
Cached Operator Reordering:
A Unified View for Fast GNN Training

Julia Bazinska
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Andrei Ivanov
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Tal Ben-Nun
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Nikoli Dryden
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Maciej Besta
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Siyuan Shen
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Torsten Hoefler
ETH Zurich

Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

Abstract
Graph Neural Networks (GNNs) are a powerful tool for handling structured graph
data and addressing tasks such as node classification, graph classification, and
clustering. However, the sparse nature of GNN computation poses new chal-
lenges for performance optimization compared to traditional deep neural networks.
We address these challenges by providing a unified view of GNN computation,
I/O, and memory. By analyzing the computational graphs of the Graph Convo-
lutional Network (GCN) and Graph Attention (GAT) layers—two widely used
GNN layers—we propose alternative computation strategies. We present adaptive
operator reordering with caching, which achieves a speedup of up to 2.43x for
GCN compared to the current state-of-the-art. Furthermore, an exploration of
different caching schemes for GAT yields a speedup of up to 1.94x. The pro-
posed optimizations save memory, are easily implemented across various hardware
platforms, and have the potential to alleviate performance bottlenecks in training
large-scale GNN models.

1 Introduction
Neural networks have transformed the way various real-world problems are solved, from computer
vision to natural language processing. However, most deep neural network (DNN) approaches do not
allow for straightforward processing of structured graph data, such as molecules, social networks or
knowledge graphs. There exist complex methods allowing for limited processing of such structured
data by regular DNNs.
Some examples include bag-of-atoms [2], which represent chemical compounds, or hierarchical
processing of 3D point clouds, which allows the inclusion of local neighborhood information in the
computation [30]. Even though these approaches allow processing structured graph data with DNNs,
they are lossy representations that do not include the full information on data connections and their
properties. To overcome these limitations, a new computational paradigm emerged.

Preprint. Preliminary work.

ar
X

iv
:2

30
8.

12
09

3v
1

 [
cs

.L
G

]
 2

3
A

ug
 2

02
3

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph Neural Networks (GNNs) are a method of performing neural network computation on graph
data. They can be used for solving problems such as node classification, graph classification, and
clustering [7, 11, 12, 16, 19, 33, 39, 46, 47]. Example applications include recommendations in
social networks [13] or document classification in citation networks [26]. Another common use of
GNNs is computer vision, where they are used to analyse 3d point clouds [35] or to match image
key-points [32].
With the processing of larger datasets and models, optimizing the performance of GNNs becomes
crucial. GNNs differentiate from traditional DNNs in performance due to their predominant use of
sparse computation. The input graph adopts a sparse adjacency matrix representation. Operations
involving an exchange of information between neighboring nodes rely on this graph structure, and
thus, operate on sparse data. As a result, GNN model training and evaluation often face memory-
bound challenges, unlike dense models. Consequently, traditional dense-oriented performance
optimization methods are often not directly suitable [8].
Several factors impact GNN runtime, with memory throughput being only one aspect. Additional
considerations include floating point operations executed, potential time-memory trade-offs between
saving values for the backward pass, and characteristics of the input graph. Numerous GNN-
focused strategies have been developed to address these performance issues, such as operator fusion
and reordering [45], or automatic graph optimization [40]. Nonetheless, these approaches lack a
systematic method for analyzing the runtime effects of high-level performance optimization decisions.
In this work, we propose a unified view of the computational graphs, I/O, and memory utilization
of the most common GNN layers. This framework enables us to understand the performance
implications of various computation schemes and data formats. Guided by this analysis, we propose
alternative computation schemes for two widely used GNN layers: the Graph Convolutional Network
layer (GCN) [26] and the Graph Attention layer (GAT) [38].
The main contributions of this work are:

• Analysis of GNN Performance Factors. We investigated three aspects that influence GNN
performance, which include the optimal selection of sparse data formats, the choice between
caching and recomputing intermediate values, and the organization of operations within the
computation graph. These considerations shape the performance of GNN implementations
depending on the input dataset.

• Adaptive Computational Scheme. Drawing insights from theoretical analysis, we leverage the
advantages of adaptively selecting caching strategies and operation ordering for the implementa-
tion of GCN and GAT. Additionally, our approach integrates the observed impact of selected
sparse data formats on a range of empirically evaluated datasets.

• Implementation of Proposed Computation Scheme. We implemented GAT and GCN within
the DaCe [4] framework. This implementation yielded a training acceleration of up to 2.43x for
GCN and up to 1.94x for GAT compared to the state-of-the-art implementations available in
PyTorch Geometric [14] (PyG).

2 Background
GNNs are a type of neural networks that are designed to process graph data, such as social networks,
citation graphs or spatial structures. In GNN computation, an iterative exchange of information
between a node and its neighbors, called message passing, takes place. Each node receives messages
from its neighbors and computes its new node feature vector using an aggregation function. Each
message-passing iteration is represented as a layer in the neural network.
Model training is performed similarly to classical DNNs, i.e., the value of the loss function is
optimized through the use of a gradient descent method that leverages backpropagation. Many
variations of GNN layers exist. In this work, we narrow our focus to GCNs and GATs.
Typically, graph data consists of nodes characterized by some node features and are connected by
edges. Edges can optionally also have descriptors, called edge weights, if they are scalars, or edge
features if they are vector data. In the following sections, the number of vertices is denoted by n and
the number of edges by e. The typical way of representing input graphs is to provide the so-called
adjacency matrix A = (aij)1≤i,j≤n ∈ Rn×n where aij = 1 if nodes are adjacent and aij = 0
otherwise. Furthermore, node features are represented in a feature matrix X ∈ Rn×m.

GCN. The Graph Convolutional Network layer is a simple GNN operator that is analogous to a
convolution operator. Firstly, the input features for each node are linearly projected into the new

2

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph
sparse n × n

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×k

→ dense n×k

Output
n × k

(a) Transform-first GCN forward pass.

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Graph
sparse n × n

Features
n × m

Weights
m × k

Output
n × k

(b) Propagate-first GCN forward pass.

Figure 1: Two schemes of computing the forward pass for GCN. Compute nodes of the same color operate on the same shapes, which are
indicated on the node in Einstein summation notation.

feature space, and then, for each node, the features of adjacent nodes are aggregated to create the
final output features (Appendices G.2 and G.4). In this work, we consider GCNs with summation as
the aggregation operation.

GAT. The Graph Attention layer is a more complex operator that employs an attention mechanism
over the edges connected to each node. After all node features are projected into the new feature
space, the attention weights, represented as a sparse matrix A ∈ Rn×n, are computed for each edge.
The attention weight for each edge is computed based on the source and destination node features
using another parameterized linear projection (Appendices G.2 and G.4).

SpMM. The sparse matrix-matrix multiplication operator is a multiplication of a sparse matrix
A ∈ Rn×m and a dense matrix B ∈ Rm×k, resulting in a dense matrix C ∈ Rn×k, C = AB. There
exist highly optimized implementations of this operator [29] and it is widely explored in literature
[34, 37] (Section 5). The SpMM operator, as explained in Section 2, is a very common operator in
GNNs. It represents the propagation of information between nodes. To understand the computational
characteristics of SpMM, we look at operational intensity. Operational intensity for SpMMs executed
in GNNs on datasets considered in this work is no higher than 1.066 FLOP

byte (Table 5) which indicates
that the computation is memory-bound.

SDDMM. Another common operator in GNN computation is the sampled dense-dense matrix
multiplication [6]. Given a sparse matrix A ∈ Rn×k and two dense matrices B ∈ Rn×m, C ∈ Rm×k,
we can compute D = A⊙ (B ·C), where ⊙ represents the Hadamard product and D ∈ Rn×k is a
sparse matrix. Similar to SpMM, this subroutine has existing highly optimized implementations [29].
SDDMM is used in the backward pass of GAT. There, we always need to compute it on matrices
with shapes A ∈ Rn×n,B ∈ Rn×f and C ∈ Rf×n. SDDMM is also memory-bound (Table 6).

3 Algorithmic View on Graph Neural Networks
In this section, we provide a unified view of the computational graph, I/O, and memory for the GCN
layer and the GAT layer in order to draw conclusions that would allow us to develop faster GNN
implementations. By taking a principled, high-level approach with the awareness of the low-level
performance impact, we find new ways to execute GNN layers and save compute.

