
SpQR: A Sparse-Quantized Representation for
Near-Lossless LLM Weight Compression

Tim Dettmers∗†
University of Washington

Ruslan Svirschevski∗
HSE University & Yandex

Vage Egiazarian∗

HSE University & Yandex

Denis Kuznedelev∗
Yandex & Skoltech

Elias Frantar
IST Austria

Saleh Ashkboos
ETH Zurich

Alexander Borzunov
HSE University & Yandex

Torsten Hoefler
ETH Zurich

Dan Alistarh
IST Austria & NeuralMagic

Abstract

Recent advances in large language model (LLM) pretraining have led to high-
quality LLMs with impressive abilities. By compressing such LLMs via quanti-
zation to 3-4 bits per parameter, they can fit into memory-limited devices such
as laptops and mobile phones, enabling personalized use. However, quantiza-
tion down to 3-4 bits per parameter usually leads to moderate-to-high accuracy
losses, especially for smaller models in the 1-10B parameter range, which are
well-suited for edge deployments. To address this accuracy issue, we introduce the
Sparse-Quantized Representation (SpQR), a new compressed format and quantiza-
tion technique which enables for the first time near-lossless compression of LLMs
across model scales, while reaching similar compression levels to previous methods.
SpQR works by identifying and isolating outlier weights, which cause particularly-
large quantization errors, and storing them in higher precision, while compressing
all other weights to 3-4 bits, and achieves relative accuracy losses of less than
1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it
possible to run 33B parameter LLM on a single 24 GB consumer GPU without any
performance degradation at 15% speedup thus making powerful LLMs available to
consumer without any downsides. SpQR comes with efficient algorithms for both
encoding weights into its format, as well as decoding them efficiently at runtime3.
Specifically, we provide an efficient GPU inference algorithm for SpQR which
yields faster inference than 16-bit baselines at similar accuracy, while enabling
memory compression gains of more than 4x.

1 Introduction

Pretrained large language models (LLMs) improved rapidly from task-specific performance
[WSM+18, DCLT19, RWC+19], to performing well on general tasks if prompted with instruc-
tions [BMR+20, WBZ+21, Ope23]. While the improved performance can be attributed to scaling in
training data and parameters [KMH+20, CND+22] recent trends focused on smaller models trained
on more data, that are easier to use at inference time [HBM+22, BSA+23, TLI+23]. For example,
the 7B parameter LLaMA model trained on 1T tokens achieved an average performance only slightly
lower than GPT-3 [BMR+20] despite being 25x smaller. Current techniques for LLM compres-
sion can shrink these models further by a factor of about 4x, while preserving their performance

∗Equal contribution
†Corresponding author: dettmers@cs.washington.edu
3github.com/Vahe1994/SpQR; to be integrated into github.com/TimDettmers/bitsandbytes

ar
X

iv
:2

30
6.

03
07

8v
1

 [
cs

.C
L

]
 5

 J
un

 2
02

3

https://github.com/Vahe1994/SpQR
https://github.com/TimDettmers/bitsandbytes

4 8 16 32 64 128
Model size (GiB)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t2

7B

13B

30B

65B

RTN
GPTQ
SpQR
fp16

4 8 16 32 64 128
Model size (GiB)

60

62

64

66

68

70

Av
er

ag
e

ze
ro

-s
ho

t a
cc

ur
ac

y

7B

13B

30B

65B

RTN
GPTQ
SpQR
fp16

Figure 1: Compressed LLM performance for LLaMA models. (left) LM loss on WikiText2 vs model
size. (right) Average performance on zero-shot tasks vs model size.

[DLBZ22, XLS+22, FAHA22, DZ22]. This yields performance levels comparable to the largest
GPT-3 model, with major reductions in terms of memory requirements. With such improvements,
well-performing models could be efficiently served on end-user devices, such as laptops.

The main challenge is to compress models enough to fit into such devices while also preserving
generative quality. Specifically, studies show that, although accurate, existing techniques for 3 to 4-bit
quantization still lead to significant accuracy degradation [DZ22, FAHA22]. Since LLM generation
is sequential, depending on previously-generated tokens, small relative errors can accumulate and
lead to severely corrupted outputs. To ensure reliable quality, it is critical to design low-bitwidth
quantization that does not degrade predictive performance compared to the 16-bit model.

In this work, we introduce Sparse-Quantized Representations (SpQR), a hybrid sparse-quantized
format which can compress accurate pretrained LLMs to 3-4 bits per parameter while staying near-
lossless: specifically, SpQR is the first weight quantization method which is able to reach such
compression ratios while inducing end-to-end accuracy error as measured in perplexity of less than
1% relative to the dense baseline. SpQR works by combining two innovations. First, we isolate outlier
weights, whose quantization we show to induce disproportionately high errors: these weights are kept
in high precision, while the other weights are stored in a much lower, e.g. 3-bit, format. Second, we
implement a variant of grouped quantization with very small group size, e.g. 16 contiguous elements,
but we show that one can quantize the quantization scales themselves to a 3-bit representation.

To convert a given pretrained LLM into SpQR format, we adopt an extended version of the post-
training quantization (PTQ) approach recently introduced by GPTQ [FAHA22]. Specifically, the
method passes calibration data through the uncompressed model; to compress each layer, it applies
a layer-wise solver with respect to the L2 error between the outputs of the uncompressed model,
and those of the quantized weights. Our approach splits this process into two steps: an “outlier
detection” step, in which we isolate weights whose direct quantization has outsize impact on layer
output behavior, and an actual compression step, in which most (≥ 99%) of weights are compressed
to low-bitwidth, the outliers are extracted, and the whole representation is rendered more efficient by
further compressing the quantization metadata.

Our method is motivated by a new analysis showing that LLM weight quantization errors exhibit both
vertical and horizontal group correlations, corresponding to systematic large errors corresponding
to input feature dimensions and output hidden dimensions. While outlier input features have been
observed before [DLBZ22, XLS+22], our work is the first to demonstrate that similar outliers occur
in the weights, for particular output hidden dimensions. Unlike input feature outliers, the output
hidden dimension outliers occur only in small segments for a particular output hidden dimension.

Our quantization algorithm isolates such outliers and efficiently encodes a given model in SpQR
format. To exploit the resulting structure, we develop a specialized sparse-matrix multiplication
algorithm based on the compressed sparse row (CSR) format. To use SpQR for token-by-token
generation, we combine this sparse algorithm together with a dense-quantized matrix multiplication
for 3-4 bit weights. With this, SpQR reduces the memory footprint of LLMs by a factor of about 3.4x
or more without degradation in accuracy, measured as language modeling loss or perplexity, while
also being 20-30% faster for LLM generation compared to 16-bit inference.

2

2 Related Work

We focus our discussion on related post-training quantization (PTQ) methods [NAVB+20], refer-
ring the reader to the recent survey of Gholami et al. [GKD+21] for full background on quantiza-
tion. PTQ methods are a popular approach for one-shot compression of models with various sizes,
based on a limited amount of calibration data, using accurate solvers, usually focused on layer-
or group-wise compression sub-problems. Most PTQ methods, such as AdaRound [NAVB+20],
BitSplit [WCHC20], AdaQuant [HNH+21], BRECQ [LGT+21], or OBQ [FSA22] were designed
for vision models or small-scale language models, with less than 100M parameters. All these recent
approaches tend to use accurate solvers, which would not scale to GPT-scale models in terms of
computational or memory cost, as they are 10-1000x larger in size.

Recently, there has been significant interest in obtaining accurate post-training methods that scale to
such massive models. Due to computational constraints, early work such as ZeroQuant [YAZ+22],
LLM.int8() [DLBZ22], and nuQmm [PPK+22] used direct rounding of weights to the nearest
quantization level, while customizing the quantization granularity (i.e., group size) to trade off space
for increased accuracy. LLM.int8() [DLBZ22] suggested isolating “outlier features” which would
be quantized separately to higher bit-width. These approaches are able to induce relatively low
quantization error, e.g. 5.5% relative LM Loss increase for LLaMA-7B at 4-bit weight quantization,
provided that the quantization granularity is low enough. GPTQ [FAHA22] proposed a higher-
accuracy approach (e.g., 4% LM Loss increase in the above setting), which works via an approximate
large-scale solver for the problem of minimizing the layer-wise squared error.

Dettmers et al. [DZ22] provided an in-depth overview of the accuracy-compression trade-offs underly-
ing these methods, establishing that 4-bit quantization is an optimal point for round-to-nearest-based
methods, whereas higher compression can be achieved via data-aware methods such as GPTQ.
SparseGPT [FA23] presented an approach to jointly sparsify LLM weights to medium sparsities, to-
gether with quantization of the remaining weights to a fixed given bit-width. One common drawback
of existing methods is that the accuracy loss relative to the original model is still significant (see
Table 1). This is especially relevant to relatively small but easily deployable models, e.g. in the 7-13B
parameter range, where existing methods show drastic accuracy drops. We investigate this question
here, and provide a new compression format which can lead to near-lossless 3-4 bits compression in
this regime.

