learning on AWS Lambda [4].
In this experiment, we use distributed K-Means with the
DynamoDB backend since this channel was seen as the best
performing. For the FMI experiment, we replace the author’s
optimized allreduce operation with the corresponding FMI
collective. We use the HIGGS [73] dataset with 1 MB file
per function. For such small datasets, the communication
overhead is especially important because the computation time
is relatively short. Lambda functions are configured with 1 GiB
RAM, and we train for 10 epochs. We enable autoscaling for
DynamoDB and use direct communication over TCP in FMI.

Performance. Figure 8 presents the distribution of commu-

x2544x941x205x103x53x27

Fig. 9: Cost comparison of FMI and the LambdaML Dy-
namoDB channel. The annotation denotes the cost reduction
of the provided by FMI.

nication times per epoch, i.e., how much time passed between
functions ready to exchange data until they accumulate the
centroids of the current epoch, averaged across ten epochs.
FMI significantly reduces both the median and maximum
communication time by up to 105 and 1224 times, respectively,
when running with 64 functions. We did not increase the num-
ber of functions beyond 64 for DynamoDB due to the timeouts
and outliers we observed for 64 functions. In constrast, FMI
scaled well with good performance and few outliers up to
256 functions. Another reason behind the poor performance of
vanilla LambdaML is the base64 serialization of binary data
that is needed in communication using DynamoDB. On the
other hand, FMI directly operates on binary data. Furthermore,
we avoid unnecessary buffer copies by using numpy arrays on
top of the existing memory buffer from the C++ library.

Cost. We estimate the cost of moving data and running
the Lambda function for the duration of the communication
epoch. For FMI, we assume an hourly cost of running the hole
punching service. For DynamoDB, we assume one read and
write unit per second for each function, as this is the minimum
traffic AWS requires each function to provision. This assump-
tion is rather optimistic because one function can generate
multiple reads during one collective operation in LambdaML’s
implementation, as functions repeatedly send requests until
an item becomes visible. Therefore, our estimation of the
monetary benefits of using FMI is conservative.

Despite this pessimistic approximation, FMI results in sig-
nificantly cheaper communication costs (Fig. 9). When using
only a few functions, the cost is relatively similar because
of the hourly cost of the hole punching server. At 32 func-
tions, a user pays approximately $15.84 for 1000 epochs
of communication with DynamoDB while using FMI lowers
these costs to $0.02, a reduction by a factor of 941. This
trend will increase with more functions, as the infrastructure
costs depend linearly on the number of functions and the
communication time increases significantly. On the other hand,
the infrastructure costs for FMI are practically independent of

the number of functions, due to the limited requirements of the
hole punching server. Users of FMI can further benefit from a
cloud-managed communication establishing service that could
offer lower prices.

Integration. We integrate FMI into the K-Means bench-
marks with only four lines of code changed. A complete
integration would reduce the LambdaML codebase by several
hundred lines of code because the communication methods
specific to machine learning are no longer needed.

FMI can be integrated into distributed serverless appli-
cations with minimal overhead, providing performance
and cost improvements of two degrees of mangitude.

VII. RELATED WORK

Solution General Object In-Memory Direct Central
Purpose Storage Storage Communication Server

Cirrus [1] 7
Crucial [2] 7 7
gg [74] 7 7 7
Lambada [3] 7
Boxer [25] 7
LambdaML [4] 7 7 7
Locus [75] 7
mu [7] 7 7
Pocket [8] 7 7
PyWren [76] 7 7
Starling [6] 7
FMI (this work) 7 7 7 7 7

TABLE V: Comparison of existing communication solutions.

Multiple works partially address the topic of communication
in serverless environments and implement specialized systems
for a given workload (Table V). In contrast, FMI provides
a modular, high-performance, and general-purpose solution
for point-to-point and group communication, with support for
various communication channels and a model-driven selection
at runtime.