3.1 Analysis of the GCN Computational Graph
In order to compute the output of a GCN layer (Equation (3)), the computation depicted in Figure 1
is necessary. The order of SpMM and GEMM can be altered without impacting the operational
outcome. However, it does influence the size of matrices involved in the multiplication. We can
either initiate the transformation of features followed by propagation, resulting in the computation of
A · (XΘ), or opt for the reverse sequence, computing (A ·X) ·Θ.
The figure reveals that the GEMM is performed on matrices of equal dimensions in both scenarios.
The primary difference resides in the SpMM. In the scenario depicted in Figure 1a the SpMM operates
on matrices sized n × n and n × k. Conversely, the approach in Figure 1b utilizes matrices sized
n × n and n ×m. Consequently, the former case entails a computation of 2(qm + nmk) FLOPs,
while the latter involves 2(qk + nmk) FLOPs.
To minimize runtime, the optimal strategy is to initiate feature transformation if k < m, and to start
with propagation if k ≥ m. This holds under the assumption that the execution time for an SpMM on
matrices of n× n and n× t scales linearly with t, where t is an integer. This assumption is based
on the asymptotic linear scaling of FLOPs and memory transfers in SpMM implementations using
common sparse formats (Table 5). In reality, the factors influencing runtime are more nuanced and
can be dependent on elements such as the exact implementation of the SpMM, the size of the working

3

Cached Operator Reordering: A Unified View for Fast GNN Training

Table 1: Summary of differences between alternative GCN implementations. Entries in the “Usage condition" column were derived to minimize
the total number of operations and memory transfers in the computation. In each pair of alternative schemes, the GEMMs are executed on the
same shapes, while the SpMMs are executed on different shapes.

Operation Scheme (Figure) GEMM
input sizes

SpMM
input sizes

Transient
values

Usage
condition

GCN forward Transform-first (1a)
nm,mk

nn, nk nk k < m

Propagate-first (1b) nn, nm nm k ≥ m

GCN backward
with feature gradient

Fused-propagate (12a) nm,mk
nm,nk

nn, nk nk k < 2m

Split-propagate (12b) 2×: nn, nm 2nm k ≥ 2m

GCN backward
no feature gradient

Fused-propagate (12a) nm,mk
nm,nk

nn, nk nk k < m

Split-propagate (12b) nn, nm nm k ≥ m

Table 2: Comparison of GCN computation schemes with caching. The case presented in Figures 1b and 12b is omitted because it always
executes more operations than the scheme using caching. In each pair of alternative schemes, the GEMMs are executed on the same shapes,
while the SpMMs are executed on different shapes.

Operation Forward scheme
(Figure)

Backward scheme
(Figure)

GEMM
input sizes

SpMM
input sizes

Transients
(fwd; bwd)

Usage
condition

GCN,
with feature
gradient

Transform-first (1a) Fused-propagate (12a) nm,mk
nk,mk
nm,nk

2×: nn, nk nk;nk k < m

Propagate-first
with caching (13a)

Split-propagate
with caching (13b) 2×: nn, nm nm;nm k ≥ m

GCN,
no feature
gradient

Transform-first (1a) Fused-propagate (12a) nm,mk
nm,nk

2×: nn, nk nk;nk k < 1
2
m

Propagate-first
with caching (13a)

Split-propagate
with caching (13b) nn, nm nm; 0 k ≥ 1

2
m

set, the GPU cache sizes and the sparse matrix structure. While we could attempt to model SpMM
runtime in a very detailed way, our simpler approach is mostly satisfactory, as can be seen from the
results (Section 4).
Extending this analysis to the backward pass, we summarize our recommendations on which scheme
should be employed in Table 1. Thus, we propose an adaptive computation scheme that executes the
operations according to the recommendations. In addition to FLOPs, we also consider the amount of
memory required by intermediate values in the computation, which is also shown to be smaller when
the recommendation is followed. This way, we minimize both the amount of computation needed and
the required amount of memory for executing the computation.

Caching intermediate values. The SpMM result AX appears both in forward (Equation (3)) and
backward (Equation (11)) passes. Thus, to avoid recomputing, the result can be cached and reused
in the backward pass. Caching the aggregated features AX allows to compute one less SpMM. In
Table 2 we present an analysis of the caching scheme illustrated in Figure 13.
In the case described here, caching adds no memory overhead as it avoids storing some intermediates
(Appendix A). Moreover, as can be seen in Table 2, computing GCN with caching requires less
memory for transients than the same scheme without caching.

Generalizability of the adaptive scheme. The proposed adaptive scheme with caching can be
applied to any GNN computation that includes the chained multiplication depicted in Figure 1. There-
fore, our findings could be applicable to other GNN layers employing similar chained multiplication,
for example, the Graph Isomorphism Network layer [41] or the GraphSAGE operator [20]. This ap-
proach is completely hardware-agnostic, making it suitable for CPU computation, GPU computation,
and other accelerators. Although our work operates under the assumption of a summation-based
aggregation function for neighboring nodes, it can be extended to accommodate any aggregation
function that has the distributive property, e.g. mean.

3.2 Analysis of the GAT Computation
The computational characteristics of GAT are different from those of GCN (Appendix G.3). We
cannot use a method analogous to what was shown for GCN in subsection 3.1 because it requires
computing A (XΘ), where A is calculated using the value of XΘ. Another difference in relation to

4

Cached Operator Reordering: A Unified View for Fast GNN Training

Table 3: Comparison of time-memory trade-offs in GAT.

Cached values Additional memory use Saved FLOPs Saved I/O

Transformed features 4nhk O(nhkm) O(nm+mhk + nhk)

Transformed features,
node attention 4nh(k + 2) O(nhkm) O(nm+mhk + nhk)

Transformed features,
edge attention weights,
edge mask

4nhk + 5qh O(nhkm+ qh) O(nm+mhk + nhk + qh)

GCN is that GAT does not consider edge weights of the input graph. Instead, the attention weights,
which are computed based on node features, are used.
Similar to Section 3.1, we investigated other opportunities for operator reordering in the GAT operator
(Appendix B). We concluded that the optimal scheme is not dependent on the input and is already in
use in existing frameworks.

Multi-head GAT. GAT layers are often used with multiple heads. From the computational perspec-
tive, that results in almost every operator in the computation having an additional dimension. From
the performance perspective, it can mitigate the issue of uncoalesced memory accesses if the data
is arranged correctly: depending on the computation, the head dimension should be either last or
penultimate. Usually when operating on the graph structure, the program often needs to access the
memory holding values for neighbors of a given node, which are not contiguous. Thus, when a cache
line is loaded, only a single value from it is used because others belong to other nodes. Once enough
heads in GAT are used, the loaded cache line holds values for the same node but of different heads.
All of those values are used, because the same computation has to be executed on all heads.
Moreover, a model with multiple heads implies that we need to execute SpMM and SDDMM in a
semi-batched fashion, meaning that the sparse structure is shared across the batch. In the case of
SpMM, we need to multiply h sparse matrices of shapes n×n that all share the same sparse structure
with a dense matrix of shape n× h× k, where the middle dimension is the batch dimension.
Similarly, regarding SDDMM, we multiply h sparse matrices sharing the same sparse structure with
a result of a multiplication of two dense matrices batched along the middle dimension. Having
the batch dimension not as the leading dimension, but as the middle dimension potentially allows
for more contiguous memory accesses. However, such semi-batched computation is not directly
supported by optimized vendor libraries such as CuSPARSE [29].

Caching intermediate values. We analyze caching opportunities for the forward and backward
passes of GAT (Appendix C). Caching more variables enables us to reduce computation time in
the backward pass, although it does entail a memory cost. The trade-offs discovered between
computational benefits and memory costs are summarized in Table 3. We evaluate different caching
strategies in subsection 4.2.