A related question is that of performing both activation and weight quantization. There is early
work [DLBZ22, XLS+22, YAZ+22], showing that both activations and weights could be quantized
to 8-bits with relatively low accuracy impact. These complementary investigations yield interesting
insights into the causes of compression error in the case of LLMs. Specifically, [DLBZ22, XLS+22]
observe the presence of “outlier features” with significantly higher values in the input/output of large
LLMs, which induce higher quantization error, and propose different mitigation strategies.

We analyze this phenomenon from the point of view of weight quantization. In particular, we
investigate the outlier structure, beyond input feature outliers in the weight matrix. While we find that
input feature outliers of the current layer are correlated to hidden unit outliers weight in the previous
layer there is not a strict correspondence. Such partially-structured outlier patterns necessitate a
fine-grained hybrid compression format that goes beyond algorithms that exploit the column structure
of outlier features found in previous work.

Hybrid sparse-quantized formats have been investigated generally for deep networks. Some efficient
CPU inference engines [Neu22, GFS+19] support a different block sparse-and-quantized format, in
which each block of 4 consecutive weights is either completely sparse or quantized to 8-bit format,
whereas GPUs support a similar compound format in which every group of 4 weights contains 2
zero weights, and the non-zero weights could be quantized. The FBGEMM package [KHB+21]
proposed a format in which certain “outlier” weights are quantized separately, to reduce their impact
on normalization. However, in this format, “outlier” weights are still quantized to exactly the same
bit-width (8-bit) as regular weights; moreover, no procedure is given for converting a model to this
format post-training. By contrast, 1) we provide an efficient and accurate post-training compression
algorithm which identifies outliers as weights inducing high output error, 2) we propose a format
compressing outliers to a higher bit-width relative to regular weights, and 3) our format stores outliers
in blocks, allowing for efficient implementation of GPU kernels, which we provide as well.

3

3 Quantization sensitivity of LLM weights

3.1 Parameter sensitivity under quantization
Not all parameters in a neural network are equally important. Intuitively, a weight could be seen
as sensitive to quantization if its rounding error is large, i.e. it is not close to a quantization point,
and/or the inputs it is usually multiplied with a large, amplifying even a small rounding error. These
simple notions of sensitivity however disregard the fact that LLMs operate on very large vectors with
significant correlations: a weight wa may have a large rounding error while being strongly correlated
to another weight wb, meaning that the error of rounding up wa can be well compensated by rounding
down wb. This idea is exploited by modern quantization algorithms [FAHA22, YAZ+22] and can
lead to major improvements over vanilla rounding, especially a low bitwidths. Properly capturing
this aspect of sensitivity requires a more robust definition.

For computational tractability, we assess sensitivity on a per-layer level using a small set of calibration
inputs X , collected by running them through the model up to the particular layer. We define the
sensitivity sij of some weight wij in the layer’s weight matrix W as the minimum squared difference
between the original predictions on X and those of any weight matrix W ′ where this weight is
quantized, i.e. w′

ij = quant(wij):

sij = minW ′ ||WX −W ′X||22 s.t. w′
ij = quant(wij) (1)

Crucially, all weights of W ′ except for w′
ij may take on arbitrary, not necessarily quantized, values in

order to compensate for the quantization error incurred by rounding wij , thus capturing the correlation
aspect discussed above. Further, as we allow continuous values, this problem admits a closed-form
solution. This can be determined by following the generalized Optimal Brain Surgeon framework
[FSA22], where (XX⊤)−1 is the inverse Hessian matrix corresponding to the optimization problem:

sij =
(wij − quant(wij))

2

2(XX⊤)−1
. (2)

This saliency measure can be approximated efficiently by quantization solvers, such as
GPTQ [FAHA22]. In more detail, GPTQ quantizes weight matrices column-by-column while
in each step adjusting the not-yet-quantized part to compensate for the quantization error in a similar
sense as defined above. Consequentially, instead of statically deciding all sensitivities in advance, they
can be computed dynamically as the algorithm processes each column, by using the inverse of the
Hessian subselection corresponding to all not yet quantized weights. This matrix is already efficiently
computed by GPTQ and thus does not impose any additional overheads. The main advantage of this
approach is that sij is always determined based on the most current value of wij and thus accounts
for adjustments due to previously quantized weights as well.

3.2 Exploring parameter sensitivity

Before we define out main method, SpQR, we provide a motivating analysis of parameter sensitivity
which uncovers that the location of sensitive weights in the weight matrix are not random but have
particular structures. To highlight these structural elements during the quantization process, we
calculate the the per-weight sensitivities and visualize them for the popular and highly-accurate
LLaMA-65B model [TLI+23]. As the quantization method, we use GPTQ quantization to 3-bit,
without weight grouping, following [FAHA22]. We use C4 [RSR+20] as the calibration dataset, and
we estimate the error on 128 sequences of 2048 tokens each. Figure 2 depicts the output projection of
the last self-attention layer of LLaMA-65B.

Using the sensitivity analysis, we observe several patterns in the weight matrix, often in a single row
or column. Since the large weight matrices in LLaMA-65B have too many rows/columuns to be
respresentable in a compact image (default: 8k × 32k pixels) we perform max pooling to visualize
the matrices, that is we take the maximum sensitivity in each square of 32× 32 rows and columns.
This max pooling only affects the leftmost image. Using this visualization, we observe that the
quantization error patterns vary both by layer type, for example attention vs multilayer perceptron
(MLP), and layer depth. In particular, we find that more sensitive outliers are present for deeper layers.
(Please see Appendix A for additional results.) We now proceed to categorize outlier structures,
taking this attention weight matrix as an exemplar. We make the following observations:

4

0
10

24
20

48
30

72
40

96
51

20
61

44
71

68
81

92

input dim. (cols)

0

1024

2048

3072

4096

5120

6144

7168

8192

ou
tp

ut
 d

im
. (

ro
w

s)

Sample: self_attn.o_proj, Layer 79

60
16

61
44

62
72

64
00

65
28

66
56

67
84

69
12

70
40

512

640

768

896

1024

Attention head pattern

56
32

56
96

57
60

58
24

58
88

59
52

60
16

60
80

61
44

2688

2752

2816

2880

2944

Row outlier pattern
0 32 64 96 12

8
16

0
19

2
22

4
25

6

384

416

448

480

512

Rotary embedding pattern

27
20

27
52

27
84

28
16

28
48

28
80

29
12

29
44

29
76

0

32

64

96

128

Column outlier pattern

Figure 2: Weight log-sensitivities from the last attention layer of LLaMA-65B. Dark-blue shades
indicate higher sensitivity. The image on the left is a high-level view, resized to 1:32 scale with
max-pooling. The two images in the middle are zoomed in from the main figure. The two images on
the right are taken from other weight matrices.

• Row outliers are shown in Figure 2 bottom-center as regions of high sensitivity within
one output unit. Some of these patterns span the entire row, while others are partial. In
attention layers, some of the partial row outliers correspond to some subset of attention
heads. Column outliers appear in Figure 2, bottom-right, showing high sensitivity in select
input dimensions (columns) across all rows. The latter are correlated to the “outlier feature”
phenomenon reported in Dettmers et al. [DLBZ22].

• Sensitive attention heads. (Figure 2, top-center) – regular stripes of width 128 highlight all
weights corresponding to one attention head. This could be related to some attention heads
having more important functions [VTM+19, Vig19, OEN+22]. The corresponding “stripes”
are horizontal for attention Q & K projections, vertical in output projection, and absent from
value projections and any MLP weights. Of note, there is significant variation in individual
weight sensitivity even within the sensitive heads.

• The Rotary embedding pattern, a repeating vertical pattern of sensitivity with a period of
64 units. We attribute this to the use of rotary embeddings [SLP+21]: each attention head
(dim = 128) is split into two halves: the first 64 are “rotated” with cosine, and the other
64 use sine. Both sine and cosine rotation use the same set of frequencies. Typically, the
weights that correspond to low-frequency sines and cosines are more sensitive than their
high-frequency counterparts, as shown in Figure 2 (top-right). As expected, this pattern is
absent from any layer not using rotary embeddings.

• Unstructured outliers. Besides the above, each layer has a number of individual sensitivity
weights that do not fit into any of the above patterns. These unstructured outliers occur more
frequently for columns with largest input index (i.e. on the right side of the images). This
effect is difficult to see on a heatmap, so we provide additional figures and statistical tests in
Appendix A. We believe is probably an artefact of the GPTQ algorithm, which compresses
one by one, using yet-uncompressed weights to compensate the error. Thus, the rightmost
batch of weights accumulates the most error.

Next, we will leverage these findings to propose a compressed representation which can support all
these different outlier types.

4 SpQR: A Sensitivity-aware compressed representation

4.1 Overview

Existing LLM quantization algorithms treat low- and high-sensitivity weights equally; however, our
above discussion suggests that this may lead to sub-optimal quantization. Ideally, we would want
the representation to assign more of its “size budget” to sensitive weights. However, these weights

5

are scattered in the weight matrix as either individual weights or small groups, for example, partial
rows or attention head. To capture this structure, we are introducing two changes to the quantization
procedure: one for capturing small sensitive groups, and another for capturing individual outliers.