Ephemeral Storage for Serverless. Pocket [8] is a spe-
cialized data store for intermediate data in serverless, with
automatic resource scaling and multiple storage tiers. Pocket
is orthogonal to our work and can be integrated into FMI
as a cheaper alternative to the in-memory store. Locus [75]
and Crucial [2] include specialized communication channels
for serverless analytics and distributed synchronization. The
former combines tiers of fast and slow storage, while the latter
implements a shared object layer in an in-memory data store
with a Java interface.

Serverless Communication. Emerging frameworks support
stateful and distributed FaaS jobs, but many of them focus
on domain-specific optimizations. Systems such as gg [74],
mu [7], and PyWren [76] are designed to handle general-
purpose tasks, and they use cloud stores, dedicated in-memory
caches, and messaging servers.

ServerlessNetworking proposes reliable inter-function com-
munication over UDP with help of the UDT library [77], and
uses an external service for UDP hole punching. This leads

to significant communication times, with the latency of some
messages in the order of seconds.

Another approach uses a dedicated storage server de-
ployed in a virtual machine to relay messages and implement
application-specific operations [1]. However, these require
manual management of scalability and are not always portable
between applications.

Other systems target specific workloads and execution pat-
terns. LambdaML [4] and Cirrus [1] are specialized frame-
works for machine learning. They implement communication
patterns common in machine learning training and introduce
optimizations such as asynchronous communication, custom
parameter servers, and dedicated data stores for intermediate
data.

Lambada [3] implements communication specialized for
scan and exchange operators common in data analytics, includ-
ing concurrent storage operations and multi-level exchanges
that minimize the number of storage operations. Boxer [25]
extends Lambada with TCP hole punching. The query exe-
cution engine Starling [6] uses object storage and attempts to
mitigate the high latency of operating on many files with paral-
lelization, pipelining and multi-stage operations. The modular
FMI system supports adding domain-specific communication
optimizations, similarly to the multitude of specializations for
MPI collectives.

Serverless Platforms. SONIC [78] extends OpenLambda
with application-aware data passing. SAND [79] implements
a dedicated hierarchical message bus, and Cloudburst [80]
adds co-located caches and an autoscaling key-value store.
The optimized communication channels available on a given
platform can be integrated into FMI, letting users benefit from
the high performance of message-based communication while
hiding the complexity and specialization.

VIII. POSSIBLE EXTENSIONS

Collective algorithms variety.
Another interesting research direction is the extension of

FMI with more collective algorithms. We currently provide
one optimized algorithm per collective and channel type.
Thanks to extensive research in this area, it is known that
the best performing algorithm depends on various factors and
different selection mechanisms have been developed. FMI
is well suited for the integration of additional collective
algorithms and dynamic selection at runtime. Cost is an ad-
ditional interesting design dimension, as the fastest collective
algorithm may not be the cheapest. Finally, the performance
of collectives can be sensitive to imbalance and noise [81, 82]
and require dynamic adaptive schemes for robustness [81, 83].
This is a significant problem in serverless, where performance
variability is high [72].

Dynamic group membership. Ephemeral functions can
be used to implement adaptive and dynamic parallelism of
evolving and malleable applications [84]. Thus, serverless
group communicators could support joining and leaving the
group by functions at any time. While this topic is beyond the
scope of this paper, it would bring the communication models

closer to the serverless ecosystem and allow a more seamless
integration.

IX. CONCLUSIONS

In this work, we propose FMI: an easy-to-use, modular,
high-performance framework for general-purpose communica-
tion in FaaS platforms. We analyze and benchmark communi-
cation channels available to serverless applications, including
direct communication with NAT hole punching. We derive
performance and cost models to support the model-driven
selection of optimal communication protocols. Finally, we
design the FMI interface after MPI, ensuring the library can be
easily integrated into existing C++ or Python codebases, im-
mediately providing significant cost savings and performance
improvements.

We evaluate FMI by comparing the performance of both
point–to–point and collective communication to MPI. We
demonstrate the benefits of FMI for serverless in a case study
of distributed machine learning, showing easy integration and
decreased communication time by up to 162x. Thus, FMI’s
efficient and scalable message passing brings serverless com-
munication closer to the performance of MPI communication
in HPC, and lifts one of the most important limitations of
serverless computing.