4 Evaluation
The network architecture used for GCN evaluation was a simple GNN network with two GCN layers
and a Rectified Linear Unit (ReLU) activation between them. For GAT, the network architecture
consisted of two GAT layers with 8 heads each and an Exponential Linear Unit (ELU) activation
function between them. The sizes of the internal hidden representations vary between experiments in
order to benchmark different model sizes. For computing the parameter gradients, the mean squared
error loss function was used for full networks and a simple sum in case of single layer benchmarking.

Baseline. Implementations of GAT and GCN layers from PyTorch Geometric (PyG) were used
as baselines. Starting from Pytorch 2.0 and PyTorch Geometric 2.3.0, it is possible to compile the
model code to obtain a much faster model. This functionality is supported only for the COO format
(Appendix D). Thus, in this work, we report the numbers for compiled PyTorch models with the COO
format and not compiled models with CSR format. Additionally, for GAT, we report the results for
the dGNN [45] implementation of the operator, which is also available as part of PyTorch Geometric.
The dGNN implementation of GAT requires the graph matrix to be stored in both CSC and CSR, thus
storing the graph data twice. The dGNN implementation of GAT consists of hand-written CUDA
kernels.

5

Cached Operator Reordering: A Unified View for Fast GNN Training

Table 4: Graph datasets used in this work.

Dataset Nodes Edges Features % NNZ Classes Avg. node degree

Cora [42] 2,708 10,556 1,433 0.144% 7 7.8
Citeseer [42] 3,327 9,104 3,703 0.082% 6 5.47
PubMed [42] 19,717 88,648 500 0.023% 3 8.99
Flickr [44] 89,250 899,756 500 0.011% 7 5.47
OGB-Arxiv [21] 169,343 1,166,243 128 0.004% 40 13.77

8 16 32 64 128 256 512 1024
Output feature size

0.00 MB

1.00 GB

2.00 GB

M
em

or
y

[M
B]

FWD: Transform-first, BWD: fused-propagate
FWD: Propagate-first, BWD: split-propagate
FWD & BWD: Adaptive, no caching
FWD & BWD: Adaptive, with caching

10
9.

03
 M

B

12
4.

55
 M

B

15
5.

57
 M

B

21
7.

62
 M

B

34
1.

71
 M

B

58
9.

90
 M

B

1.
06

 G
B

2.
03

 G
B

18
6.

55
 M

B

19
6.

90
 M

B

21
7.

58
 M

B

25
8.

96
 M

B

34
1.

71
 M

B

50
7.

21
 M

B 83
8.

21
 M

B

1.
47

 G
B

10
9.

03
 M

B

12
4.

55
 M

B

15
5.

57
 M

B

21
7.

62
 M

B

34
1.

71
 M

B

50
7.

21
 M

B 83
8.

21
 M

B

1.
47

 G
B

10
9.

03
 M

B

12
4.

54
 M

B

15
5.

55
 M

B

16
5.

41
 M

B

24
8.

12
 M

B

41
3.

56
 M

B 74
4.

44
 M

B

1.
37

 G
B

Figure 2: Single GCN layer memory use on the OGB Arxiv dataset.

Benchmarking. All of the following experiments were executed on a machine with Intel(R) 6130
@ 2.10GHz CPU, 1.5 TB RAM, and an NVIDIA Tesla V100 16GB PCIe GPU. Each benchmarked
computation was run with 10 warm-up iterations and then executed 100 times in 10 blocks in the
case of the forward pass or 20 times in 5 blocks in the case of the backward pass (lower because of
long execution times) in order to minimize measurement overheads. All reported results for runtimes
are medians of 1

100 or 1
20 of block execution times. Standard deviation is also plotted in the figures

but is mostly unnoticeable due to low variance in the results. The datasets used in benchmarking are
summarized in Table 4.

4.1 Graph Convolutional Network
Our proposed method of choosing the optimal implementation depends on the number of input and
output features. Thus, we execute a single GCN layer with varying numbers of output features
between 8 and 1024. We use the OGB Arxiv dataset, which has 128 node features, and evaluate
layers with varied output sizes. We assess both situations, one where input feature gradients are
required and another where they are not necessary. We provide the results for schemes both with and
without caching. The dataset is represented in the CSC format.
The threshold for switching between the schemes turned out to be 128 or 256 output features
(Appendix F), depending on the computation: whether it is performed without or with feature
gradient computation. This threshold matches the suggested usage conditions from Tables 1 and 2.
Thus, our adaptive implementation can correctly identify this threshold. As a result, it performs as
fast as the fastest scheme.

8 16 32 64 128 256 512 1024
Output feature size

0.00

0.25

0.50

0.75

1.00

1.25

Relative memory use
Speedup

Figure 3: GCN runtime speedup (higher is better) and used
memory (lower is better) of the adaptive scheme with caching in
comparison to the adaptive scheme without caching.

None Features Features and
node attention

Features, edge
weights and mask

Cached values

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

OGB Arxiv
Cora
Citeseer
Pubmed
Flickr
Geomean

Figure 4: Speedup between different GAT caching schemes for
each dataset. Geometric mean is indicated in black.

6

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128 256 512 1024
Hidden size

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Re
la

ti
ve

 r
un

ti
m

e

Ours faster

PyG faster

Forward

8 16 32 64 128 256 512 1024
Hidden size

Ours faster
PyG faster

Forward + backward

Cora
Citeseer
Pubmed
Flickr
OGB Arxiv
Geomean

Figure 5: Runtime of our adaptive scheme with caching for GCN relative to the fastest PyTorch Geometric runtime. Geometric mean is indicated
in black.

Memory usage. In Section 3.1, we mentioned that caching intermediate features does not add extra
memory cost. This is backed by Figure 2, which shows memory savings from caching as expected.
Caching avoids one SpMM operation, removing the need for an extra array of size n×m. Figure 3
illustrates speedup and memory use from caching versus not caching in the same scheme. For output
sizes up to 32, both programs act similarly due to the same transform-first, fused-propagate scheme.
With larger output sizes, caching becomes valuable: it exhibits a speedup of up to 25% while using
25% less memory. However, for bigger output sizes, the caching advantage lessens as the runtime
is dominated by GEMM execution. Thus, adaptive computation benefits certain models, and if the
computation scheme allows it, caching intermediate results is always useful.

Evaluation against baselines. After proving our adaptive implementation’s optimal computing
scheme, we compare it to the baselines on the mentioned two-layer GCN network. We measure the
time for a complete forward and backward pass. Runtime results are summarized in Figure 5 (more
in Figure 15).
In cases where the hidden size is bigger than the input feature size, we benefit greatly from the adaptive
scheme. PyTorch Geometric uses only the transform-first scheme for forward and fused-propagate
for backward which clearly stands out in the experimental results. At times, our implementation is
slower than PyG. This arises when our approach mirrors PyG’s computation strategy, specifically the
transform-first and fused-propagate methods. The primary distinction between our implementation
and PyG pertains to the computation of SpMM and ReLU operations. Our method relies on the
CuSPARSE library’s optimized subroutine for SpMM, but this prevents us from seamlessly fusing
the operator with the subsequent element-wise activation function. In contrast, PyG sacrifices
computational flexibility for fine-tuned operator performance. It dynamically generates SpMM code,
enabling fusion with the subsequent element-wise operator.
For hidden sizes up to 64, our approach proves faster for smaller datasets like Cora, Citeseer, and
Pubmed. Conversely, PyG’s approach excels with larger datasets such as Flickr and OGB Arxiv.
For increased hidden sizes, we either benefit from an alternative computing scheme, as seen in
Arxiv, Flickr, and Pubmed, or achieve performance nearly on par with PyG, exemplified by Citeseer
and Cora. This leads us to conclude that CuSPARSE’s SpMM likely harnesses the small dataset
size to achieve higher performance. However, when data grows too large, CuSPARSE’s SpMM
performance aligns with PyG’s generated SpMM, albeit without the advantage of fused activation
function integration.
The data format choice significantly affects runtime. Comparing COO and CSC formats (see Figure 6),
CSC is up to 1.63 times faster than COO. On average, CSC is 1.14 times faster for forward passes and
1.07 times faster for both passes combined. This impact varies among datasets, with larger hidden
sizes favoring CSC due to CuSPARSE’s closed-source CSC SpMM subroutines. These utilize a
preprocessing step, distributing GPU thread work fairly. As hidden sizes grow, preprocessing takes
less time relative to matrix multiplication, reducing overhead for bigger problems. Unlike CSC,
COO SpMM variant doesn’t need this step, performing better for smaller problems like Cora (hidden
size 8). However, for larger graphs, CSC excels by loading less data for sparse representation and
benefiting from organized non-zero entries in columns, thus enhancing coalescence.