Capturing small groups of weights with bilevel quantization. In the previous section, we observed
several cases where weights behave similarly in small consecutive groups, with abrupt changes
between groups, for example for some attention head and partial row outliers (see Figure 4 left,
bottom-center). When applying a standard approach, there will be many cases where these weights
will be grouped together, sharing the same quantization statistics. To reduce the number of such cases,
we use groupwise quantization with extremely small groups, typically of β1=8− 32 weights. That is,
for every β1 consecutive weights, there is a separate quantization scale and zero-point. This choice
runs contrary to current intuition: for instance, the recent work of Yao et al. [YLW+23] explicitly
recommends against small groups, arguing that the overhead for storing quantization statistics would
outweigh the precision advantages.

To circumvent this issue, we quantize the groupwise statistics themselves using the same quanti-
zation algorithm as for weights — asymmetric (min-max) quantization. Because of how min-max
quantization works, the range of quantized values will fit to the groups with largest (or smallest)
quantization scale, quantizing them perfectly. In other words, we group groupwise statistics from
β2 = 16 consecutive values and quantize them together in the same number of bits, such that groups
with atypical quantization parameters end up using more of the “quantization budget”. Finally, both
first and second-level quantization is directly within the quantization process, allowing the algorithm
to compensate the second-level quantization error where possible.

High-sensitivity outliers. Our analysis showed the existence of cases where a small percentage
of sensitive weights come in small groups (in the self-attention) or individual “outliers” (in the
MLP). In some cases, 1% of the weights account for over 75% of the total quantization error. Since
these weights appear to lead to high, irreducible error, we choose to keep these outliers in high
precision (16-bit). As these outliers are often unstructured, we encode them individually in a row-
wise arrangement similar to a compressed-sparse-row (CSR) representation [HABN+21]. This can
encode both individual outliers and small structures that do not fit into the above definition of groups.

The procedure for detecting the outliers is described in detail in Alg. 1. If follows a rough two-step
procedure: (1) find and isolate outliers as 16-bit weights, (2) quantize the non-outlier “base” weights
into 3-4 bit and transfer the remaining quantization into the the 16-bit outliers weights. For the outlier
isolation step, the algorithm implements a filtering technique based on the sensitivity criterion in
Eq. (2), which is used to isolate and separate outliers from base weights. Globally, for each matrix,
the algorithm aims to pick a sensitivity threshold τ to obtain the desired number of outliers across the
whole model, usually around 1% of weights. Specifically, a particular weight is considered an outlier
if keeping the weight in 16-bit reduces the error in Eq. (2) by at least τ .

Following this first outlier detection step, we quantize the base weights ignoring all outliers that occur
in the same quantization group. As such, the quantization statistics (e.g. scales) are computed by
excluding outliers. This results in significant improvements in terms of error, since e.g. the min-max
scales will be significantly reduced. The algorithm then proceeds to apply GPTQ to quantize the
remaining weights. Interestingly, unlike [DLBZ22], a weight can be chosen to be an outlier not only
if it causes error by itself, but also if the GPTQ algorithm can employ this weight to compensate errors
from many other weights. Thus, the resulting 16-bit value will contain not the original weight, but a
weight that was adjusted to minimize the output error. As such, SpQR goes beyond mere detection
of outliers towards the more general notion of isolating and treating outliers that occur during the
quantization process. Finally, the algorithm gathers and compresses sparse outlier matrix as well as
the final quantization statistics with bilevel quantization and returns the compressed weights and their
metadata.

Implementation details. Our algorithm also contains several optimizations. As we are using small
group sizes, it is often the case that a group contains all positive (or all negative) values. Standard
quantizers [FSA22, FAHA22] require the maximum value to be positive and the minimum value to
be negative. For small group sizes, removing this requirement results in slightly better quality. As a
by-product of quantizing the quantization statistics, our algorithm allows non-integer zero points. We
ablate these and other SpQR components in Section 5.

6

Algorithm 1 SpQR quantization algorithm: the left snippet describes the full procedure, the right
side contains subroutines for bilevel quantization and finding outliers.

func SPQRQUANTIZE(W,X, b, β1, β2, τ, λ)
Input: W ∈ Rm×n — weight matrix,

X ∈ Rn×d — calibration data,
b — the base number of quantization bits,
β1, β2 — quantization group sizes,
τ — sensitivity outlier threshold
λ — hessian regularizer,

1: E := float_matrix(m,n) // L2 error
2: H := 2XXT // L2 error hessian, Rn×n

3: H ic := Cholesky((H + λI)−1)
4: Q := int_matrix(m,n) // quantized weight
5: O := ∅ // a set of all outliers
6: S := ∅ // a set of quantization statistics
7: for i = 1, β1, 2β1, . . . n do
8: W:,i:i+β1 ,O := outliers(W:,i:i+β1 , H

ic
i:(i+β1),i:(i+β1)

O)

9: ŝ, ẑ,S := fit_statistics(W:,i:i+β1 ,S,O)
10: for j = i, . . . , i+ β1 do
11: Q:,j := quantize(W:,j , ŝ, ẑ)
12: w⃗q := dequantize(Q:,j , ŝ, ẑ)
13: E:,j := (W:,j − w⃗q)/H

ic
j,j · (1− is_outlier(W:,j ,O))

14: W:,j:(i+β1) := W:,j:(i+β1) − E ·H ic
j,j:(i+β1)

15: W:,(i+β1):n := W:,(i+β1):n − E ·H ic
i:(i+β1),i:(i+β1)

16: Sq, Zq, Ss, Zs, Sz, Zz := gather_statistics(S)
17: Wsparse = gather_outlier_matrix(W,O)
18: return Q,Sq, Zq, Ss, Zs, Sz, Zz,Wsparse

func quantize(M, s⃗, z⃗)

1: return ⌊M/s⃗+ z⃗ + 0.5⌋

func dequantize(Q, s⃗, z⃗)

1: return s⃗ · (Q− z⃗)

func fit_quantizer(M,β)

1: m⃗ := flatten(M)
2: s⃗, z⃗ := vectors()
3: for i = 1, β1, 2β1, . . . dim(m) do
4: si :=

max(m⃗i:i+β)−min(m⃗i:i+β)

2b−1

5: zi := −min(m⃗i:i+β)/si

6: return s⃗, z⃗

func error(W,H ic)

1: s⃗, z⃗ := fit_quantizer(W,β1)
2: Wq := quantize(W, s⃗, z⃗)
3: E := (W −Wq)/H

ic

4: return E2

func outliers(W,H ic,O)

1: Ebase = error(W,H ic)
2: for i = 1, . . . , β1 do
3: loo := {1, 2, ..., β1}/{i}
4: Eol = error(W:,loo, H

ic
loo,loo)

5: Io = select(Ebase − Eol > τ)
6: O := O ∪ Io
7: return W,O
func fit_statistics(W,S,O)

1: W := W · (1− is_outlier(W,O))
2: s⃗, z⃗ := fit_quantizer(W,β1)
3: // s⃗ for scales, z⃗ for zero points
4: s⃗s, z⃗s := fit_quantizer(s⃗, β2)
5: s⃗z, z⃗z := fit_quantizer(z⃗, β2)
6: s⃗q := quantize(s⃗, s⃗s, z⃗s)
7: z⃗q := quantize(z⃗, s⃗z, z⃗z)
8: S := S ∪ {sq, ss, sz, zq, sz, zz}
9: ŝ := dequantize(sq, ss, sz)

10: ẑ := dequantize(zq, zs, zz)
11: return ŝ, ẑ,S

input dimension (8192)

o
u
tp
u
t
d
im

en
si
o
n
(8
1
9
2
)

group size

2
n
d
o
rd
er

g
ro
u
p

16
bi
t

weight matrix split into β1×β2 blocks

group size

2
n
d
o
rd
er

g
ro
u
p
si
ze

3
bi
t

quantized weights

SpQR

2
n
d
o
rd
er

g
ro
u
p
si
ze

3
bi
t

16
bi
t

1st
order

2nd
order

scales and zeros

32
bi
t

< 1% of total

(outliers)

Figure 3: A high-level overview of the SpQR representation for a single weight tensor. The right side
of the image depicts all stored data types and their dimensions.

4.2 Implementing and Leveraging the Sparse Quantized Representation

Our algorithm converts homogeneous weights into several data structures of various sizes and
precisions. Overall, the representation consists of (1) quantized weights, (2) first level quantized
quantization statistics, second level quantization statistics, and (3) the CSR outlier indices and values.
We summarize the overall structure of SpQR in Figure 3 and describe each component below.

Storing quantized groups. All non-outlier weights are encoded as a structure that contains:

• a bw-bit individual weight;

7

• a bq-bit scale and zero point for each group of size B;
• 16-bit statistics for quantizing groups of Bq quantization scales and zero-points.

As a particular example for a SpQR representation, consider bw=bq=3 and Bw = Bq = 16. The
weight matrix is split into groups of Bq × Bw = 256 weights. A group contains 256 individual
bw = 3-bit codes. Every 16 weights use a separate 3-bit scale and zero-point. Finally, there are
four 16-bit scalars for the entire group used for second level quantization. To simplify GPU memory
access, we keep the quantized values for outlier weights in place and adjust the 16-bit versions to
compensate for that. We also store both quantized weights and quantized quantization statistics in
a contiguous memory region for each group. When running on a different hardware (e.g. mobile
CPUs), it is possible to further reduce the memory footprint by removing the quantized version of
outliers. We leave this direction for future work.