REFERENCES

[1] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and
R. Katz, “Cirrus: A serverless framework for end-
to-end ml workflows,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’19.
New York, NY, USA: Association for Computing
Machinery, 2019, pp. 13–24. [Online]. Available:
https://doi.org/10.1145/3357223.3362711

[2] D. Barcelona-Pons, M. Sánchez-Artigas, G. Parı́s,
P. Sutra, and P. Garcı́a-López, “On the faas track:
Building stateful distributed applications with serverless
architectures,” in Proceedings of the 20th International
Middleware Conference, ser. Middleware ’19. New
York, NY, USA: Association for Computing Machinery,
2019, p. 41–54. [Online]. Available: https://doi.org/10.
1145/3361525.3361535

[3] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada:
Interactive data analytics on cold data using serverless
cloud infrastructure,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, 2020, pp. 115–130.

[4] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso,
A. Klimovic, A. Singla, W. Wu, and
C. Zhang, “Towards demystifying serverless
machine learning training,” in ACM SIGMOD
International Conference on Management of Data
(SIGMOD 2021), June 2021. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/
towards-demystifying-serverless-machine-learning-training/

[5] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast
and slow: Scalable analytics on serverless infrastructure,”

in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 193–206.
[Online]. Available: https://www.usenix.org/conference/
nsdi19/presentation/pu

[6] M. Perron, R. Castro Fernandez, D. DeWitt, and S. Mad-
den, “Starling: A Scalable Query Engine on Cloud Func-
tions,” in Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. Portland
OR USA: ACM, Jun. 2020, pp. 131–141.

[7] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Bala-
subramaniam, W. Zeng, R. Bhalerao, A. Sivaraman,
G. Porter, and K. Winstein, “Encoding, fast and slow:
Low-latency video processing using thousands of tiny
threads,” in Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, ser.
NSDI’17. USA: USENIX Association, 2017, pp. 363–
376.

[8] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis, “Pocket: Elastic ephemeral storage for
serverless analytics,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’18. USA: USENIX Association, 2018,
pp. 427–444.

[9] E. Chan, M. Heimlich, A. Purkayastha, and R. van de
Geijn, “Collective communication: theory, practice, and
experience,” Concurrency and Computation: Practice
and Experience, vol. 19, no. 13, pp. 1749–1783, 2007.
[Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.1206

[10] M. Barnett, L. Shuler, R. van de Geijn, S. Gupta,
D. Payne, and J. Watts, “Interprocessor collective com-
munication library (intercom),” in Proceedings of IEEE
Scalable High Performance Computing Conference,
1994, pp. 357–364.

[11] R. Rabenseifner, “Automatic mpi counter profiling of all
users: First results on a cray t3e 900-512,” in Proceedings
of the message passing interface developer’s and user’s
conference, vol. 1999, 1999, pp. 77–85.

[12] M. McCool, J. Reinders, and A. Robison, Structured Par-
allel Programming: Patterns for Efficient Computation,
1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2012.

[13] S. Gorlatch, “Send-receive considered harmful: Myths
and realities of message passing,” ACM Trans. Program.
Lang. Syst., vol. 26, no. 1, p. 47–56, jan 2004. [Online].
Available: https://doi.org/10.1145/963778.963780

[14] P. Sanders, J. Speck, and J. L. Träff, “Two-tree
algorithms for full bandwidth broadcast, reduction and
scan,” Parallel Comput., vol. 35, no. 12, p. 581–594,
dec 2009. [Online]. Available: https://doi.org/10.1016/j.
parco.2009.09.001

[15] R. Thakur and W. D. Gropp, “Improving the performance
of collective operations in mpich,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
J. Dongarra, D. Laforenza, and S. Orlando, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003, pp. 257–
267.