4.2 Graph Attention Network
We benchmark GAT with different caching schemes in order to evaluate their time-memory trade-
offs. We run a 2-layered GAT model with 8 heads and varied number of hidden features. We

7

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128 256 512 1024
Hidden size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Re
la

tiv
e

ru
nt

im
e

CO
O

to
 C

SC

CSC faster

COO faster

Forward
OGB Arxiv
Cora
Citeseer
Pubmed
Flickr
Geomean

8 16 32 64 128 256 512 1024
Hidden size

CSC faster

COO faster

Forward + backward
OGB Arxiv
Cora
Citeseer
Pubmed
Flickr
Geomean

Figure 6: Data format comparison: relative runtime of GCN using the COO format to GCN using the CSC format. Values above 1.0 indicate
that using CSC is faster, below 1.0 indicate that using COO is faster. Geometric mean across datasets is plotted in black. There is a high variance
between datasets but it can be seen that the larger the hidden size, the faster CSC tends to be.

8 16 32 64 128
Hidden size

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Re
la

ti
ve

 r
un

ti
m

e

Forward

OGB Arxiv
Cora
Citeseer
Pubmed
Flickr
Geomean

8 16 32 64 128
Hidden size

Ours faster
PyG faster

Forward + backward

OGB Arxiv
Cora
Citeseer
Pubmed
Flickr
Geomean

Figure 7: GAT comparison against baselines: the runtime of our implementation relative to the fastest PyTorch Geometric implementation for
the given dataset and hidden size. Values above 1.0 indicate that ours is faster. The geometric mean of the speedups is indicated in black.

evaluate hidden sizes of 8, 16, 32, 64, 128. A model with 8 heads and hidden size of 128 has a
comparable number of parameters as a GCN model with 1024 hidden size. We compare against
various implementations available in PyTorch Geometric: compiled COO, CSR, dGNN using CSC
and CSR, both compiled and not.

Caching schemes evaluation. We evaluate four caching schemes as described in Table 3: no
caching, caching only the transformed features, caching features and node attention, caching features
together with final edge weights and LeakyReLU mask. Aggregated results for different datasets can
be seen in Figure 4 (more in Figures 16 and 17).

Evaluation against baselines. We choose the fastest caching scheme, which caches the transformed
features, edge weights, and the LeakyReLU mask, to benchmark against PyG. We summarize the
results in Figure 7 (more in Figure 18), where we show the speedup of our implementation against
the fastest of PyG implementations for the given dataset and hidden size.
The PyG implementations use different caching strategies. Compiled edge list and CSR both cache as
much as possible, i.e., the transformed features, the edge weights, and the edge mask. In the dGNN
implementation, only the transformed features and the node attention are cached. Our implementation
outperforms the baselines on average. Similar to the GCN case, our implementation is consistently
faster than pure PyG implementations on the smallest dataset and small data sizes.
In all instances except one (Flickr, 128 hidden size), our performance surpasses that of the dGNN
implementation. We attribute this trend to two key factors. Firstly, we cache full edge weights,
whereas dGNN saves only the node attention and recomputes the values. Secondly, the smaller the
dataset and the hidden size, the more dGNN is outperformed by our implementation and vanilla PyG.
This highlights the suboptimal handling of smaller computations by dGNN, stemming from inadequate
utilization of shared memory resources and a lack of adaptability in kernel-blocking strategies for
small data. A closer inspection of the source code further substantiates these observations [1].
However, in some cases our implementation does not outperform PyTorch. That is caused by the
fact that our implementation, by committing to highly-optimized subroutines, gives up on possible
fusion with sparse operators, which is leveraged by PyTorch, similarly to the case of GCN. Moreover,
in multi-head GAT layers, we execute some computation only as batched in the leading dimension,

8

Cached Operator Reordering: A Unified View for Fast GNN Training

which requires us to execute additional tensor permutations. It would be more efficient to omit the
tensor permutations and execute the computation batched in the middle dimension, which would
allow for more coalesced memory accesses. However, we take the former approach due to lack
of support for the appropriate batching scheme in CuSPARSE. Future work could overcome this
difficulty and produce a more optimized GAT implementation.
Furthermore, the experimental results highlight the need for improvements in compilation support
within PyTorch Geometric. We encountered difficulties in compiling the GAT model for both
Citeseer and OGB Arxiv due to framework bugs in PyTorch. Additionally, for dGNN, we examined
results from both compiled and non-compiled models. Surprisingly, we observed that contrary to
expectations, the compiled version performs slower than the non-compiled counterpart on the smallest
datasets (Cora and Citeseer). This phenomenon is limited to small graphs and hidden sizes. We
hypothesize that the PyTorch compiler might generate suboptimal blocking schemes for CUDA
kernels in these cases, leading to underutilization of the GPU.

5 Related Work
Optimizing Sparse Operators. While our work focuses on high-level GNN computation, the
problem of optimizing sparse computation on the operator level has been explored by many works.
However, approaches presented in the works below focus solely on low-level optimization of SpMM
and thus are not easily generalizable to other computations required by GNNs.
Various approaches aim to optimize sparse matrix-vector multiplication (SpMV) in different contexts.
Kreutzer et al. [27] propose SELL-C-σ, enhancing ELLPACK for efficient SpMV. Anzt et al. [3]
present another ELLPACK variant optimized for SpMV. Multiple other works in this direction
exist [5, 9, 10, 17, 36]. These solutions offer inspiration rather than direct solutions due to the SpMV
absence in GNNs.
Gale et al. [15] optimize SpMM and SDDMM for Deep Learning. Their focus is on matrices for
pruned dense neural networks, with sparsity of 70%-90%. Yet, this is significantly lower than typical
matrices representing graphs (< 2% non-zero entries).
For GNNs, Shi et al. [34] propose a SpMM-optimized format using modified COO. Vazquez et al.
[37] design an optimized SpMM kernel using ELLPACK-R. Both address thread balance, memory
latency, and uncoalesced reads. GE-SpMM [22] also optimizes SpMM for GNNs, allowing various
reduce operators and operating on widely-used CSR format. Recently, Besta et al. [6] provided a
tensor-based formulation for a broad set of Attentional GNNs.

High-level optimization. In our work, we utilize the DaCeML [31] and DaCe frameworks to enable
high-level optimization beyond the scope of a single operator. There are other works that also adopt
such a high-level approach to optimizing the GNN runtime.
Zhang et al. [45] use a layer-level approach similar to ours, wherein they examine computation
graphs of selected GNN layers to pinpoint performance issues. Their solution involves reordering
operators in the GAT to reduce computation, but they do not address the GCN and lack dynamic
computation adjustments based on matrix size.
Methods to alleviate high memory bandwidth usage exist, including neighbor grouping by Huang et
al. [23]. This approach assigns neighbor node groups to memory-sharing threads, thereby enhancing
data reuse. It addresses GNN performance in a distinct manner compared to our work.
GNN-focused compilers also address sparse data optimization. Graphiler [40] automatically enhances
GPU-based GNN computation by employing operator reordering optimization, similar to our approach
and that of Zhang et al. [45]. In terms of CPU execution, Graphite [18] optimizes GNNs by
overlapping memory and compute tasks to improve data locality. However, it is restricted to CPUs.
SparseTIR [43] adopts a data-centered perspective, offering composability in terms of formats and
transformations. It tailors hybrid data formats and optimizes computation in alignment with its
intermediate representation (IR).

6 Conclusion
In this work, we presented a unified view on GNN computational graphs, I/O and memory which
allowed us to connect a high-level understanding with the awareness of low-level performance
consequences. We used the gained insights to propose GNN optimizations, we implemented them
and we showed their benefits in terms of performance.

