
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

MPI Remote Memory Access Programming (MPI3-RMA)

and Advanced MPI Programming
presented at RWTH Aachen, Jan. 2019

based on tutorials in collaboration with Bill Gropp, Rajeev Thakur, and Pavan Balaji

spcl.inf.ethz.ch

@spcl_eth

Á MPI is a message-passing library interface standard.

ÁSpecification, not implementation

ÁLibrary, not a language

ÁAll explicit parallelism, no magic

Á MPI-1 supports the classical message-passing programming model: basic point-to-point
communication, collectives, datatypes, etc

Á MPI-1 was defined (1994) by a broadly based group of parallel computer vendors,
computer scientists, and applications developers.

Á2-year intensive process

Á Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

Á Free, portable implementations exist for clusters and other environments (MPICH, Open
MPI)

2

MPI-1

2

spcl.inf.ethz.ch

@spcl_eth

Á MPI-1 (1994), presented at SCô93

Á Basic point-to-point communication, collectives, datatypes, etc

Á MPI-2 (1997)

Á Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, thread support, C++

bindings, é

Á ---- Stable for 10 years ----

Á MPI-2.1 (2008)

Á Minor clarifications and bug fixes to MPI-2

Á MPI-2.2 (2009)

Á Small updates and additions to MPI 2.1

Á MPI-3.0 (2012)

Á Major new features and additions to MPI

Á MPI-3.1 (2015)

Á Minor updates and fixes to MPI 3.0

3

Timeline of the MPI Standard

spcl.inf.ethz.ch

@spcl_eth

Á Major new features

Á Nonblocking collectives

Á Neighborhood collectives

Á Improved one-sided communication interface

Á Tools interface

Á Fortran 2008 bindings

Á Other new features

Á Matching Probe and Recv for thread-safe probe and receive

Á Noncollective communicator creation function

Á ñconstò correct C bindings

Á Comm_split_type function

Á Nonblocking Comm_dup

Á Type_create_hindexed_block function

Á C++ bindings removed

Á Previously deprecated functions removed

Á MPI 3.1 added nonblocking collective I/O functions
4

Overview of New Features in MPI-3

spcl.inf.ethz.ch

@spcl_eth

Á For basic MPI

ÁUsing MPI, 3rd edition, 2014, by William Gropp, Ewing Lusk, and Anthony Skjellum

Áhttps://mitpress.mit.edu/books/using-MPI-third-edition

Á For advanced MPI, including MPI-3

ÁUsing Advanced MPI, 2014, by William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk

Áhttps://mitpress.mit.edu/books/using-advanced-MPI

5

Tutorial Books on MPI

https://mitpress.mit.edu/books/using-MPI-third-edition
https://mitpress.mit.edu/books/using-advanced-MPI

spcl.inf.ethz.ch

@spcl_eth

Advanced Topics: One-sided Communication

6

spcl.inf.ethz.ch

@spcl_eth

Á The basic idea of one-sided communication models is to decouple data movement with

process synchronization

ÁShould be able to move data without requiring that the remote process synchronize

ÁEach process exposes a part of its memory to other processes

ÁOther processes can directly read from or write to this memory

7

One-sided Communication

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global

Address

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

8

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Memory

Segment

spcl.inf.ethz.ch

@spcl_eth

9

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

spcl.inf.ethz.ch

@spcl_eth

10

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D

E

L

A

Y

Even the

sending

process is

delayed

Process 0 Process 1

PUT(data)
D

E

L

A

Y

Delay in

process 1

does not

affect

process 0

GET(data)

spcl.inf.ethz.ch

@spcl_eth

Á ñEnabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sidedò by Robert

Gerstenberger, Maciej Besta, Torsten Hoefler (SC13 Best Paper Award)

Á They implemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and Aries (XC30) systems on top of

lowest-level Cray APIs

Á Achieved better latency, bandwidth, message rate, and application performance than Crayôs MPI RMA, UPC,

and Coarray Fortran

11

MPI RMA can be efficiently implemented

L
o

w
e

r
is

 b
e

tt
e

r

H
ig

h
e

r
is

 b
e

tt
e

r

spcl.inf.ethz.ch

@spcl_eth

12

3D FFT MILC

Distributed Hash Table Dynamic Sparse Data Exchange

H
ig

h
e

r
is

 b
e

tt
e

r
H

ig
h

e
r

is
 b

e
tt

e
r

L
o

w
e

r
is

 b
e

tt
e

r

L
o

w
e

r
is

 b
e

tt
e

r

Gerstenberger, Besta, Hoefler (SC13)

spcl.inf.ethz.ch

@spcl_eth

Á To work on both cache-coherent and non-cache-coherent systems

ÁEven though there arenôt many non-cache-coherent systems, it is designed with the future in mind

Á There even exists a formal model for MPI-3 RMA that can be used by tools and

compilers for optimization, verification, etc.

ÁSee ñRemote Memory Access Programming in MPI-3ò by Hoefler, Dinan, Thakur, Barrett, Balaji, Gropp,

Underwood. ACM TOPC, July 2015.

Áhttp://htor.inf.ethz.ch/publications/index.php?pub=201

13

MPI RMA is Carefully and Precisely Specified

http://htor.inf.ethz.ch/publications/index.php?pub=201

spcl.inf.ethz.ch

@spcl_eth

Á How to create remote accessible memory?