[16] B. Tu, J. Fan, J. Zhan, and X. Zhao, “Performance
analysis and optimization of mpi collective operations
on multi-core clusters,” The Journal of Supercomputing,
vol. 60, no. 1, pp. 141–162, Apr 2012. [Online].
Available: https://doi.org/10.1007/s11227-009-0296-3

[17] S. Li, T. Hoefler, and M. Snir, “Numa-aware
shared-memory collective communication for mpi,”
in Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing,
ser. HPDC ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 85–96. [Online].
Available: https://doi.org/10.1145/2462902.2462903

[18] S. Jain, R. Kaleem, M. G. Balmana, A. Langer,
D. Durnov, A. Sannikov, and M. Garzaran, “Framework
for scalable intra-node collective operations using shared
memory,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18. IEEE Press, 2018.

[19] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh,
and T. Hoefler, “Sparcml: High-performance sparse
communication for machine learning,” in Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser.
SC ’19. New York, NY, USA: Association for
Computing Machinery, 2019. [Online]. Available: https:
//doi.org/10.1145/3295500.3356222

[20] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra, “Performance analysis of
mpi collective operations,” Cluster Computing, vol. 10,
no. 2, pp. 127–143, Jun 2007. [Online]. Available:
https://doi.org/10.1007/s10586-007-0012-0

[21] P. Husbands and J. Hoe, “Mpi-start: Delivering network
performance to numerical applications,” in SC ’98: Pro-
ceedings of the 1998 ACM/IEEE Conference on Super-
computing, 1998, pp. 17–17.

[22] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Car-
reira, N. J. Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Sto-
ica, and D. A. Patterson, “What serverless computing is
and should become: The next phase of cloud computing,”
Communications of the ACM, vol. 64, no. 5, pp. 76–84,
2021.

[23] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Carreira,
K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa,
I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A berkeley view on serverless computing,”
CoRR, vol. abs/1902.03383, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383

[24] V. Giménez-Alventosa, G. Moltó, and M. Caballer,
“A framework and a performance assessment for
serverless mapreduce on aws lambda,” Future Generation
Computer Systems, vol. 97, pp. 259–274, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0167739X18325172

[25] M. Wawrzoniak, I. Müller, R. Fraga Barcelos
Paulus Bruno, and G. Alonso, “Boxer: Data analytics on
network-enabled serverless platforms,” in 11th Annual
Conference on Innovative Data Systems Research
(CIDR’21), 2021.

[26] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards
efficient mapreduce using mpi,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
M. Ropo, J. Westerholm, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 240–
249.

[27] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-
Smith, V. Sreekanti, A. Tumanov, and C. Wu, “Serverless
computing: One step forward, two steps back,” arXiv
preprint arXiv:1812.03651, 2018.

[28] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas, “Windows azure storage:
A highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP
’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 143–157. [Online]. Available:
https://doi.org/10.1145/2043556.2043571

[29] “AWS S3,” https://aws.amazon.com/s3/, 2006, accessed:
2022-01-30.

[30] “Azure Blob Storage,” https://azure.microsoft.com/en-us/
services/storage/blobs/, 2008, accessed: 2022-01-30.

[31] “Google Cloud Storage,” https://cloud.google.com/
storage, 2010, accessed: 2022-01-30.

[32] “AWS Dynamo DB,” https://aws.amazon.com/nosql/
key-value/, 2012, accessed: 2022-01-30.

[33] “Azure Cosmos DB,” https://azure.microsoft.com/en-us/
services/cosmos-db/, 2017, accessed: 2022-01-30.

[34] “Amazon ElastiCache for Redis,” https://aws.amazon.
com/elasticache/redis/.

[35] “Amazon ElastiCache for Memcached,” https://aws.
amazon.com/elasticache/memcached/.

[36] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar,
J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T.
Chang, and Z. Shi, “The quic transport protocol:
Design and internet-scale deployment,” in Proceedings
of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 183–196. [Online]. Available:
https://doi.org/10.1145/3098822.3098842

[37] M. Holdrege and P. Srisuresh, “IP network address
translator (NAT) terminology and considerations,” RFC
2663, Aug. 1999.