9

Cached Operator Reordering: A Unified View for Fast GNN Training

We proposed the adaptive computational scheme with caching for optimizing the chained multi-
plication of A ·X ·Θ where A is a sparse adjacency matrix and X and Θ are dense matrices.
This scheme eliminates redundant computation and reuses cached values to save both compute and
memory. We incorporated the scheme in the Graph Convolutional Network layer using the DaCe
framework and achieved up to 3.02x speedup (geomean 1.31x) in comparison to the best PyTorch
implementation in the forward pass and up to 2.43x speedup (geomean 1.27x) in the backward pass.
Furthermore, we evaluated GCN runtime on different sparse data formats and found that the choice
of a correct format can result in up to 1.63x speedup.
Moreover, we explored alternative caching schemes for GAT and showed an in-depth analysis of
the influence of caching on runtime. Our optimized implementation achieved up to 2.71x speedup
(geomean 1.11x) in comparison to the best PyTorch Geometric implementation in the forward pass
and up to 1.94x speedup (geomean 1.17x) in the backward pass.
Furthermore, this work provides explicit formulations of the backward passes for both GCN and
GAT (Appendix G). Leveraging their mathematical properties was crucial in this work. Thus, further
work could also benefit from their availability. Another contribution of this work is the extension
of DaCeML [31] which allows for replacements of PyTorch modules with arbitrary code. This
functionality facilitates further work in optimization of machine learning models previously not
supported by DaCeML, such as GNN models.

Acknowledgements
We thank Hussein Harake, Colin McMurtrie, Mark Klein, Angelo Mangili, and the whole CSCS
team granting access to the Ault and Daint machines, and for their excellent technical support. We
thank Timo Schneider for help with computing infrastructure at SPCL. This project received funding
from the European Research Council (Project PSAP, No. 101002047), and the European High-
Performance Computing Joint Undertaking (JU) under grant agreements No. 955513 (MAELSTROM)
and No. 101034126 (EU-Pilot). This project was supported by the ETH Future Computing Laboratory
(EFCL), financed by a donation from Huawei Technologies. This project received funding from the
European Union’s HE research and innovation programme under the grant agreement No. 101070141
(Project GLACIATION).

References
[1] [n. d.]. dgNN: High-performance backend for GNN layers with Data Flow Graph level optimization.

https://github.com/dgSPARSE/dgNN/. Accessed: 2023-08-11. 8

[2] Luis M Antunes, Ricardo Grau-Crespo, and Keith T Butler. 2022. Distributed representations of atoms and
materials for machine learning. npj Computational Materials 8, 1 (2022), 1–9. 1

[3] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. 2014. Implementing a Sparse Matrix Vector Product
for the SELL-C/SELL-C-sigma formats on NVIDIA GPUs. Technical Report UT-EECS-14-727. 9

[4] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo Schneider, and Torsten Hoefler. 2019.
Stateful dataflow multigraphs: A data-centric model for performance portability on heterogeneous archi-
tectures. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–14. 2

[5] Maciej Besta et al. 2020. Communication-efficient jaccard similarity for high-performance distributed
genome comparisons. In IEEE IPDPS. IEEE, 1122–1132. 9

[6] Maciej Besta et al. 2023. High-Performance and Programmable Attentional Graph Neural Networks with
Global Tensor Formulations. In ACM/IEEE Supercomputing. 3, 9

[7] Maciej Besta, Raphael Grob, Cesare Miglioli, Nicola Bernold, Grzegorz Kwasniewski, Gabriel Gjini,
Raghavendra Kanakagiri, Saleh Ashkboos, Lukas Gianinazzi, Nikoli Dryden, et al. 2022. Motif Prediction
with Graph Neural Networks, In ACM KDD. arXiv preprint arXiv:2106.00761. 2

[8] Maciej Besta and Torsten Hoefler. 2022. Parallel and Distributed Graph Neural Networks: An In-Depth
Concurrency Analysis. arXiv preprint arXiv:2205.09702 (2022). 2

[9] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017. Slimsell: A vectorizable
graph representation for breadth-first search. In IEEE IPDPS. IEEE, 32–41. 9

[10] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefler. 2017. To push or
to pull: On reducing communication and synchronization in graph computations. In ACM HPDC. 9

[11] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18–42. 2

10

https://github.com/dgSPARSE/dgNN/

Cached Operator Reordering: A Unified View for Fast GNN Training

[12] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. 2020. Machine
learning on graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675 (2020). 2

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph Neural
Networks for Social Recommendation. https://doi.org/10.48550/ARXIV.1902.07243 2

[14] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds. 2, 13

[15] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU Kernels for Deep Learning.
arXiv:2006.10901 [cs.LG] 9

[16] Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, and Torsten Hoefler. 2021. Learning
Combinatorial Node Labeling Algorithms. arXiv preprint arXiv:2106.03594 (2021). 2

[17] Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej Besta, and Torsten Hoefler. 2018.
Communication-avoiding parallel minimum cuts and connected components. In ACM SIGPLAN Notices. 9

[18] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep
Torrellas. 2022. Graphite: Optimizing Graph Neural Networks on CPUs through Cooperative Software-
Hardware Techniques. In Proceedings of the 49th Annual International Symposium on Computer Archi-
tecture (New York, New York) (ISCA ’22). Association for Computing Machinery, New York, NY, USA,
916–931. https://doi.org/10.1145/3470496.3527403 9

[19] William L Hamilton et al. 2017. Representation learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584 (2017). 2

[20] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation Learning on Large
Graphs. arXiv:1706.02216 [cs.SI] 4

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, Jure
Leskovec, Regina Barzilay, Peter Battaglia, Yoshua Bengio, Michael Bronstein, Stephan Günnemann, Will
Hamilton, Tommi Jaakkola, Stefanie Jegelka, Maximilian Nickel, Chris Re, Le Song, Jian Tang, Max
Welling, and Rich Zemel. 2020. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
Advances in Neural Information Processing Systems 2020-December (5 2020). https://arxiv.org/
abs/2005.00687v7 6

[22] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM: General-purpose Sparse
Matrix-Matrix Multiplication on GPUs for Graph Neural Networks. arXiv:2007.03179 [cs.DC] 9

[23] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021. Understanding and
Bridging the Gaps in Current GNN Performance Optimizations. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)
(PPoPP ’21). Association for Computing Machinery, New York, NY, USA, 119–132. https://doi.org/
10.1145/3437801.3441585 9

[24] J. Kiefer and J. Wolfowitz. 1952. Stochastic Estimation of the Maximum of a Regression Function.
The Annals of Mathematical Statistics 23, 3 (1952), 462 – 466. https://doi.org/10.1214/aoms/
1177729392 21

[25] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG] 21

[26] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016). 2

[27] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R. Bishop. 2014. A Unified
Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication on Modern Processors
with Wide SIMD Units. SIAM Journal on Scientific Computing 36, 5 (jan 2014), C401–C423. https:
//doi.org/10.1137/130930352 9

[28] Andrew L. Maas. 2013. Rectifier Nonlinearities Improve Neural Network Acoustic Models. https:
//api.semanticscholar.org/CorpusID:16489696 20

[29] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. 2010. CUSPARSE library: A set of
basic linear algebra subroutines for sparse matrice. In GPU Technology Conference. 3, 5, 17, 18

[30] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. https://doi.org/10.48550/ARXIV.1706.02413 1

[31] Oliver Rausch, Tal Ben-Nun, Nikoli Dryden, Andrei Ivanov, Shigang Li, and Torsten Hoefler. 2022.
DaCeML: A Data-Centric Optimization Framework for Machine Learning. In Proceedings of the 36th
ACM International Conference on Supercomputing (ICS ’22). 9, 10

[32] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. 2019. SuperGlue:
Learning Feature Matching with Graph Neural Networks. CoRR abs/1911.11763 (2019). arXiv:1911.11763
http://arxiv.org/abs/1911.11763 2

11

https://doi.org/10.48550/ARXIV.1902.07243
https://doi.org/10.1145/3470496.3527403
https://arxiv.org/abs/2005.00687v7
https://arxiv.org/abs/2005.00687v7
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
https://api.semanticscholar.org/CorpusID:16489696
https://api.semanticscholar.org/CorpusID:16489696
https://doi.org/10.48550/ARXIV.1706.02413
http://arxiv.org/abs/1911.11763