Á Reading, Writing, and Updating remote memory

Á Data Synchronization

Á Memory Model

14

What we need to know in MPI RMA

spcl.inf.ethz.ch

@spcl_eth

Á Any memory used by a process is, by default, only locally accessible

ÁX = malloc(100);

Á Once the memory is allocated, the user has to make an explicit MPI call to declare a

memory region as remotely accessible

ÁMPI terminology for remotely accessible memory is a ñwindowò

ÁA group of processes collectively create a ñwindowò

Á Once a memory region is declared as remotely accessible, all processes in the window

can read/write data to this memory without explicitly synchronizing with the target

process

15

Creating Public Memory

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Process 0

Private

Memory

Private

Memory

Private

Memory

Private

Memory

Private

Memory

window window window window

spcl.inf.ethz.ch

@spcl_eth

Á Four models exist

ÁMPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

ÁMPI_WIN_CREATE

You already have an allocated buffer that you would like to make remotely accessible

ÁMPI_WIN_CREATE_DYNAMIC

You donôt have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

ÁMPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer

16

Window creation models

spcl.inf.ethz.ch

@spcl_eth

Á Create a remotely accessible memory region in an RMA window

ÁOnly data exposed in a window can be accessed with RMA ops.

Á Arguments:

Á size - size of local data in bytes (nonnegative integer)

Ádisp_unit - local unit size for displacements, in bytes (positive integer)

Á info - info argument (handle)

Á comm - communicator (handle)

Ábaseptr - pointer to exposed local data

Áwin - window (handle)

17

MPI_WIN_ALLOCATE

MPI_Win_allocate (MPI_Aint size, int disp_unit ,

MPI_Info info, MPI_Commcomm, void * baseptr ,

MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

18

Example with MPI_WIN_ALLOCATE

int main(int argc , char ** argv)

{

int *a; MPI_Win win;

MPI_Init (& argc , & argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000* sizeof (int), sizeof (int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array óaô is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free (&win);

MPI_Finalize (); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

ÁExpose a region of memory in an RMA window

ÁOnly data exposed in a window can be accessed with RMA ops.

ÁArguments:

Ábase - pointer to local data to expose

Ásize - size of local data in bytes (nonnegative integer)

Ádisp_unit - local unit size for displacements, in bytes (positive integer)

Áinfo - info argument (handle)

Ácomm - communicator (handle)

Áwin - window (handle)

19

MPI_WIN_CREATE

MPI_Win_create (void *base, MPI_Aint size,

int disp_unit , MPI_Info info,

MPI_Commcomm, MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

20

Example with MPI_WIN_CREATE
int main(int argc , char ** argv)

{

int *a; MPI_Win win;

MPI_Init (& argc , & argv);

/* create private memory */

MPI_Alloc_mem (1000* sizeof (int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create (a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array óaô is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free (&win);

MPI_Free_mem(a);

MPI_Finalize (); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

Á Create an RMA window, to which data can later be attached

ÁOnly data exposed in a window can be accessed with RMA ops

Á Initially ñemptyò

ÁApplication can dynamically attach/detach memory to this window by calling
MPI_Win_attach /detach

ÁApplication can access data on this window only after a memory region has been attached

Á Window origin is MPI_BOTTOM

ÁDisplacements are segment addresses relative to MPI_BOTTOM

ÁMust tell others the displacement after calling attach

21

MPI_WIN_CREATE_DYNAMIC

MPI_Win_create_dynamic (MPI_Info info, MPI_Commcomm,

MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

22

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc , char ** argv)

{

int *a; MPI_Win win;

MPI_Init (& argc , & argv);

MPI_Win_create_dynamic (MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc (1000 * sizeof (int));

/* use private memory like you normally would */

a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win , a, 1000* sizeof(int));

/* Array óaô is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach (win, a); free(a);

MPI_Win_free (&win);

MPI_Finalize (); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

Á MPI provides ability to read, write and atomically modify data in remotely accessible

memory regions

ÁMPI_PUT

ÁMPI_GET

ÁMPI_ACCUMULATE (atomic)

ÁMPI_GET_ACCUMULATE (atomic)

ÁMPI_COMPARE_AND_SWAP (atomic)

ÁMPI_FETCH_AND_OP(atomic)

23

Data movement

spcl.inf.ethz.ch

@spcl_eth

Á Move data from origin, to target

Á Separate data description triples for origin and target

24

Data movement: Put

Origin

MPI_Put (const void * origin_addr , int origin_count ,

MPI_Datatype origin_dtype , int target_rank ,

MPI_Aint target_disp , int target_count ,

MPI_Datatype target_dtype , MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

Á Move data to origin, from target

Á Separate data description triples for origin and target

25

Data movement: Get

Origin

MPI_Get (void * origin_addr , int origin_count ,

MPI_Datatype origin_dtype , int target_rank ,

MPI_Aint target_disp , int target_count ,

MPI_Datatype target_dtype , MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

Á Atomic update operation, similar to a put

ÁReduces origin and target data into target buffer using op argument as combiner

ÁOp = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP , é

ÁPredefined ops only, no user-defined operations

Á Different data layouts between

target/origin OK

ÁBasic type elements must match

Á Op = MPI_REPLACE

Á Implements f(a,b)=b

ÁAtomic PUT

26

Atomic Data Aggregation: Accumulate

MPI_Accumulate (const void * origin_addr , int origin_count ,

MPI_Datatype origin_dtype , int target_rank ,

MPI_Aint target_disp , int target_count ,

MPI_Datatype target_dtype , MPI_Op op, MPI_Win win)

Origin Target

Remotely

Accessible

Memory

Private

Memory

+=