[38] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer com-
munication across network address translators,” in Pro-
ceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’05. USA: USENIX
Association, Apr. 2005, p. 13.

[39] J. L. Eppinger, “TCP Connections for P2P Apps: A Soft-
ware Approach to Solving the NAT Problem,” Carnegie
Mellon University, Technical Report, vol. ISRI-05-104,
Jan. 2005.

[40] J. C. Mogul and G. Minshall, “Rethinking the tcp
nagle algorithm,” SIGCOMM Comput. Commun. Rev.,
vol. 31, no. 1, p. 6–20, jan 2001. [Online]. Available:
https://doi.org/10.1145/382176.382177

[41] T. Hoefler and D. Moor, “Energy, memory, and runtime
tradeoffs for implementing collective communication
operations,” Supercomputing Frontiers and Innovations,
vol. 1, no. 2, p. 58–75, Sep. 2014. [Online]. Available:
https://superfri.susu.ru/index.php/superfri/article/view/12

[42] P. Patarasuk and X. Yuan, “Bandwidth optimal
all-reduce algorithms for clusters of workstations,”
Journal of Parallel and Distributed Computing,
vol. 69, no. 2, pp. 117–124, 2009. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0743731508001767

[43] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat,
and R. A. F. Bhoedjang, “Magpie: Mpi’s collective
communication operations for clustered wide area
systems,” in Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’99. New York, NY,
USA: Association for Computing Machinery, 1999,
p. 131–140. [Online]. Available: https://doi.org/10.1145/
301104.301116

[44] M. Alfatafta, Z. AlSader, and S. Al-Kiswany, “Cool: A
cloud-optimized structure for mpi collective operations,”
in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), 2018, pp. 746–753.

[45] P. Sanders, J. Speck, and J. L. Träff, “Full bandwidth
broadcast, reduction and scan with only two trees,” in
Proceedings of the 14th European Conference on Recent
Advances in Parallel Virtual Machine and Message Pass-
ing Interface, ser. PVM/MPI’07. Berlin, Heidelberg:
Springer-Verlag, 2007, p. 17–26.

[46] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao,
T. Patinyasakdikul, D. Zhong, and J. Dongarra, “Han: a
hierarchical autotuned collective communication frame-
work,” in 2020 IEEE International Conference on Cluster
Computing (CLUSTER), 2020, pp. 23–34.

[47] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg,
T. Angskun, and J. J. Dongarra, “Mpi collective
algorithm selection and quadtree encoding,” Parallel
Computing, vol. 33, no. 9, pp. 613–623, 2007,
selected Papers from EuroPVM/MPI 2006. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0167819107000804

[48] S. Vadhiyar, G. Fagg, and J. Dongarra, “Automatically

tuned collective communications,” in SC ’00: Proceed-
ings of the 2000 ACM/IEEE Conference on Supercom-
puting, 2000, pp. 3–3.

[49] P. Sack and W. Gropp, “Faster topology-aware collective
algorithms through non-minimal communication,” in
Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
ser. PPoPP ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 45–54. [Online].
Available: https://doi.org/10.1145/2145816.2145823

[50] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk,
and J. Bresnahan, “Exploiting hierarchy in parallel com-
puter networks to optimize collective operation perfor-
mance,” in Proceedings 14th International Parallel and
Distributed Processing Symposium. IPDPS 2000, 2000,
pp. 377–384.

[51] M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu,
and D. K. D. Panda, “Scalable reduction collectives
with data partitioning-based multi-leader design,” in
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, ser. SC ’17. New York, NY, USA: Association
for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3126908.3126954

[52] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K.
Panda, “Efficient large message broadcast using nccl
and cuda-aware mpi for deep learning,” in Proceedings
of the 23rd European MPI Users’ Group Meeting, ser.
EuroMPI 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 15–22. [Online].
Available: https://doi.org/10.1145/2966884.2966912

[53] M. Bayatpour, J. Maqbool Hashmi, S. Chakraborty,
H. Subramoni, P. Kousha, and D. K. Panda, “Salar: Scal-
able and adaptive designs for large message reduction
collectives,” in 2018 IEEE International Conference on
Cluster Computing (CLUSTER), 2018, pp. 12–23.