Cached Operator Reordering: A Unified View for Fast GNN Training

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008.
The graph neural network model. IEEE transactions on neural networks 20, 1 (2008), 61–80. 2

[34] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. 2020. Efficient Sparse-Dense Matrix-Matrix Multiplication
on GPUs Using the Customized Sparse Storage Format. In 2020 IEEE 26th International Conference on
Parallel and Distributed Systems (ICPADS). 19–26. https://doi.org/10.1109/ICPADS51040.2020.
00013 3, 9, 17

[35] Weijing Shi and Ragunathan (Raj) Rajkumar. 2020. Point-GNN: Graph Neural Network for 3D Object
Detection in a Point Cloud. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2

[36] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling betweenness centrality
using communication-efficient sparse matrix multiplication. In ACM/IEEE Supercomputing. 9

[37] Francisco Vázquez, Gloria Ortega López, José-Jesús Fernández, Inmaculada García, and Ester M. Garzón.
2012. Fast Sparse Matrix Matrix Product Based on ELLR-T and GPU Computing. 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with Applications (2012), 669–674. 3, 9,
17

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017). 2

[39] Zonghan Wu et al. 2020. A comprehensive survey on graph neural networks. IEEE Transactions on Neural
Networks and Learning Systems (2020). 2

[40] Zhiqiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler: Optimizing Graph
Neural Networks with Message Passing Data Flow Graph. In Proceedings of Machine Learning and
Systems, D. Marculescu, Y. Chi, and C. Wu (Eds.), Vol. 4. 515–528. https://proceedings.mlsys.org/
paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf 2, 9

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural
Networks? arXiv:1810.00826 [cs.LG] 4

[42] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting Semi-Supervised Learning
with Graph Embeddings. CoRR abs/1603.08861 (2016). arXiv:1603.08861 http://arxiv.org/abs/
1603.08861 6

[43] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR: Composable Abstrac-
tions for Sparse Compilation in Deep Learning. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 660–678.
https://doi.org/10.1145/3582016.3582047 9, 16

[44] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. 2020. Graph-
SAINT: Graph Sampling Based Inductive Learning Method. arXiv:1907.04931 [cs.LG] 6

[45] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan Xie, and Yu Wang. 2021.
Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective.
arXiv:2110.09524 [cs.LG] 2, 5, 9, 13

[46] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering (2020). 2

[47] Jie Zhou et al. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020),
57–81. 2

Appendix
A No memory overhead with GCN caching
Usually, caching additional values for the backward pass means using additional memory. However,
that is not the case when employing caching in GCN. Looking at Figure 12, it can be seen that in
order to compute the gradients without caching, in both schemes we need to store the layer input
features of size n×m for the backward pass. Nevertheless, as can be seen from Figure 13b, once
the cached aggregated features are used, the original layer input features are not needed. Thus, the
amount of memory used to store intermediates for the backward pass is exactly the same as in the
scheme without caching.

12

https://doi.org/10.1109/ICPADS51040.2020.00013
https://doi.org/10.1109/ICPADS51040.2020.00013
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
http://arxiv.org/abs/1603.08861
http://arxiv.org/abs/1603.08861
https://doi.org/10.1145/3582016.3582047

Cached Operator Reordering: A Unified View for Fast GNN Training

B GAT Operator Reordering
For each edge, we need to compute the raw attention weight aT [xiΘ ∥xjΘ] where a ∈ R2k,
xiΘ ∈ Rk. If we were to compute that expression directly for each edge, the computational
complexity would be O(qk) where q is the number of edges.
However, there exists a much more efficient scheme that is widely employed by other works [14, 45]
and mainstream GNN frameworks. Instead of computing the whole expression for each edge, we
precompute values for each node and only sum them up for each edge.
Firstly, we split the attention weights into two separate vectors:

a =

[
asrc
adst

]
where asrc,adst ∈ Rk. This allows us to first compute Y = XΘ and then for each node i calculate
αsrc = aTsrcYi and αdst = aTdstYi. Then for each edge between nodes i and j we only need to sum
αsrc
i + αdst

j . This way of computing the weights results in computational complexity of O(q + nk)
which is much more beneficial, given that n ≪ q in graph data.

C GAT Caching
Similar to GCN, in GAT we can cache intermediate values to avoid recomputing them in the backward
pass. As can be seen in Figure 8, there are multiple stages at which we can cache intermediate values.
In Figure 9 the scheme for computing the backward pass can be seen.

D Sparse Formats
Let us assume a matrix A ∈ Rn×m. All of the formats mentioned below are illustrated in Figure 10.

D.1 Compressed Sparse Row and Compressed Sparse Column
The Compressed Sparse Row format (CSR) is one of the most commonly used sparse matrix formats.
CSR requires storing two vectors describing the sparse structure: the columns array c ∈ Zq and the
row pointer array r ∈ Zn+1. The i-th position in r indicates at which index of c the i-th row start.
The (n+ 1)-th position pf r contains the value q + 1 to simplify array processing. The j-th position
in c indicates the column of the j-th value in the dense representation of the matrix. Optionally, a
third array can be used to store edge weights: the values array v ∈ Rq, which is indexed the same
way as c. In total, this format requires the storage of q + n + 1 integer values for indexing and q
floating point values to represent the non-zero matrix entries. Thus, among the formats described
here, the CSR format requires the least memory to store a given sparse matrix.
The CSR format is not particularly well suited to processing on GPUs because it enforces row-wise
processing of the matrix but the rows are not even. Thus, the work division between CUDA threads
is not straightforward and requires dynamic load balancing.
The Compressed Sparse Column format (CSC) is analogous to the CSR format. Instead of the arrays
representing columns and row pointers, it uses one array for rows and one for column pointers.

D.2 Coordinate Format
The coordinate format (COO) is the simplest sparse matrix format. To represent a matrix in this
format, two arrays are needed: the columns array c ∈ Zq and the rows array r ∈ Zq, that together
indicate the coordinates of a given entry in the original dense matrix. Similarly to CSR, a third array
storing values can be also used: the values array v ∈ Rq .
This format has a higher memory requirement than CSR and CSC. It requires storing three matrices of
length q each (two holding integer values and one holding floating point values). However, it allows
for a simpler parallelization. The matrix can be processed entry-by-entry, so no tailored scheme is
needed to ensure even work division between threads.

D.3 ELLPACK Format
The ELLPACK format is better suited for processing on GPUs than CSR and COO. Instead of
one-dimensional vectors, it uses a two-dimensional matrix to store the sparsity structure: Col =
(cij) ∈ Zn×p, where cij holds the column index of the j-th entry in the i-th row. The number of
columns in Col, which we denote by p, is equal to the highest number of non-zero entries in a single

13

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph
structure
sparse n × n
q non-zeros

