

Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Larissa Schmid, Marcin Copik, Alexandru Calotoiu, Dominik Werle, Andreas Reiter, Michael Selzer, Anne Koziolek, Torsten Hoefler

19.07.2022

Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Motivation: Cost of computing clusters

Brainware for green HPC

Christian Bischof · Dieter an Mey · Christian Iwainsky

Table 1Tocal cost of ownership

2

Cost category	Cost/Year	Percentage
Building (7.5 Mio/25 years)	300,000 €	5.42%
Investment compute servers	2,000,000 €	36.14%
Hardware maintenance	800,000€	14.46%
Power	1,563,660 €	28.26%
Linux	0€	0.00%
Batch system	100,000€	1.81%
ISV software	0€	0.00%
HPC software	50,000 €	0.90%
Staff (12 FTE)	720,000€	13.01%
Total sum	5,533,660 €	100.00%

19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Motivation: Cost of computing clusters

Brainware for green HPC

Christian Bischof · Dieter an Mey · Christian Iwainsky

Table 1Tocal cost of ownership

3

Cost category	Cost/Year	Percentage	
Building (7.5 Mio/25 years)	300,000 €	5.42%	
Investment compute servers	2,000,000 €	36.14%	
Hardware maintenance	800,000€	14.46%	
Power	1,563,660 €	28.26%	
Linux	0€	0.00%	
Batch system	100,000€	1.81%	
ISV software	0€	0.00%	
HPC software	50,000 €	0.90%	
Staff (12 FTE)	720,000€	13.01%	
Total sum	5,533,660 €	100.00%	

ExtraPeak: Advanced Automatic Performance Modeling for HPC Applications

Alexandru Calotoiu, Marcin Copik, Torsten Hoefler, Marcus Ritter, Sergei Shudler, and Felix Wolf

CPU hours that application optimization can achieve is enormous [5]. As the number of available cores increases at tremendous speed, reaping this potential is becoming an economic and scientific obligation. For example, an exascale system with a power consumption of 20 MW (very optimistic estimate) and 5000 h of operation per year would—assuming an energy price of $0.1 \in$ per kWh—produce an energy bill of $10 \text{ M} \in$ per year.

Ever-growing application complexity across all domains, including but not limited to theoretical physics, fluid dynamics, or climate research, requires a continuous

Motivation: Cost of computing clusters

Rank System				Cores	(PFlop/s)	(PFlop/s)	(kW)
1 <u>Frontier - HPE Cra</u> 2GHz, AMD Instinc <u>DOE/SC/Oak Ridge</u> United States	ay EX235a, AMD Optim ct M1250X, Slingshot-1 e National Laboratory	i <u>zed 3rd Gener</u> I <u>, </u> HPE	ation EPYC 64C	8,730,112	1,102.00	1,685.65	21,100
Building (7.5 Mio/25 years) Investment compute servers Hardware maintenance Power Linux Batch system ISV software HPC software Staff (12 FTE)	$300,000 \in$ $2,000,000 \in$ $800,000 \in$ $1,563,660 \in$ $0 \in$ $100,000 \in$ $0 \in$ $50,000 \in$ $720,000 \in$	5.42% 36.14% 14.46% 28.26% 0.00% 1.81% 0.00% 0.90% 13.01%	CPU hours that appl of available cores in an economic and sci consumption of 20 M would—assuming a 10 M€ per year. Ever-growing ap ited to theoretical ph	ication optimiz creases at trem entific obligatio MW (very optim in energy price plication comp hysics, fluid dyn	ation can achieve endous speed, re- on. For example, a nistic estimate) a e of 0.1€ per kV lexity across all o aamics, or climate	e is enormous [5]. aping this potentia an exascale system and 5000 h of open Vh—produce an domains, includin e research, require	As the number al is becoming n with a power ration per year energy bill of ag but not lim- es a continuous