[54] M. Copik, K. Taranov, A. Calotoiu, and T. Hoe-
fler, “rfaas: Rdma-enabled faas platform for server-
less high-performance computing,” arXiv preprint
arXiv:2106.13859, 2021.

[55] K. Satzke, I. E. Akkus, R. Chen, I. Rimac, M. Stein,
A. Beck, P. Aditya, M. Vanga, and V. Hilt, “Efficient
gpu sharing for serverless workflows,” in Proceedings
of the 1st Workshop on High Performance Serverless
Computing, 2020, pp. 17–24.

[56] J. Kim, T. J. Jun, D. Kang, D. Kim, and D. Kim, “Gpu
enabled serverless computing framework,” in 2018 26th
Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing (PDP). IEEE,
2018, pp. 533–540.

[57] S. H. Mirsadeghi and A. Afsahi, “Topology-aware rank
reordering for mpi collectives,” in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2016, pp. 1759–1768.

[58] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer,
E. W. Draeger, B. Hamann, K. E. Isaacs, A. G. Landge,

J. A. Levine, V. Pascucci, M. Schulz, and C. H.
Still, “Mapping applications with collectives over sub-
communicators on torus networks,” in SC ’12: Proceed-
ings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis,
2012, pp. 1–11.

[59] S. Pickartz, C. Clauss, S. Lankes, and A. Monti,
“Enabling hierarchy-aware mpi collectives in
dynamically changing topologies,” in Proceedings of
the 24th European MPI Users’ Group Meeting, ser.
EuroMPI ’17. New York, NY, USA: Association
for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3127024.3127031

[60] M. P. I. Forum, “MPI: A Message-Passing Interface
Standard Version 3.0,” 09 2012.

[61] M. Copik, T. Grosser, T. Hoefler, P. Bientinesi, and
B. Berkels, “Work-stealing prefix scan: Addressing load
imbalance in large-scale image registration,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 33,
no. 3, pp. 523–535, 2022.

[62] S. Zhuang, Z. Li, D. Zhuo, S. Wang, E. Liang,
R. Nishihara, P. Moritz, and I. Stoica, “Hoplite: Efficient
and fault-tolerant collective communication for task-
based distributed systems,” in Proceedings of the 2021
ACM SIGCOMM 2021 Conference, ser. SIGCOMM
’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 641–656. [Online]. Available:
https://doi.org/10.1145/3452296.3472897

[63] G. Blelloch, “Scans as primitive parallel operations,”
IEEE Transactions on Computers, vol. 38, no. 11, pp.
1526–1538, 1989.

[64] P. Sanders and J. L. Träff, “Parallel Prefix (Scan) Algo-
rithms for MPI,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, B. Mohr, J. L. Träff, J. Worringen, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, vol. 4192, pp. 49–57.

[65] “Provision Infrastructure As Code – AWS CloudForma-
tion – Amazon Web Services,” https://aws.amazon.com/
cloudformation/.

[66] T. Hoefler, C. Siebert, and A. Lumsdaine, “Group op-
eration assembly language - a flexible way to express
collective communication,” in 2009 International Con-
ference on Parallel Processing, 2009, pp. 574–581.

[67] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi,
J. Pfefferle, and A. Trivedi, “Understanding ephemeral
storage for serverless analytics,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp.
789–794. [Online]. Available: https://www.usenix.org/
conference/atc18/presentation/klimovic-serverless

[68] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht,
D. Skourtis, V. Tarasov, F. Yan, and Y. Cheng,

“InfiniCache: Exploiting ephemeral serverless functions
to build a Cost-Effective memory cache,” in 18th
USENIX Conference on File and Storage Technologies
(FAST 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 267–281. [Online]. Available: https://
www.usenix.org/conference/fast20/presentation/wang-ao

[69] T. Hoefler, T. Schneider, and A. Lumsdaine,
“Accurately measuring overhead, communication time
and progression of blocking and nonblocking collective
operations at massive scale,” International Journal of
Parallel, Emergent and Distributed Systems, vol. 25,
no. 4, pp. 241–258, 2010. [Online]. Available:
https://doi.org/10.1080/17445760902894688

[70] ——, “Accurately measuring collective operations at
massive scale,” in 2008 IEEE International Symposium
on Parallel and Distributed Processing, 2008, pp. 1–8.