Features
n × m

Weights
m × hk

GEMM
n×m, m×hk → n×hk

Semi-batched SpMM
sparse n×n×h, dense n×h×k

→ dense n×h×k

Output
n × h × k

Source attention
weights

h × k

Destination
attention weights

h × k

Einsum
n×h×k, h×k → n×h

Einsum
n×h×k, h×k → n×h

column-wise softmax
q×h → q×h

no
de

 so
ur

ce

at
te

nt
io

n
αsr

c

no
de

 d
es

tin
at

io
n

at
te

nt
io

n
αds

t

sum source and destination
attention weights

αi
src + αj

dst

LeakyReLU
q×h → q×h

Transformed
features

n×h×k
save for backward

Edge attention
weights

q×h
save for backward

Edge mask
boolean q×h

save for backward

Graph
structure
sparse n × n
q non-zeros

Output
gradient

n × h × k

Source attention
weights

h × k

Destination
attention weights

h × k

Transformed
features

n×h×k
saved from forward

Semi-batched SDDMM
sparse n×n, dense n×h×k, dense n×h×k

→ sparse q×h

Edge attention
weights

q×h
saved from forward

column-wise sum
q×h → n×h

Edge mask
boolean q×h

saved from forward

∂LeakyReLU
q×h → q×h

column-wise sum
q×h → n×h

compute softmax gradient
∂αe - αeΣ

i
∂α

row-wise sum
q×h → n×h

Outer product
h×k, n×h → n×h×k

Outer product
h×k, n×h → n×h×k

Semi-batched SpMM
sparse n×n×h, dense n×h×k

→ dense n×h×k

Pointwise sum
n×h×k

GEMM
m×hk, n×hk → n×m

Weights
m × hk

Feature
gradient

n × m

GEMM
m×hk, n×hk → n×m

Input
features

n × m

Weights
gradient

n × m

Source attention
weights gradient

h × k

Einsum
n×h, n×h×k → h×k

Graph
structure

sparse n × n
q non-zeros

Einsum
n×h, n×h×k → h×k

Destination attention
weights gradient

h × k

Propagated gradients
n × h × k

Propagated gradients
n × h × k

ed
ge

 w
ei

gh
ts

 α

ed
ge

 w
ei

gh
ts

gr

ad
ie

nt
s ∂

α

gradient sums Σ∂α

for each edge e: i→j
graph structure, q×h, q×h, n×h → q×h

graph
structure

Source attention
n×h

save for backward

for each edge i→j
graph structure, dense n×h, dense n×h → q×h

Destination attention
n×h

save for backward

Source attention
n×h

saved from forward

Destination attention
n×h

saved from forward

…

Source attention
n×h

saved from forward

Destination attention
n×h

saved from forward

…

Figure 8: GAT forward scheme. Green boxes with dashed frames indicate values that can be cached for the backward pass.

14

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph
structure
sparse n × n
q non-zeros

Features
n × m

Weights
m × hk

GEMM
n×m, m×hk → n×hk

Semi-batched SpMM
sparse n×n×h, dense n×h×k

→ dense n×h×k

Output
n × h × k

Source attention
weights

h × k

Destination
attention weights

h × k

Einsum
n×h×k, h×k → n×h

Einsum
n×h×k, h×k → n×h

column-wise softmax
q×h → q×h

no
de

 so
ur

ce

at
te

nt
io

n
αsr

c

no
de

 d
es

tin
at

io
n

at
te

nt
io

n
αds

t

sum source and destination
attention weights

αi
src + αj

dst

LeakyReLU
q×h → q×h

Transformed
features

n×h×k
save for backward

Edge attention
weights

q×h
save for backward

Edge mask
boolean q×h

save for backward

Graph
structure
sparse n × n
q non-zeros

Output
gradient

n × h × k

Source attention
weights

h × k

Destination
attention weights

h × k

Transformed
features

n×h×k
saved from forward

Semi-batched SDDMM
sparse n×n, dense n×h×k, dense n×h×k

→ sparse q×h

Edge attention
weights

q×h
saved from forward

column-wise sum
q×h → n×h

Edge mask
boolean q×h

saved from forward

∂LeakyReLU
q×h → q×h

column-wise sum
q×h → n×h

compute softmax gradient
∂αe - αeΣ

i
∂α

row-wise sum
q×h → n×h

Outer product
h×k, n×h → n×h×k

Outer product
h×k, n×h → n×h×k

Semi-batched SpMM
sparse n×n×h, dense n×h×k

→ dense n×h×k

Pointwise sum
n×h×k

GEMM
m×hk, n×hk → n×m

Weights
m × hk

Feature
gradient

n × m

GEMM
m×hk, n×hk → n×m

Input
features

n × m

Weights
gradient

n × m

Source attention
weights gradient

h × k

Einsum
n×h, n×h×k → h×k

Graph
structure

sparse n × n
q non-zeros

Einsum
n×h, n×h×k → h×k

Destination attention
weights gradient

h × k

Propagated gradients
n × h × k

Propagated gradients
n × h × k

ed
ge

 w
ei

gh
ts

 α

ed
ge

 w
ei

gh
ts

gr

ad
ie

nt
s ∂

α

gradient sums Σ∂α

for each edge e: i→j
graph structure, q×h, q×h, n×h → q×h

graph
structure

Source attention
n×h

save for backward

for each edge i→j
graph structure, dense n×h, dense n×h → q×h

Destination attention
n×h

save for backward

Source attention
n×h

saved from forward

Destination attention
n×h

saved from forward

…

Source attention
n×h

saved from forward

Destination attention
n×h

saved from forward

…

Figure 9: GAT backward pass using cached values. Source and destination attention can be saved instead of edge mask and edge attention
weights to use less memory. The scheme for recomputation of values from the forward pass is omitted for clarity.

15

Cached Operator Reordering: A Unified View for Fast GNN Training

1 2 0

0 0 3

0 4 5

1 2 3 4 5

0 2 3 5

0 1 2 1 2

values

columns

row
pointers

0 1 2 3 4

Dense matrix CSR representation

1 2 3 4 5

0 1 2 1 2

values

columns

rows

0 1 2 3

COO representation

0 0 1 2 2

values columns

ELLPACK representation

1 2

3 0

4 5

0 1

2 0

1 2

0 1 2

0

1

2

4

0 1 2

Graph
1 2 3 5

4

0

1

2

0

1

2

Figure 10: Example graph and its representations in selected formats.

row of the matrix. Similarly, to store the non-zero matrix values, a two-dimensional matrix is used:
the values matrix V = (vij) ∈ Rn×p, where vij stores the value of the j-th entry in the i-th row.
In ELLPACK, a more regular representation is obtained at the cost of storing unnecessary data. This
format requires storing np integer values for indexing and another np floating point values. Thus,
the ELLPACK format is well-suited to processing of matrices that have non-zero values evenly
distributed across the rows. Otherwise, a single row that is much longer than the others leads to
unnecessarily high storage needs. Due to this, ELLPACK is not well suited for certain graphs, such
as graphs with hubs or other subgraphs that imply high variance in node degree. However, the regular
structure of the ELLPACK representation makes it easy to process in parallel on GPUs.

D.4 Hybrid Formats

As an attempt to mitigate the disadvantages stemming from the use of some of the formats, a hybrid
format can be used. There are multiple variants, such as hybrid formats used by Ye et al. [43]. As
an example a CSR-COO data format could be constructed to mitigate the issues from irregular row
lengths in CSR. In this format, only the first t elements in a given row are stored in the CSR format,
while the remaining entries are stored in the COO format.

16

Cached Operator Reordering: A Unified View for Fast GNN Training

Data
format Variables FLOPs I/O [bytes] Operational intensity [FLOP

byte]

Cora OGB Arxiv

CSR

v ∈ Rq

rptr ∈ Rn+1

c ∈ Rq

B ∈ Rm×f

O(qf) O(q +mf + nf) 0.621 1.066

CSC

v ∈ Rq

cptr ∈ Rm+1

r ∈ Rq

B ∈ Rm×f

O(qf) O(q +mf + nf) 0.621 1.066

COO

v ∈ Rq

r ∈ Rq

c ∈ Rq

B ∈ Rm×f

O(qf) O(q +mf + nf) 0.612 1.036

ELLPACK
V ∈ Rn×p

Col ∈ Rn×p

B ∈ Rm×f
O(qf) O(np+mf + nf) 0.236 0.207

Table 5: Operational intensity of SpMM C = A ·B. Example operational intensity values were computed for scenarios realistic in GNNs, i.e.,
where A is the adjacency matrix of a given graph and B has n rows and 64 columns. Detailed information on the graphs can be found in Table
4. To count FLOPs for ELLPACK, we considered only operations on non-zero values.

E Common Sparse Operators
GNNs are characterized by a substantial amount of sparse computation. There are two sparse
operators that are particularly common in GNNs: sparse matrix-matrix multiplication and sampled
dense-dense matrix multiplication.

E.1 Sparse Matrix-Matrix Multiplication
The sparse matrix-matrix multiplication operator (SpMM) is a multiplication of a sparse matrix
A ∈ Rn×m and a dense matrix B ∈ Rm×k, resulting in a dense matrix C ∈ Rn×k, C = AB. There
exist highly optimized implementations of this operator [29] and it is widely explored in literature
[34, 37] (see more in Section 5). An example implementation using the CSR format can be seen in
Listing 1.
1 def spmm(A_rowptrs , A_columns , A_values , B):
2 M, K = B.shape
3 N = A_rowptrs.shape [0] - 1
4 C = np.empty((N, K))
5 for i in range(N):
6 for j in range(A_rowptrs[i], A_rowptrs[i + 1]):
7 column = A_columns[j]
8 for k in range(K):
9 C[i, k] += B[column , k] * A_values[j]

10 return C

Algorithm 1: Example SpMM implementation in NumPy using the CSR format.