Storing outliers. Recall that our outliers are unstructured; for storage, we sort them by their row first
and column second, so that outliers in the same row are contiguous in memory. For each outlier, we
store two scalars: the 16-bit weight value and the 16-bit column index. For each row, we also store
a single 32-bit number—the total number of outliers in the rows up to the current one for efficient
inference. This results in an average storage cost of 32.03 to 32.1 bits per sensitive weight. This
could be reduced significantly by grouping outliers, which we leave as future work.

Inference with SpQR. To illustrate the practicality of our approach, we design an efficient GPU-
based decoding implementation for the SpQR format, focused on the popular token-by-token LLM
generation as a use-case.

We leverage the fact that autoregressive inference on GPUs is memory-bound, so high compression
rates can hide decoding overheads, to a significant extent. At a high level, our algorithm loads group
statistics and the quantized weights into shared memory (SRAM), dequantizes to 16-bits, and then
performs matrix multiplication with 16-bit inputs. For handling outliers, we design a sparse matrix
algorithm that takes advantage of outliers that occur in rows. Roughly, the algorithm works as follows

First, (1) we divide the matrix into equally sized blocks. Then, each GPU core (thread block) (2)
loads a large slice of outliers into shared memory (SRAM), and each GPU core (3) determines if
outliers are part of the segment or not. The corresponding weights are (4) loaded from main memory;
finally, the matrix multiplication is performed.

This algorithm essentially performs load balancing through steps (1-3), while step (4) tends to have
contiguous memory access due to the row-like patterns for the outliers. We will show in Section 5
that this custom approach is faster than the sparse matrix algorithms in PyTorch.

5 Experimental Validation

Experimental setup. We focus on three main settings: 1) evaluating what is the most compact
representation with which SpQR can replicate the performance of a 16-bit model within 1% per-
plexity, 2) controlling for the average number of bits per parameter across methods and assess the
performance of SpQR compared to round-to-nearest and GPTQ baselines, 3) what is the best trade-off
in terms of model size and performance. For these settings, we evaluate the full SpQR algorithm
on publicly-available LLMs. We focus on the LLaMA {7, 13, 30, 65}B model family [TLI+23] and
Falcon{7, 40}B model family [UAE23a]. We quantize LLaMa models using the RedPajama dataset
and Falcon models on RefinedWeb dataset [UAE23b], publicly-available replicas of the LLaMA
and Falcon training data, respectively. In addition, we provide perplexity results for OPT models in
Appendix F.

We compare SpQR against two other post-training quantization schemes: GPTQ [FAHA22] and
simple rounding-to-nearest (RTN) quantization, which is used by most other LLM compression
methods [DLBZ22, YAZ+22]. Both baselines use 4-bit quantization since it provides the best quality
to size trade-off [DZ22]. For SpQR, we consider both 3-bit and 4-bit base quantization, though the
resulting model size can be slightly larger due to the presence of outliers.

We evaluate quantized model performance by two metrics. Firstly, we measure perplexity, measured
on the WikiText2 [MXBS16], Penn Treebank [MKM+94] and C4 [RSR+20] datasets. Secondly,
we measure zero-shot accuracy on five tasks: WinoGrande [SBBC21], PiQA [TP03], HellaSwag,
ARC-easy and ARC-challenge [CCE+18]. We use the LM Evaluation Harness [GTB+21] with

8

LLaMa

Size Method Avg bits Wiki2 C4 PTB

7B

– 16.00 5.68 7.08 8.80
SpQR 4.63 5.73 7.13 8.88

RTN 4 6.43 7.93 10.30
GPTQ 4 6.13 7.43 9.27
SpQR 3.94 5.87 7.28 9.07

13B

– 16.00 5.09 6.61 8.07
SpQR 4.63 5.13 6.64 8.13

RTN 4 5.55 6.98 8.65
GPTQ 4 5.40 6.84 8.44
SpQR 3.96 5.22 6.72 8.22

Size Method Avg bits Wiki2 C4 PTB

30B

– 16.00 4.10 5.98 7.30
SpQR 4.69 4.14 6.01 7.33

RTN 4 4.57 6.34 7.75
GPTQ 4 4.48 6.20 7.54
SpQR 3.89 4.25 6.08 7.38

65B

– 16.00 3.53 5.62 6.91
SpQR 4.71 3.57 5.64 6.93

RTN 4 3.87 5.85 7.17
GPTQ 4 3.83 5.80 7.07
SpQR 3.90 3.68 5.70 6.99

Table 1: Perplexity on WikiText2 [MXBS16], C4 [RSR+20] and Penn Treebank [MKM+94]
for SpQR and round-to-nearest (RTN) and GPTQ baselines with LLaMa. We can see that SpQR
reaches performances within 1% of the perplexity with less than 4.71 bits per parameter. We also
see that for 4-bits per parameter SpQR significantly improves on GPTQ with an improvement
as large as the improvement from RTN to GPTQ.

recommended parameters. We provide full configurations in Appendix B, as well as code which we
plan to release publicly. Our implementation takes around 4.5 hours on the largest model size (65B)
on an NVIDIA A100 and about 6 on an A6000.

To control for model size, we evaluate RTN and GPTQ with 4-bit base quantization. For SpQR we
use 3-bit base quantization, a group size of 8 with 3-bit for the first quantization, a group size of 64 for
the second quantization, and as many outliers as possible to still reach less than 4-bits per parameter
on average. We aim to achieve near-lossless compression, for which we adopt the definition of the
MLCommons benchmark [RCK+20]: 1% error relative to the uncompressed baseline. In all SpQR
evaluations, we choose τ such that the proportion of outliers is under 1%.

Main Results. Figure 1 measures actual model size versus perplexity on LLaMa models on WikiText2,
and accuracy on zero-shot tasks. We observe that SpQR outperforms GPTQ (and correspondingly
RTN) at similar model size by a significant margin, especially on smaller models. This improvement
comes from both SpQR achieving more compression, while also reducing loss degradation. In
addition, if we measure the bits per parameter needed to come within 1% of the 16-bit performance
in terms of perplexity, Figure 1 shows that SpQR with 4.6 to 4.71 bits per parameter approaches the
non-quantized models with at most 1% margin of error for all models (see Table 1 and Table 2 for
exact values).

The second set of results, presented in Table 1 for LLaMa and Table 2 for Falcon family models,
controls model size by comparing SpQR and baseline methods with 4 bits per parameter. These
results show that SpQR improves over previous methods, with the gap between SpQR and the next
best method GPTQ being as large as the improvement of GPTQ over naive RTN. For 4-bit, SpQR
halves the error relative to the 16-bit baseline compared to GPTQ.

Ablations. The SpQR representation differs from standard quantization methods in two main ways:
bilevel quantization with small quantization group size and unstructured outliers. To understand
the effect of small group sizes, we compare 3-bit SpQR with group size 16, compressed using 3-bit
bilevel quantization, versus a setup with group size 48, keeping quantization statistics in 16-bit. Both
configurations result in approximately 3.6 average bits per parameter. For simplicity, neither uses
outliers. We report both in Table 3, the “3-bit statistics“ entry corresponds to group size 16 with 3-bit
statistics and “16-bit statistics“ stands for group size 16 with 16-bit statistics. Given the same (slightly
smaller) memory footprint, using quantized statistics significantly improves language modeling loss.

Next, we ask whether it is necessary to use unstructured outliers, considering two outlier types. First,
we use the criterion of Dettmers et al. [DZ22] to find column outliers and quantize them in higher
precision. The alternative is to treat the entire rows (output units / hidden units / neurons) as outliers:
we run SpQR without outliers, then select k output units that have the highest quantization error (i.e.

9

Falcon

Size Method Avg bits Wiki2 C4 PTB

7B

– 16.00 6.59 9.50 9.90
SpQR 4.44 6.64 9.58 9.97

RTN 4 8.73 12.56 13.76
GPTQ 4 6.91 9.93 10.33
SpQR 3.92 6.74 9.70 19.114

Size Method Avg bits Wiki2 C4 PTB

40B

– 16.00 5.23 7.76 7.83
SpQR 4.46 5.26 7.79 7.86

RTN 4 6.52 9.76 10.63
GPTQ 4 5.36 7.95 8.01
SpQR 3.90 5.29 7.85 7.91

Table 2: Perplexity on WikiText2 [MXBS16], C4 [RSR+20] and Penn Treebank [MKM+94] for
SpQR and round-to-nearest (RTN) and GPTQ baselines on Falcon model. We can see that SpQR
reaches performances within 1% of the perplexity with less than 4.5 bits per parameter. We also
see that for 4-bits per parameter SpQR significantly improves on GPTQ with an improvement as
large as the improvement from RTN to GPTQ.

Name Wiki2 C4 PTB Avg bits

Uncompressed 3.53 5.62 6.91 16
GPTQ (4 bit) 3.83 5.80 7.07 4

3-bit statistics 3.74 5.73 7.02 3.63
16-bit statistics 3.84 5.83 7.12 3.67

Round zero 3.75 5.76 7.01 3.63
w/o act order 3.74 5.76 7.05 3.63

Table 3: Perplexity for LLaMA-65B model.