[71] J. A. Rico-Gallego, J. C. Dı́az-Martı́n, R. R. Manumachu,
and A. L. Lastovetsky, “A survey of communication
performance models for high-performance computing,”
ACM Comput. Surv., vol. 51, no. 6, jan 2019. [Online].
Available: https://doi.org/10.1145/3284358

[72] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski,
and T. Hoefler, “Sebs: A serverless benchmark suite
for function-as-a-service computing,” in Proceedings
of the 22nd International Middleware Conference,
ser. Middleware ’21. Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.
1145/3464298.3476133

[73] P. Baldi, P. Sadowski, and D. Whiteson, “Searching
for exotic particles in high-energy physics with deep
learning,” Nature Communications, vol. 5, no. 1, p. 4308,
Jul. 2014.

[74] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,
C. Kozyrakis, M. Zaharia, and K. Winstein, “From
laptop to lambda: Outsourcing everyday jobs to
thousands of transient functional containers,” in 2019
USENIX Annual Technical Conference (USENIX ATC
19). Renton, WA: USENIX Association, Jul. 2019,
pp. 475–488. [Online]. Available: https://www.usenix.
org/conference/atc19/presentation/fouladi

[75] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast
and slow: Scalable analytics on serverless infrastructure,”
in 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), 2019, pp. 193–206.

[76] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht,
“Occupy the cloud: Distributed computing for the 99%,”
CoRR, vol. abs/1702.04024, 2017. [Online]. Available:
http://arxiv.org/abs/1702.04024

[77] “ServerlessNetworking,” http://networkingclients.
serverlesstech.net/, 2019, accessed: 2022-03-22.

[78] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian,
S. Mitra, Y. Peng, H. Wang, A. Klimovic, H. Yang
et al., “{SONIC}: Application-aware data passing for
chained serverless applications,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021, pp. 285–
301.

[79] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke,
A. Beck, P. Aditya, and V. Hilt, “Sand: Towards high-
performance serverless computing,” in Proceedings of the
2018 USENIX Conference on Usenix Annual Technical
Conference, ser. USENIX ATC ’18. USA: USENIX
Association, 2018, pp. 923–935.

[80] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-
Smith, J. E. Gonzalez, J. M. Hellerstein, and
A. Tumanov, “Cloudburst: Stateful functions-as-a-
service,” Proc. VLDB Endow., vol. 13, no. 12,
p. 2438–2452, Jul. 2020. [Online]. Available:
https://doi.org/10.14778/3407790.3407836

[81] A. Faraj, P. Patarasuk, and X. Yuan, “A study of process
arrival patterns for mpi collective operations,” Interna-
tional Journal of Parallel Programming, vol. 36, no. 6,
pp. 543–570, 2008.

[82] X. Luo, W. Wu, G. Bosilca, T. Patinyasakdikul, L. Wang,
and J. Dongarra, “Adapt: An event-based adaptive
collective communication framework,” in Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’18.
New York, NY, USA: Association for Computing
Machinery, 2018, p. 118–130. [Online]. Available:
https://doi.org/10.1145/3208040.3208054

[83] P. Patarasuk and X. Yuan, “Efficient mpi bcast across
different process arrival patterns,” in 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Process-
ing, 2008, pp. 1–11.

[84] D. G. Feitelson and L. Rudolph, “Toward convergence
in job schedulers for parallel supercomputers,” in Job
Scheduling Strategies for Parallel Processing, D. G.
Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 1–26.

