

PATRICK IFF, MACIEJ BESTA, MATHEUS CAVALCANTE, TIM FISCHER, LUCA BENINI, TORSTEN HOEFLER

HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement

2.5D Integration

AN ALL AND A STREET AND

Legend: Solder ball (500-1000µm) C4 bump (150-200µm) Micro-bump (30-60µm)

2.5D Integration

Key Insights

PROBLEM STATEMENT

Optimize the Shape and Arrangement of Chiplets

and a second and the second and the

Goals	Constraints	
Minimize network diameter (proxy for latency)	All chiplets must have the same shape	
Maximize bisection bandwidth (proxy for throughput)	All chiplets must be rectangular	

OPTIMIZING CHIPLET ARRANGEMENT

HexaMesh

Pro: Most straight-forward arrangement

Pro: Six neighbors per chiplet (asymptotically optimal)

Pro: Like honeycomb but with rectangular chiplets

Con: Some chiplets only have two neighbors

Pro: Each chiplet has at least three neighbors

Pro: Reduced network diameter compared to brickwall

Con: At most four neighbors per chiplet

Con: Non-rectangular chiplets hard to build

APPLICABILITY

Mall Charles and

Evaluation of Performance Proxies

Network Diameter

- Grid (semi-regular)
- □ Grid (irregular)

Brickwall (regular)
Brickwall (semi-regular)
Brickwall (irregular)

Bisection Bandwidth

HexaMesh (regular)HexaMesh (irregular)

Shortcomings of the Performance Proxies

Grid

Brickwall

Bum	ps Link	Bumps Link	
Nortl	n-West	North-East	
Bumps Link	Bumps		Bumps Link
West	Power		East
Bumps Link South-West		Bumps Link South-East	

HexaMesh

Bumps Link		Bumps Link	
North-West		North-East	
Bumps Link	Bumps		Bumps Link
West	Power		East
Bumps Link		Bumps Link	
South-West		South-East	

Compute per-link bandwidth based on number of available bumps

Evaluation based on Cycle-Accurate Simulations

Average Latency Saturation Throughput 80 Saturation Throughput [Tb/s] 200 Latency [cycles] 60 150 40 30 100 20 Zero-Load 50 10 0 8 25 50 75 100 2 25 50 75 100 2 Number of Chiplets Number of Chiplets Grid (regular) Grid (irregular) Brickwall (regular) Orickwall (irregular)

Grid (semi-regular) — Grid (AVG)

Brickwall (semi-regular) — Brickwall (AVG)

 HexaMesh (regular) ——HexaMesh (AVG) O HexaMesh (irregular)

Evaluation based on Cycle-Accurate Simulations

Average Latency

Saturation Throughput

■ Grid (regular)
■ Grid (irregular)
◆ Brickwall (regular)
◆ Brickwall (regular)
◆ Brickwall (semi-regular)
● HexaMesh (regular)
→ HexaMesh (AVG)
○ HexaMesh (irregular)

Conclusion

We outperform a grid arrangement in theory:

- **Diameter** reduced by **42%**
- **Bisection bandwidth** improved by **130%**

We outperform a grid arrangement in practice

- Latency reduced by 19% (on average)
- **Throughput** improved by **34%** (on average)

We do not increase the design or manufacturing complexity as we use uniform and rectangular chiplets.

More of SPCL's research:

... or spcl.ethz.ch