19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

4

Motivation: Configuration options

Performance-Influence Models for Highly Configurable Systems

Norbert Siegmund[†], Alexander Grebhahn[†], Sven Apel[†], Christian Kästner[‡] [†]University of Passau, Germany [‡]Carnegie Mellon University, USA Almost every complex software system today is configurable. While configurability has many benefits, it challenges performance prediction, optimization, and debugging. Often, the influences of individual configuration options on performance are unknown. Worse, configuration options may interact, giving rise to a configuration space of possibly exponential size. Addressing this challenge, we propose an approach that derives a *performance-influence model* for a

Motivation: Configuration options

Performance-Influence Models for Highly Configurable Systems

Norbert Siegmund[†], Alexander Grebhahn[†], Sven Apel[†], Christian Kästner[‡] [†]University of Passau, Germany [‡]Carnegie Mellon University, USA Almost every complex software system today is configurable. While configurability has many benefits, it challenges performance prediction, optimization, and debugging. Often, the influences of individual configuration options on performance are unknown. Worse, configuration options may interact, giving rise to a configuration space of possibly exponential size. Addressing this challenge, we propose an approach that derives a *performance-influence model* for a

A Regression-Based Approach to Scalability Prediction*

Bradley J. Barnes Dept. of Computer Science The University of Georgia barnes@cs.uga.edu

Jaxk Reeves Department of Statistics The University of Georgia jaxk@stat.uga.edu Barry Rountree Dept. of Computer Science The University of Georgia rountree@cs.uga.edu

Bronis de Supinski Lawrence Livermore National Laboratory bronis@llnl.gov David K. Lowenthal Dept. of Computer Science The University of Georgia dkl@cs.uga.edu

> Martin Schulz Lawrence Livermore National Laboratory schulzm@llnl.gov

Many applied scientific domains are increasingly relying on largescale parallel computation. Consequently, many large clusters now have thousands of processors. However, the ideal number of processors to use for these scientific applications varies with both the input variables and the machine under consideration, and predicting this processor count is rarely straightforward. Accurate prediction mechanisms would provide many benefits, including improving cluster efficiency and identifying system configuration or

Various options that influence performanceHow to choose the best configuration?

7

8

Performance models help in understanding application behavior

19.07.2022Larissa Schmid – Performance-Detective: Automatic Deduction of
Cheap and Accurate Performance Models

9

Automatic performance modeling generates models from empirical measurements

19.07.2022Larissa Schmid – Performance-Detective: Automatic Deduction of
Cheap and Accurate Performance Models

- Automatic performance modeling generates models from empirical measurements
- But which strategy to use to select configurations to measure?

Calculate:

$$step1(...): 3 + 5 * * log2()$$

 $step2(...): 4 * + 2 * 2^{2}$
 \vdots

10

11

14

16

17

19.07.2022

19

20

21

19.07.2022Larissa Schmid – Performance-Detective: Automatic Deduction of
Cheap and Accurate Performance Models

22

19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

23

19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

24

System analysis [Perf-Taint]

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance-	Parametric	Deterministically reduced experiment	Instrument relevant functions	Model relevant functions Extra-P Weber
Detective: White-Box Performance	func1: param1 func2: param2		func1: param1 func2: param2	et al. func1: param1
Modeling	func3: param1 func4: constant	param1→	func3: param1 func4: constant	param1 0 0 func4: constant Model: -

System: Parameters x1, x2, and iters

System analysis [Perf-Taint]

Experiment design

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. [func1: param1] 1.3* param1 [func4: constant] Model: -

Full Experiment Design Space

Experiment design

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment t t t t t param1	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 1.3* param1 func4: constant Model: -

34 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Experiment design

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment Current + + param1-	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 1.3* param1 func4: constant Model: -

Profiling

36

System: Parameters x1, x2, and iters
int main(int argc, char ** argv) {
 int x1 = atoi(argv[1]);

```
int x2 = atoi(argv[2]);
int iters = atoi(argv[3]);
register_variables(x1, x2, iters)
y = x1 * 5;
z = x2 / 7;
foo(y, z, iters);
}
```
Performance-	System analysis Parametric the profile	Experiment design Deterministically reduced	Instrumented Experiments Instrument relevant functions	Modeling Model relevant functions	
Detective: White-Box Performance Modeling	func1: param1 func2: param2 func3: param1 func4: constant	experiment	func1: param1 func2: param2 func3: param1 func4: constant	et al. func1: param1 1.3 * ? param1 0 0 func4: constant Model: -	Kar