0 1 2 3 4
Outliers rate (%)

3.66

3.68

3.70

3.72

3.74

Pe
rp

le
xi

ty

Perplexity vs Outlier Types (WikiText2)

Unstructured (SpQR)
Rows (MSE)
Dettmers et.al

Figure 4: Different outlier types, LLaMA-65B.

MSE between layer predictions) and treat the entire rows as 16-bit outliers. We compare the three
outlier types on top of 3-bit SpQR and report the results in Figure 4. Overall, unstructured outliers
reduce perplexity significantly faster than their row counterpart and the criterion of [DZ22], even
after accounting for the different memory footprint.

Finally, we analyze the impact of the minor hyperparameter changes that we introduced at the end of
Section 4. In Table 3 (bottom), we evaluate quantization errors without these changes. The “Round
zero” entry corresponds to a version of SpQR where the zero-point is a 3-bit integer. This reduces the
memory footprint of SpQR, but results in a moderate increase in perplexity. Similarly, we evaluate
SpQR without the “act order” flag. This option re-orders the input dimensions by the diagonal of the
inverse hessian, which was introduced as a part of the GPTQ algorithm. Using this heuristic slightly
improves loss, though not as much as from quantized groups.

To summarize, both small quantized groups and unstructured outliers independently improve perplex-
ity and perform better than alternative strategies. SpQR also benefits from using the GPTQ activation
order heuristic, though the gain is smaller than from outliers or small groups. Still, we opt to use the
same activation order heuristic in the GPTQ baselines to ensure a fair comparison. To further explore
the design space of SpQR, we provide an additional hyperparameter study in Appendix C.

Inference Time. Finally, we evaluate the inference speed of SpQR for autoregressive inference with a
focus on measuring the token generation latency with batch size 1 on a single A100 GPU. We measure
inference speed in two setups: i) generating 100 tokens from scratch and ii) adding 100 tokens on top
of a 1024-token prefix (prompt). We compare our specialized sparse matrix multiplication algorithm
with the algorithm implemented in PyTorch (cuSPARSE). We also compare against a 16-bit baseline.
We measure the end-to-end latency as inference steps per second for the full SpQR algorithm, that is
for both the dense and sparse multiplication part together.

Results are shown in Table 4. We can see that while standard sparse matrix multiplication in PyTorch
is not faster than 16-bit inference, our specialized sparse matrix multiplication algorithm yields
speedups of about 20-30%.

10

Method fp16 (baseline) SpQR (PyTorch) SpQR (optimized)

LLaMA 7B 13B 30B 65B 7B 13B 30B 65B 7B 13B 30B 65B
scratch 47 ± 2.3 37 ± 0.8 19 ± 1.1 OOM 30 ± 2.2 24 ± 1.2 8.8 ± 0.4 OOM 57 ± 2.4 44 ± 0.5 22 ± 0.9 12 ± 0.6

prefix 1024 46 ± 2.4 31 ± 0.9 17 ± 0.8 OOM 27 ± 1.6 21 ± 1.1 6.5 ± 0.7 OOM 55 ± 2.1 37 ± 0.8 22 ± 1.3 11 ± 0.6

Table 4: Inference speed comparison (tokens/s), OOM means the model did not fit in an A100 GPU.
We see that our optimized SpQR algorithm is faster than the 16-bit baseline and almost 2.0x faster
than quantized matrix multiplication + standard PyTorch sparse matrix multiplication baseline.

6 Discussion & Limitations
We have presented SpQR, an quantization approach which quantizes sensitive outliers in higher
precision, to achieve near-lossless 16-bit accuracy with less than 4.75 bits per parameter on average.
We achieve even better quality-size-tradeoff when compressing to as little as 3.36 bits which makes
SpQR an ideal method for compressing models for memory-limited devices. Despite our promising
results, there are several limitations. The main limitation is that we do not evaluate the generative
quality of quantized LLMs, but only the predictive performance in terms of zero-shot accuracy
and perplexity. While we believe that perplexity measurements and generation quality are strongly
related, this is a hypothesis we aim to investigate in future work. While we devise a sparse matrix
multiplication algorithm to accelerate the computation with outliers, another limitation is that we do
not fuse sparse matrix multiplication with regular quantized matrix multiplication. Such an approach
would yield even better inference time performance. However, such an approach is also very difficult
to implement. We leave the implementation of such an algorithm to future work.

7 Acknowledgements

D.K. was supported by Russian Science Foundation, grant 21-11-00373. D.A. and E.F. gratefully
acknowledge funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). Authors
also thank Ivan Komarov for his help in profiling and understanding the performance bottlenecks of
SpQR on GPU.

References
[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[BSA+23] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth,
Edward Raff, et al. Pythia: A suite for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373, 2023.

[CCE+18] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc,
the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

[CND+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In North
American Chapter of the Association for Computational Linguistics (NAACL), 2019.

[DLBZ22] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8():
8-bit matrix multiplication for transformers at scale. Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, 2022.

11

[DZ22] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference
scaling laws. arXiv preprint arXiv:2212.09720, 2022.

[FA23] Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

[FAHA22] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate
post-training quantization for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

[FSA22] Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal Brain Compression:
A framework for accurate post-training quantization and pruning. arXiv preprint
arXiv:2208.11580, 2022. Accepted to NeurIPS 2022, to appear.

[GFS+19] Yury Gorbachev, Mikhail Fedorov, Iliya Slavutin, Artyom Tugarev, Marat Fatekhov,
and Yaroslav Tarkan. Openvino deep learning workbench: Comprehensive analysis and
tuning of neural networks inference. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–0, 2019.

[GKD+21] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt
Keutzer. A survey of quantization methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021.

[GTB+21] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang,
Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A
framework for few-shot language model evaluation, September 2021.

[HABN+21] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
Sparsity in deep learning: Pruning and growth for efficient inference and training in
neural networks. arXiv preprint arXiv:2102.00554, 2021.

[HBM+22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor
Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[HNH+21] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate
post training quantization with small calibration sets. In International Conference on
Machine Learning (ICML), 2021.

[KHB+21] Daya Khudia, Jianyu Huang, Protonu Basu, Summer Deng, Haixin Liu, Jongsoo Park,
and Mikhail Smelyanskiy. Fbgemm: Enabling high-performance low-precision deep
learning inference. arXiv preprint arXiv:2101.05615, 2021.

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[LGT+21] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. BRECQ: Pushing the limit of post-training quantization by block
reconstruction. In International Conference on Learning Representations (ICLR), 2021.

[MKM+94] Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating
predicate argument structure. In Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March 8-11, 1994, 1994.

[MXBS16] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

[NAVB+20] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. Up or down? Adaptive rounding for post-training quantization. In
International Conference on Machine Learning (ICML), 2020.

12

[Neu22] NeuralMagic. DeepSparse, 2022.

[OEN+22] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma,
Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context
learning and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[Ope23] OpenAI. Gpt-4 technical report. arXiv, 2023.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An imperative style, high-performance deep learning library. In Conference
on Neural Information Processing Systems (NeurIPS). 2019.

[PPK+22] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and
Dongsoo Lee. nuQmm: Quantized matmul for efficient inference of large-scale genera-
tive language models. arXiv preprint arXiv:2206.09557, 2022.

[RCK+20] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 446–459. IEEE,
2020.

[RSR+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. Journal of Machine Learning Research,
21(140):1–67, 2020.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[SBBC21] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
an adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106,
2021.

[SLP+21] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding. arXiv preprint
arXiv:2104.09864, 2021.

[TLI+23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[TP03] Sandeep Tata and Jignesh M Patel. PiQA: An algebra for querying protein data sets. In
International Conference on Scientific and Statistical Database Management, 2003.

[UAE23a] TII UAE. The falcon family of large language models. https://huggingface.co/
tiiuae/falcon-40b, May 2023.

[UAE23b] TII UAE. The refined web dataset. https://huggingface.co/datasets/tiiuae/
falcon-refinedweb, May 2023.

[Vig19] Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv
preprint arXiv:1906.05714, 2019.

[VTM+19] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5797–5808, Florence, Italy, July 2019. Association for Computational
Linguistics.

13

https://huggingface.co/tiiuae/falcon-40b
https://huggingface.co/tiiuae/falcon-40b
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/datasets/tiiuae/falcon-refinedweb

[WBZ+21] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot
learners. arXiv preprint arXiv:2109.01652, 2021.

[WCHC20] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-
training network quantization via bit-split and stitching. In International Conference
on Machine Learning (ICML), 2020.

[WMR+21] Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen
Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha
Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas,
Laura Rimell, Lisa Anne Hendricks, William Isaac, Sean Legassick, Geoffrey Irving,
and Iason Gabriel. Ethical and social risks of harm from language models, 2021.

[WSM+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018.

[XLS+22] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv
preprint arXiv:2211.10438, 2022.

[YAZ+22] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li,
and Yuxiong He. Zeroquant: Efficient and affordable post-training quantization for
large-scale transformers. arXiv preprint arXiv:2206.01861, 2022.

[YLW+23] Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn, and Yuxiong He. A comprehensive
study on post-training quantization for large language models, 2023.

14

Table of contents
1 Introduction 1

2 Related Work 3

3 Quantization sensitivity of LLM weights 4
3.1 Parameter sensitivity under quantization . 4
3.2 Exploring parameter sensitivity . 4

4 SpQR: A Sensitivity-aware compressed representation 5
4.1 Overview . 5
4.2 Implementing and Leveraging the Sparse Quantized Representation 7

5 Experimental Validation 8

6 Discussion & Limitations 11

7 Acknowledgements 11

A Additional weight sensitivity analysis 15

B Experimental Configurations 18

C Hyperparameter sensitivity 18

D Estimating model size 18

E Choice of optimal configuration for fixed average number of bits 19

F Additional results for near-lossless compression 20

G Choice of optimal LLM configuration for specific hardware 20

H Sensitivity to random seed 22

I Generative examples 22

J Broader impact 22

K On the use of LLMs in this work 26

A Additional weight sensitivity analysis

In this section, we provide additional visualizations of LLaMA weight sensitivities, as well as
additional plots for different layer roles. As we observed earlier in Section 3.2, the sensitivity
matrices vary based on four main factors:

• the quantization scheme (e.g. row- or group-wise);
• the layer depth, i.e. the index of the corresponding transformer block;
• the role of that weight, e.g. self-attn query / key or MLP up / down projection;
• the location within the chosen weight matrix;

Here, we report additional observations about these factors and elaborate on some of our claims from
Section 3.1. We also report raw sensitivity matrices for various weight matrices at the end of the
supplementary materials.

Relation between sensitivity and the chosen quantization scheme. We compare two configurations
of GPTQ 3-bit. The first configuration uses one quantization scale & zero for each row. The second
one uses blockwise quantization with one set of statistics for each block of 128 weights.

Figure 5 demonstrates a typical example of how group size affects sensitivity. In the bottom-right
plot, we observe that a subset of weights (width 128) has a significantly higher quantization error

15

0 1024 2048 3072 4096 5120 6144 7168 8192
input dim. (cols)

0

1024

2048

3072

4096

5120

6144

7168

8192

ou
tp

ut
 d

im
. (

ro
w

s)

Layer 40_self_attn.q, GPTQ row-wise

6144 6208 6272 6336 6400 6464 6528 6592 6656

6656

6720

6784

6848

6912

6976

7040

7104

7168

zoomed

0 1024 2048 3072 4096 5120 6144 7168 8192
input dim. (cols)

0

1024

2048

3072

4096

5120

6144

7168

8192

ou
tp

ut
 d

im
. (

ro
w

s)

Layer 40_self_attn.q, GPTQ group size 128

6400 6464 6528 6592 6656 6720 6784 6848 6912

1536

1600

1664

1728

1792

1856

1920

1984

2048

zoomed

Figure 5: The weight sensitivities for LLaMA-65B 40th layer, attention query projection. The color
scale represents sensitivity on a logarithmic scale, with higher sensitivity being darker. (top) 3-bit
GPTQ with per-row quantization scales, (bottom) 3-bit GPTQ with block size 128.

than the rest of the layer. Please note that the color scale represents sensitivity on a logarithmic scale,
with higher sensitivity being darker.

On a more detailed examination, we found that this specific group contains a “vertical” outlier, i.e. the
corresponding input feature has significantly higher variance, compared to other input dimensions.

In this example, the main effect of GPTQ block size 128 is that the problematic dimension leads to
increased sensitivity in a group of 8192× 128 weights. In turn, GPTQ with per-row statistics has
high quantization error across the entire row.

The effect of rotary embeddings. Earlier in Figure 2 we note that attention query and key have a
regular pattern of sensitivity that repeats every 64 rows. We attribute this to the fact that LLaMA
uses rotary position embeddings. More specifically, this pattern is likely a side-effect of how rotary
embeddings are implemented for this model.

To recall, rotary position embeddings are a technique that rotates attention head dimensions by
an angle that depends on how many tokens are between key and query [SLP+21]. Furthermore,
dimensions within each head are rotated with a different frequency. To implement this rotation,
LLaMA multiplies each head by a precomputed tensor of sine and cosine functions with a different
period. The first half (64 units) of the matrix is multiplied by cosines and the other half (64 units) is
multiplied by sines.

To recall, sine and cosine components are equivalent up to a phase shift and show similar behavior in
our analysis. In general, we observe that weights that correspond to low-frequency heads (bottom of
each semi-head) typically have higher sensitivity. One possible explanation is that high-frequency

16

heads can be more dependent on position-specific information, such as attending to the previous token
— and less dependent on the weights that represent content information. However, this phenomenon
merits further investigation and our current understanding should be treated as an educated guess.

GPTQ and the effect of quantization order. As we observe earlier in Section 3.2, the rightmost
weights in each visualization tend to have higher quantization errors. This is likely a side-effect of
the GPTQ algorithm, which compresses weights one input feature at a time, i.e. column by column
in a left-to-right direction. Once a column is quantized, the algorithm uses the remaining unquantized
weights to compensate for the error. Thus, the rightmost batch of weights accumulates the most error
from preceding columns and has the least space to compensate it’s “own” quantization error.

This difference is most pronounced in the earlier layers, where the quantization error is smaller overall
(see Figure 6). To further verify this observation, we observe that this effect disappears if we shuffle
the weight quantization order in the GPTQ algorithm.

0 2048 4096 6144 8192
input dim. (cols)

0

5504

11008

16512

22016

ou
tp

ut
 d

im
. (

ro
w

s)

Layer 79, mlp.up

6 4 2 0
Log10 of squared quant. error

0

200

400

600

800

Quantization error distributions
first 100 columns
last 100 columns

Figure 6: The weight log-sensitivities for a deeper upward projection layer (in particular, this is layer
#79). The heatmap on the left represents the sensitivities of each weight, with darker being more
sensitive; the histogram on the right captures the sensitivities in the first 100 and last 100 columns
(sorted across input dimensions). The latter figure clearly shows that later columns are more sensitive
on average.

Relation between weight sensitivity and layer depth. In terms of mean squared error, we observe
that the first layers of LLaMA tend to have generally lower OBC error (defined as L2 distance between
original and quantized layer predictions). To illustrate this, we report the average quantization error
of GPTQ-3bit in Figure 7.

0 20 40 60 80

5.5

5.0

4.5

4.0

3.5

3.0

2.5

m
ea

n
lo

g
sq

ua
re

d
Q

-e
rr

self_attn.q

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80

5.5

5.0

4.5

4.0

3.5

3.0

2.5
self_attn.k

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80
6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

self_attn.v

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80
layer num

6.0

5.5

5.0

4.5

4.0

3.5
self_attn.o

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80

5.5

5.0

4.5

4.0

3.5

3.0

2.5

m
ea

n
lo

g
sq

ua
re

d
Q

-e
rr

mlp.up

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80

5.5

5.0

4.5

4.0

3.5

3.0

2.5

mlp.gate

GPTQ row-wise
GPTQ group size 128

0 20 40 60 80
6.0

5.5

5.0

4.5

4.0

3.5

3.0

mlp.down
GPTQ row-wise
GPTQ group size 128

Figure 7: Figure: mean quantization error (vertical axis) as a function of layer depth (horizontal axis).
Each plot corresponds to a different layer role.

17

The absolute quantization error means little by itself since each quantized layer has a different
input/output variance. However, we also observe that the first and last few layers have qualitative
differences in behavior. Figures 10 and 11 report weight sensitivities for the first, middle (40th), and
last (79th) layer of LLaMA model separately to better illustrate this difference.

B Experimental Configurations

The SpQR representations proposed in this work have several adjustable hyperparameters that allow
for great flexibility in targeting a desired size of the model. We introduce the notation and list the
method hyperparameters below:

• bw - number of bits per weight
• bs - number of bits per scale
• bz - number of bits per zero
• ro - outlier rate (fraction of weights that are not quantized)
• β1 - block size for weight quantization
• β2 - block size for statistic quantization;
• τ - outlier threshold

The actual number of outliers depends not only on τ , but on all other hyperparameters as well.
However, for any specific configuration, increasing τ leads to reduced number of outliers. To achieve
the desired number of outliers, we tune τ in [0.1, 1.0] range by binary search with minumum step
size 0.05. The vast majority of our configurations are between τ = 0.1 and τ = 0.45].

The full configuration we use to compress LLaMA-30B model near-losslessly in Table 1 has the
following hyperparameters: bw = 4, bs = bz = 3, β1 = β2 = 16, τ = 0.1 This translates to the
following command line arguments in our supplementary code:

python main.py $MODEL custom --custom_data_path=$DATA \
--wbits 4 --groupsize 16 --perchannel --qq_scale_bits 3 \
--qq_zero_bits 3 --qq_groupsize 16 --outlier_threshold 0.1 \
--fit_quantizer_without_outliers --permutation_order act_order

C Hyperparameter sensitivity

In this section, we analyze how SpQR performance depends on the choice of quantization group
sizes. Please recall that the SpQR algorithm uses two types of groups, indexed by parameters β1 and
β2. The first group dimension β1 covers multiple weights for the same input unit, similar to standard
blockwise quantization. In turn, the other dimension β2 covers multiple output units, and is used
when quantizing quantization scales. In our visualizations, β1 blocks are always horizontal, while β2

are vertical.