Institute of Technolog

Approach	Sampling	Learning

37 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment to the second	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 1.3 * ?? param1 ?? func4: constant Model: -

Performance-Detective is orthogonal to the instrumentation and learning methodology

Approach	Sampling	Learning
Extra-P		
Performance-Influence Models		

38 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

	System analysis	Experiment design	Instrumented Experiments	Modeling	
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P et al. func1: param1 1.3 * 7 param1 func4: constant Model: -	Karlsruhe

Performance-Detective is orthogonal to the instrumentation and learning methodology

Approach	Sampling	Learning
Extra-P	Full-factorial	
	Sparse	
Performance-Influence Models		

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment t t t t t param1	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 jaram1 func4: constant Model: -

Performance-Detective is orthogonal to the instrumentation and learning methodology

Approach	Sampling	Learning
Extra-P	Full-factorial	Regression to
	Sparse	Normal Form
Performance-Influence Models		

40 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment t t t t t param1	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 jaram1 func4: constant Model: -

Performance-Detective is orthogonal to the instrumentation and learning methodology

Approach	Sampling	Learning
Extra-P	Full-factorial	Regression to
	Sparse	Normal Form
Performance-Influence Models	Plackett-Burman	

	System analysis	Experiment design	Instrumented Experiments	Modeling
Performance- Detective: White-Box Performance Modeling	Parametric profile func1: param1 func2: param2 func3: param1 func4: constant	Deterministically reduced experiment Current + + param1	Instrument relevant functions func1: param1 func2: param2 func3: param1 func4: constant	Model relevant functions Extra-P Weber et al. func1: param1 1.3 * param1 func4: constant Model: -

Performance-Detective is orthogonal to the instrumentation and learning methodology

Approach	Sampling	Learning	
Extra-P	Full-factorial	Regression to	
	Sparse	Normal Form	
Performance-Influence Models	Plackett-Burman	Decision Trees	

Case Studies

Kripke: 3D Sn particle-transport application
Pace3D: Multi-physics solver

Case Studies

Kripke: 3D Sn particle-transport application
Pace3D: Multi-physics solver

Pace3D: System analysis

Pressure calculation with projected conjugate gradient method

Parameters:

- Number of processes procs
- Volume of material vol
- Spacing on the coarse grid cubes
- Iterations of the solver iters

				vol: 20
	Constant: 12			vol and procs: 18
сι	ıbes: 28	cubes and procs: 4		procs: 26

Parameters:

vol - total volume *cubes -* coarse grid size *procs -* number of processes *iters -* number of iterations

Full Experiment Design Space: 3125 experiment executions Full-factorial experiment design:

- ■5⁴ different configurations
- 5 repetitions per configuration

25 instead of 3125 experiment executions – 4% of samples needed.

49 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%		

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%		
Extra-P	1	8.1%	8.7%		

51 19.07.2022 Larissa Schmid – Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%		

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%	4.3%	15.2%

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%	4.3%	15.2%
PIM	5	21.6%	60.2%		
PIM	1				

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%	4.3%	15.2%
PIM	5	21.6%	60.2%		
PIM	1	22.6%	62.8%		

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%	4.3%	15.2%
PIM	5	21.6%	60.2%	21.8%	25.7%
PIM	1	22.6%	62.8%		

Modeling	#repetitions	Mean err	or Pace3D	Mean error Kripke	
approach		interpolate	extrapolate	interpolate	extrapolate
Extra-P	5	8.3%	9.3%	4.6%	18.3%
Extra-P	1	8.1%	8.7%	4.3%	15.2%
PIM	5	21.6%	60.2%	21.8%	25.7%
PIM	1	22.6%	62.8%	22.4%	25.3%