In Table 5, we evaluate SpQR with varying parameters β1 and β2. We quantize LLaMA-65B with
3-bit SpQR for weights and statistics and report perplexity on WikiText2, Penn Treebank, and C4
datasets. The upper-left section of the table contains the effective number of bits for each group
configuration, and the remaining sections correspond to perplexities on different datasets.

D Estimating model size

In this section, we provide a quick way to estimate the compressed model size before running the
quantization. We express this estimate in terms of average bits per parameter defined as:

b =
model size in bits

number of parameters
(3)

Where model size in bits denotes the total amount of memory - the quantized weights, 1st-order and
2nd-order quantization statistics, outliers and the outlier index - required for the storage of the model.
According to Section 4.2, each outlier requires memory storage of ∼ 32 bits.

18

Average bits Wikitext2 Perplexity (3.53)

β1

β2 4 8 16 32 64 128 4 8 16 32 64 128

4 8.5 6.5 5.5 5 4.75 4.625 3.581 3.628 3.715 3.822 4.003 4.23
8 5.75 4.75 4.25 4 3.875 3.813 3.625 3.64 3.649 3.666 3.688 3.713

16 4.375 3.875 3.625 3.5 3.438 3.406 3.701 3.71 3.728 3.726 3.739 3.741
32 3.688 3.438 3.313 3.25 3.219 3.203 3.803 3.797 3.812 3.812 3.815 3.85
64 3.344 3.219 3.156 3.125 3.109 3.102 3.884 3.901 3.907 3.899 3.928 3.926
128 3.172 3.109 3.078 3.063 3.055 3.051 3.982 3.994 4.005 3.992 4.017 4.013

C4 Perplexity (5.62) PTB Perplexity (6.91)

β1

β2 4 8 16 32 64 128 4 8 16 32 64 128

4 5.652 5.674 5.718 5.796 5.919 6.119 6.934 6.965 7.001 7.054 7.194 7.395
8 5.683 5.688 5.696 5.703 5.709 5.718 6.962 6.98 6.991 6.99 6.979 7.029

16 5.735 5.735 5.735 5.738 5.741 5.749 7.018 7.013 7.015 7.016 7.012 7.03
32 5.793 5.789 5.792 5.796 5.794 5.802 7.042 7.053 7.083 7.043 7.069 7.083
64 5.857 5.859 5.858 5.866 5.863 5.866 7.084 7.129 7.137 7.118 7.137 7.12
128 5.932 5.931 5.935 5.939 5.944 5.936 7.185 7.197 7.232 7.234 7.217 7.199

Table 5: Weight block size β1 and statistic block size β2 performance on WikiText2, C4, and Penn
Treebank (PTB). The uncompressed baseline value is provided in the corresponding heading.

The storage and computational cost in transformer models are dominated by the linear projections
in the attention and feedforward blocks. Consider quantization of a weight matrix (any of these)
Rdout×din with input dimension din and output dimension dout. Then the average number of bits for
a given configuration is:

b ≃
bwdoutdin + (bs + bz)

doutdin

β1
+ 2(16 + 16)doutdin

β1β2

doutdin
+32ro = bw+

bs + bz
β1

+
64

β1β2
+32ro (4)

Therefore, to increase (decrease) the size of the model one should either increase (decrease) the
precision of model weights and quantization statistics or decrease (increase) the block size.

For example, for configuration with bw = 3, bs = 3, bz = 3, β1 = 16, β2 = 32 and 0.4% of outliers,
the average number of bits is:

3 +
3 + 3

16
+

64

16 · 32
+ 0.004 · 32 ≃ 3.63

E Choice of optimal configuration for fixed average number of bits

As discussed above our method has multiple options for improvement of model performance at the
cost of the increase of the model size: number of bits per weight wb, groupsizes b1 and b2 for 1st and
2nd order quantization and the outlier rate. We evaluated several configurations with various options
for the aforementioned parameters on perplexity benchmarks. Results are presented on Figure 8. One
can observe that small groups and small fraction of outliers allows to considerably improve model
performance, but the gain is diminishing with the number of bits added (when the additional budget
from small group is of order 0.1-0.5 of bits per parameter). It is better to store weights in higher
precision instead of keeping them in lower precision but with very small groups or keeping large
fraction of outliers. In our experiments optimal fraction of outliers is 0.2-0.5% depending on the
model and groupsize.

19

2.5 3.0 3.5 4.0 4.5 5.0
Average bits

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t2

wb=2
wb=3
wb=4

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

O
ut

lie
r

sh
ar

e

Figure 8: Perplexity of WikiText2 vs average number of bits. Different markers denote different bw.
Black colors correspond to quantization configurations without outliers and the brightness of the
color is proportional to the outlier rate.

OPT

Size Method Avg bits Wiki2 C4 PTB

6.7B

– 16.00 10.86 11.74 13.09
SpQR 4.27 10.81 11.88 13.17

RTN 4 12.10 13.38 16.09
GPTQ 4 11.39 12.15 13.80
SpQR 3.94 11.04 11.98 13.33

13B

– 16.00 10.12 11.20 12.34
SpQR 4.27 10.22 11.27 12.41

RTN 4 11.32 12.35 15.4
GPTQ 4 10.31 11.36 12.58
SpQR 3.93 10.28 11.34 12.52

Size Method Avg bits Wiki2 C4 PTB

30B

– 16.00 9.56 10.69 11.84
SpQR 4.26 9.50 10.73 11.88

RTN 4 10.97 11.90 14.17
GPTQ 4 9.63 10.80 11.98
SpQR 3.94 9.54 10.78 11.93

66B

– 16.00 9.33 10.28 11.36
SpQR 4.23 9.37 10.32 11.40

RTN 4 110 249 274
GPTQ 4 9.55 10.50 11.58
SpQR 3.91 9.32 10.35 11.43

Table 6: Perplexity on WikiText2 [MXBS16], C4 [RSR+20] and Penn Treebank [MKM+94] for
SpQR and round-to-nearest (RTN) and GPTQ baselines with OPT. We can see that SpQR reaches
performances within 1% of the perplexity with less than 4.3 bits per parameter. We also see that for
4-bits per parameter SpQR significantly improves on GPTQ with an improvement as large as the
improvement from RTN to GPTQ.

F Additional results for near-lossless compression

In this section we report the list of quantization configurations for OPT in Table 6 on WikiText2,
Penn Treebank, and C4 datasets.

In addition we report results for LM eval harness for LLaMa Table 7. and recently released Falcon
models - Falcon-7B and Falcon-40B Table 8.

G Choice of optimal LLM configuration for specific hardware

In the preceding discussion, we were searching for optimal model configuration given some com-
pression target without targeting any specific hardware or device. However, the question practitioner

20

https://falconllm.tii.ae

LLaMA

Size Method Avg bits Winogrande Piqa Hellaswag Arc easy Arc challenge Avg score

7B

– 16.00 67.09 78.32 56.41 67.38 38.23 61.492
SpQR 4.63 67.48 78.45 56.01 67.13 38.23 61.460

RTN 4 64.72 76.44 53.49 63.51 36.60 58.952
GPTQ 4 65.35 77.58 54.99 63.55 36.35 59.564
SpQR 3.45 67.48 78.13 55.27 65.87 38.05 60.960

13B

– 16.00 70.09 78.89 59.11 74.54 43.94 65.314
SpQR 4.63 69.77 78.94 59.02 74.37 43.17 65.054

RTN 4 69.61 78.24 57.34 72.56 42.58 64.066
GPTQ 4 69.06 78.40 58.04 73.23 43.26 64.398
SpQR 3.45 68.90 78.73 58.22 73.27 42.75 64.374

30B

– 16.00 72.93 80.96 62.66 75.34 46.76 67.730
SpQR 4.69 72.93 81.01 62.50 76.05 47.18 67.934

RTN 4 72.06 79.05 60.61 70.66 42.24 64.924
GPTQ 4 72.61 79.92 61.07 71.8 44.28 65.936
SpQR 3.49 73.32 80.47 61.96 74.75 46.93 67.486

65B

– 16.00 77.43 81.50 63.95 75.17 47.10 69.030
SpQR 4.71 76.95 81.56 63.76 75.25 46.93 68.890

RTN 4 75.14 81.45 62.79 72.64 44.97 67.398
GPTQ 4 75.85 80.79 62.91 74.20 46.59 68.068
SpQR 3.52 76.09 81.18 63.54 74.37 45.05 68.046

Table 7: LM eval harness results on LLaMA models.

Falcon

Size Method Avg bits Winogrande Piqa Hellaswag Arc easy Arc challenge Avg score

7B

– 16.00 67.32 79.49 57.77 74.71 40.1 0 63.878
SpQR 4.44 67.09 79.16 57.21 73.86 38.99 63.262

RTN 4.00 65.51 77.37 51.86 68.69 33.7 59.426
GPTQ 4.00 66.38 79.11 56.68 73.15 38.48 62.760
SpQR 3.49 67.88 79.54 57.08 74.03 39.08 63.522

40B

– 16.00 76.62 82.32 64.06 82.03 50.26 71.058
SpQR 4.46 76.48 82.1 63.8 81.78 50.77 70.986

RTN 4.00 75.69 80.30 60.52 79.92 49.83 69.252
GPTQ 4.00 75.93 81.23 63.05 80.85 50.00 70.212
SpQR 3.45 76.32 81.77 63.70 81.10 49.83 70.544

Table 8: LM eval harness results on Falcon models.

21

willing to deploy a model for a specific application would ask is: What is the best model and
compression setup for a given memory constraint?

In this section, we provide a list of recommendations for the choice of the best LLaMA model and
the corresponding compression level that fits into the device memory (RAM or VRAM) without the
need of offloading model parameters and activations. We cover a range of available budgets from
mobile devices to high-end workstation GPUs. Recommendations are presented in Table 9.

Device Memory (GiB) LLaMA b

iPhone13 4 7B ≤ 3.5

iPhone14 6 7B ≃ 4.5
13B ≤ 3.5

Consumer laptop 8 13B ≤ 4

RTX4070 10-12 14B ≃ 4.5

RTX4080 16 30B ≤ 4

RTX4090 24 30B ≃ 4.5

V100 32 65B ≤ 3.5

A6000 48 65B ≃ 4.5

Table 9: Choice of the best LLaMA for a given memory constraint.

H Sensitivity to random seed

The experiments we report throughout Section 5 use one fixed random seed (the default value from
the supplementary code). To verify that our results are robust to randomness, we run SpQR with 5
random seeds (0-5) and measure the adjusted standard deviation.

For this evaluation, we compress LLaMA-65B with SpQR using bw = bz = bs = 3 and β1 = β2 =
16, which corresponds to 3.625 bits per parameter. The resulting perplexity scores are 3.75± 0.003
(WikiText2), 7.03 ± 0.01 (Penn Treebank) and 5.75 ± 0.00086 (C4). In addition to the chosen
random seed, these standard deviations can be affected by the inherent nondeterminism of GPU
computation. Overall, the standard deviations are at least one order of magnitude smaller than the
difference between SpQR, GPTQ, and RTN.

I Generative examples

Finally, we showcase several examples of how SpQR quantization affects the generated samples.
For this evaluation, we take several prompts and use the compressed language model to continue
generating text from these prompts. We compare the original LLaMA-65B and two quantized
versions: SpQR and RTN-4bit. More specifically, we use the SpQR configuration that corresponds to
near-lossless compression from Table 1. We use greedy autoregressive inference for all generated
samples to ensure reproducibility. The examples in Figure 9 show that all models produce a valid
text, but SpQR matches the 16-bit model more frequently. The near-lossless algorithm also seems to
produce more semantically similar texts.

J Broader impact

Our method enables the deployment of high-quality LLMs in the 7-13B parameters range to memory-
limited devices such as laptops and phones. With our method, it is possible to develop specialized 7B
LLMs in hassle-free 16-bit and then enable the deployment of such LLMs to phones by applying
SpQR. Since SpQR is practically lossless, this ensures a reliable performance level for deployed
LLMs which is important for consumer applications. Since mobile phones are ubiquitous and LLMs

22

Prompt: Every time data scientist Kim ran her new algorithm, it kept
outputting the same unexpected result: a recipe for

16bit: iced tea. Kim was working on a project to predict the likelihood
of a patient being readmitted to the hospital within 30 days of
discharge. She was using a machine learning algorithm to analyze
the data, and the algorithm

SpQR: iced tea. Kim was working on a project to predict the likelihood
of a patient being readmitted to the hospital within 30 days of
discharge. She had been given a dataset of 100,000

RTN 4-bit: iced tea. “I’m not sure what’s going on,” she said. “I’ve been
running it for days, and it keeps giving me the same result.” “I’m
not sure what’s going on

Prompt: Data scientist Grace was working late one night when she discovered a
glitch in the matrix of her data. It spelled out

16bit: 100% proof that the world was going to end in 10 days. She tried
to tell her boss, but he didn’t believe her. She tried to tell her
friends, but they didn’t believe her

SpQR: 100% proof that the world was going to end in 10 days. She tried
to tell her boss, but he just laughed and said, “I’m not going to
believe in some data glitch.” She

RTN 4-bit: 100% in binary code. She was so excited she ran to tell her boss,
but he was busy. She ran to tell her colleague, but he was busy.
She ran to tell her friend, but she

Prompt: Last Tuesday, just as the sun was setting, my neighbor’s dog, Rover,
started to speak to me in perfect French. He said

16bit: "Je suis un chien." I was shocked. I said, "Moi aussi." I’m not sure
what to make of this. I’m not sure what to make of anything. I’m
not sure what

SpQR: "Je suis un chien." I was shocked. I said, "Rover, you can speak
French?" He said, "Oui, je parle francais." I said, "How did you
learn to speak French?"

RTN 4-bit: "Bonjour, Monsieur. Je m’appelle Rover. Je suis un chien. Je suis
un chien français. Je suis un chien français qui parle français. Je
suis un chien français qui parle français

Prompt: In a parallel universe where cats are the rulers of Earth, our feline
king was pondering his first decree

16bit: " to make all dogs illegal. "I"m not sure that"s a good idea," said
his chief adviser, a cat named Whiskers. "Why not?" asked the king.
"Because,

SpQR: " to make all dogs illegal. "I"m not sure that"s a good idea," said
his chief adviser, a cat named Whiskers. "Why not?" asked the king.
"Because,

RTN 4-bit: " to make the world a better place for cats. He was about to sign
the decree when he was interrupted by a knock on the door. "Come
in," he said. The door opened and a cat entered.

Figure 9: Texts generated by different quantized LLaMA-65B models with the same prompt.

23

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.o

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.o

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.o

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:0, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:40, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:79, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:0, mlp.gate

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:40, mlp.gate

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:79, mlp.gate

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:0, mlp.down

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:40, mlp.down

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:79, mlp.down

Figure 10: A grid of weight log-sensitivities for LLaMA-65B for 3-bit GPTQ compression with
per-row quantization statistics. Each row corresponds to a specific layer type (e.g. attention query,
mlp gate), and the columns represent layer depth.

24

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.q

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.k

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.v

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:0, self_attn.o

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:40, self_attn.o

0 2048 4096 6144 8192

0

2048

4096

6144

8192

Layer:79, self_attn.o

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:0, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:40, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:79, mlp.up

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:0, mlp.gate

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:40, mlp.gate

0 2048 4096 6144 8192

0

5504

11008

16512

22016

Layer:79, mlp.gate

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:0, mlp.down

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:40, mlp.down

0 5504 11008 16512 22016

0

2048

4096

6144

8192

Layer:79, mlp.down

Figure 11: A grid of weight log-sensitivities for LLaMA-65B for 3-bit GPTQ compression with
group-wise quantization of block size 128. Each row corresponds to a specific layer type (e.g.
attention query, mlp gate), and the columns represent layer depth.

25

powerful general-purpose tools, SpQR might have a wide-reaching effect on how LLMs are used by
the general population to complete useful tasks.

LLMs are inherently a dual-use technology that can bring both significant benefits and serious harm.
The ethical and societal risks of LLMs range from deliberate malicious use (e.g. generating spam)
and accidental misuse to adverse economic side-effects [WMR+21]. However, we believe that the
marginal impact of SpQR will be positive or neutral since the LLMs we use are already openly
available. Better quantization algorithms like SpQR let users with low-end devices run larger and
generally more accurate language models. In other words, our algorithm does not create models with
new capabilities (and risks): it only makes existing models more accessible.

K On the use of LLMs in this work

Following the request in this year’s call for papers, we describe the use of large language models in
our paper. We used two different chat-based language models: ChatGPT and Claude+. We used these
models to accelerate the process of writing LaTeX code in Alg. 1 and Figure 3 (via Tikz). We also
used these LLMs to provide slight improvements to the table design throughout the paper.

In addition to this, we use ChatGPT to generate some prompts for Appendix I. Finally, we used
Claude+ to produce possible formulations for the outlier criterion in Alg. 1. In all these cases, we
used LLMs through chat-based user interfaces, instructing them to generate code (LaTeX) or suggest
improvements. If the suggested changes would not work as expected, we reported them to the model
in natural language, using the same chat-based interface.

26

	Introduction
	Related Work
	Quantization sensitivity of LLM weights
	Parameter sensitivity under quantization
	Exploring parameter sensitivity

	SpQR: A Sensitivity-aware compressed representation
	Overview
	Implementing and Leveraging the Sparse Quantized Representation

	Experimental Validation
	Discussion & Limitations
	Acknowledgements
	Additional weight sensitivity analysis
	Experimental Configurations
	Hyperparameter sensitivity
	Estimating model size
	Choice of optimal configuration for fixed average number of bits
	Additional results for near-lossless compression
	Choice of optimal LLM configuration for specific hardware
	Sensitivity to random seed
	Generative examples
	Broader impact
	On the use of LLMs in this work