Experiment Design	Perf- Taint	Cost in core hours	Error		
			interpolated	extrapolated	
Performance-Detective	1				
Full-factorial	1				
Full-factorial	-				

Experiment Design	Perf- Taint	Cost in core hours	Error		
			interpolated	extrapolated	
Performance-Detective	1	10.9			
Full-factorial	1	367.6			
Full-factorial	-	367.6			

Experiment Design	Perf- Taint	Cost in	Error		
		core hours	interpolated	extrapolated	
Performance-Detective	1	10.9	8.1%	8.7%	
Full-factorial	1	367.6			
Full-factorial	-	367.6			

Experiment Design	Perf- Cost in Taint core hours	Error		
		core hours	interpolated	extrapolated
		40.0	0.40/	0 70/
Performance-Detective	~	10.9	8.1%	8.7%
Full-factorial	1	367.6	9.5%	10.7%
Full-factorial	-	367.6		

Experiment Design	Perf- Cost in Taint core hours	Error		
		core hours	interpolated	extrapolated
Performance-Detective	1	10.9	8.1%	8.7%
Full-factorial	1	367.6	9.5%	10.7%
Full-factorial	-	367.6	6.2%	6.3%

Experiment Design Per Tair	Perf- Cost in	Error		
	Taint	core hours	interpolated	extrapolated
Performance-Detective	1			
Sparse	1			
Sparse	-			

Experiment Design Pe Ta	Perf-	Cost in core hours interpola	En	Error	
	Taint		interpolated	extrapolated	
Performance-Detective	1	10.9			
Sparse	1	5.5			
Sparse	-	5.5			

Experiment Design	Perf-	rf- Cost in nt core hours	Error	
	Taint		interpolated	extrapolated
Performance-Detective	1	10.9	8.1%	8.7%
Sparse	1	5.5		
Sparse	-	5.5		

Experiment Design	Perf- Cost in Taint core hours	Error		
		core hours	interpolated	extrapolated
Performance-Detective	1	10.9	8.1%	8.7%
		2010		
Sparse	~	5.5	8.9%	17.7%
Sparse	-	5.5		

Experiment Design	Perf-	Cost in	Error	
	Taint	core hours	interpolated	extrapolated
Performance-Detective	1	10.9	8.1%	8.7%
Sparse	1	5.5	8.9%	17.7%
Sparse	-	5.5	15.0%	31.8%

Experiment Design	Perf- Taint	Cost in	Error		
		core hours	interpolated	extrapolated	
Performance-Detective	1				
Plackett-Burman	1				
Plackett-Burman	-				

Experiment Design	Perf-	Perf- Cost in Taint core hours	Error	
	Taint		interpolated	extrapolated
Performance-Detective	1	10.9		
Plackett-Burman	1	164.4		
Plackett-Burman	-	164.4		

Experiment Design	Perf- Cost ir Taint core hou	Cost in	Error	
		core hours	interpolated	extrapolated
Performance-Detective	1	10.9	22.6%	47.7%
Plackett-Burman	1	164.4		
Plackett-Burman	-	164.4		

Experiment Design	Perf- Cost in Taint core hours	Error		
		core hours	interpolated	extrapolated
Performance-Detective	1	10.9	22.6%	47.7%
Plackett-Burman	1	164.4	20.1%	45.4%
Plackett-Burman	-	164.4		

Experiment Design	Perf-	Perf- Cost in Taint core hours	Error		
	Taint		interpolated	extrapolated	
Performance-Detective	1	10.9	22.6%	47.7%	
Plackett-Burman	1	164.4	20.1%	45.4%	
Plackett-Burman	-	164.4	27.0%	44.2%	
Conclusion

73

Problem: Performance modeling workflows use heuristic sampling
Contribution: Deduce minimal necessary experiment design
Evaluation on two applications shows maintained model accuracy while significantly reducing needed core hours

Modeling for Continuous Software Engineering KASTEL – Institute of Information Security and Dependability