The SpMM operator is a very common operator in GNNs. It represents the propagation of information
between nodes. To understand the computational characteristics of SpMM, we look at operational
intensity, defined as the number of floating point operations executed by the program per byte of I/O.
Operational intensity for SpMMs executed in GNNs can be found in Table 5. It can be seen that the
operational intensity is no higher than 1.066 FLOP

byte which indicates that the computation is memory-
bound. Operational intensities of CSC-SpMM and CSR-SpMM are the same because the sparse
matrix is square. Moreover, it is worth noting that ELLPACK is well-suited to represent typical GNN
dataset such as Cora and Arxiv. They both have nodes with much higher degrees than average: for
Cora, the maximum node degree is 168 and the average degree is 7.8, while for Arxiv the maximum
degree is 436 and the average degree is 13.77. Therefore, their ELLPACK value matrices consist
in > 96% of zeros, resulting in significantly lower operational intensity when executing SpMM in
comparison to other mentioned formats.

E.2 Sampled Dense-Dense Matrix Multiplication
Another operator that can be encountered in GNN computation is the sampled dense-dense matrix
multiplication (SDDMM). Given a sparse matrix A ∈ Rn×k and two dense matrices B ∈ Rn×m,

17

Cached Operator Reordering: A Unified View for Fast GNN Training

Data
format Variables FLOPs I/O [bytes] Operational intensity [FLOP

byte]

Cora OGB Arxiv

CSR

v ∈ Rq

rptr ∈ Rn+1

c ∈ Rq

B ∈ Rn×f

C ∈ Rf×n

O(qf) O(qf + n) 0.567 0.620

CSC

v ∈ Rq

cptr ∈ Rm+1

r ∈ Rq

B ∈ Rn×f

C ∈ Rf×n

O(qf) O(qf + n) 0.567 0.613

COO

v ∈ Rq

r ∈ Rq

c ∈ Rq

B ∈ Rn×f

C ∈ Rf×n

O(qf) O(qf) 0.562 0.613

ELLPACK

V ∈ Rn×p

Col ∈ Rn×p

B ∈ Rn×f

C ∈ Rf×n

O(qf) O(npf) 0.308 0.325

Table 6: Operational intensity of SDDMM D = A ⊙ (BC). Example operational intensity values were computed for scenarios realistic in
GNNs, i.e., where A is the adjacency matrix of a given graph and B,C have n rows and 64 columns. Detailed information on the graphs can
be found in Table 4. Counting the FLOPs for ELLPACK, we consider only operations on non-zero values.

C ∈ Rm×k, we can compute D = A ⊙ (B · C), where ⊙ represents the Hadamard product and
D ∈ Rn×k is a sparse matrix. Similarly to SpMM, this subroutine has existing highly optimized
implementations [29]. An example implementation of SDDMM can be found in Listing 2.
The SDDMM operator is used in the backward pass of GAT. There, we always need to compute it on
matrices which have shapes A ∈ Rn×n,B ∈ Rn×f and C ∈ Rf×n. In Table 6 we present estimated
operational intensity of SDDMM when used in GAT backward pass computation.
1 def sddmm(A_rowptrs , A_columns , A_values , B, C):
2 M, K = B.shape
3 N = A_rowptrs.shape [0] - 1
4 nnz = A_values.shape [0]
5
6 D_values = np.zeros((nnz ,))
7 for i in range(N):
8 for j in range(A_rowptrs[i], A_rowptrs[i + 1]):
9 column = A_columns[j]

10 D_values[j] = A_values[j] * np.dot(B[i], C[column])
11 return D_values

Algorithm 2: Example SDDMM implementation in NumPy using the CSR format.

Similarly to SpMM, SDDMM is an operator with low operational intensity. For both Cora and
Arxiv, the operational intensity is below 0.7, independent of the data format. Therefore, SDDMM is
also memory-bound. Performing the computation using the ELLPACK format leads to even lower
operational intensity due to irregular row sizes in the sparse matrices, same as in the case of SpMM.

F GCN Evaluation

The results for schemes without caching are presented in Figure 11. It can be seen that the runtime
patterns follow our expectations from Table 1. In the case of not computing input feature gradients, as
long as the number of input features (128) is bigger than that of the output features, the transform-first
forward and fused-propagate backward pass scheme is faster. However, once the number of features
surpasses 128, the alternative scheme is faster. The same applies to the case with computing input
gradients, but the threshold is shifted to 256. Our adaptive implementation is always as fast as the
faster scheme.

18

Cached Operator Reordering: A Unified View for Fast GNN Training

The results for schemes with caching are presented in Figure 14. It can be seen that the runtime
distribution follows what we expected in Table 2. When not computing input gradients, the scheme
using caching is faster once the number of output features exceeds half of the input features. When
calculating input gradients, the threshold for adapting the scheme lies at equal input and output feature
sizes, which is 128. Again, our adaptive computing scheme proves to match the fastest scheme in
every case except the threshold point.
The single suboptimal choice of the scheme at the hidden size of 128 in Figure 14b is due to the fact
that we assumed that running two SpMMs matrices matrices of sizes n× n and n× t, where t ∈ Z+

would take the same time as running one SpMM multiplying matrices of sizes n × n and n × 2t
(limitations of our approach are described in Section 3.1).

G Implementations
G.1 GCN Operator Implementation

1 def gcn(node_features , rowptrs , columns , edge_vals , weights , output):
2 # GEMM
3 new_features = node_features @ weights
4
5 # SpMM
6 output [:] = 0
7 for i, k in dace.map [0:N, 0: num_out_features]:
8 for j in dace.map[rowptrs[i]: rowptrs[i + 1]]:
9 column = columns[j]

10 mult = new_features[i, k] * vals[j]
11 output[column , k] += mult

Algorithm 3: Example GCN operator implementation using NumPy.

G.2 GCN Forward Pass
More specifically, the GCN operator takes as input an adjacency matrix A ∈ Rn×n and node features
X ∈ Rn×m.
The resulting node features X′ ∈ Rn×k are computed as follows:

X′ = D−1/2AD−1/2XΘ+ ⊮nb
T (1)

where D ∈ Rn×n is the diagonal degree matrix, Θ ∈ Rm×k is the learned parameter matrix, b ∈ Rk

is the learned bias vector, and ⊮n is an n-element vector of ones.
Optionally, edge weights can be included as entries other than 1 in the adjacency matrix. Often,
self-loops are also inserted, so a modified adjacency matrix is used: Â = A+ I. As the graphs are
constant during training, the data can be preprocessed as following:

A′ = D̂−1/2ÂD̂−1/2 (2)

where D̂ is the diagonal degree matrix for a graph with added self-loops. Then, the GCN formulation
becomes:

X′ = A′XΘ+ ⊮nb
T (3)

where A′ is a sparse matrix, while all others are dense.
Above formulation assumes the use of sum as the message aggregation function, so the message
passing and aggregation are represented by the matrix multiplication A · XΘ. Some models
alternatively use mean as the aggregation function, which can be represented by D ·A ·XΘ. Another
alternative aggregation function is max, which can be represented in the node-wise formulation as
following:

xik = max
j∈N (i)

(
xjΘ

T
k

)
Throughout this work we focus on networks with the aggregation function sum.

G.3 GAT Forward Pass
The GAT operator can be computed as follows:

X′ = AXΘ+ ⊮nb
T , (4)

19

Cached Operator Reordering: A Unified View for Fast GNN Training

where A = (αij) is the sparse attention weight matrix, Θ ∈ Rm×k is the learned parameter matrix,
b ∈ Rk is the learned bias vector.
The attention weight of the edge from node i to node j is defined as:

αij =
exp

(
f
(
aT [ΘTxi ∥ΘTxj]

))∑
k∈N (i)∪{i} exp (f (aT [ΘTxi ∥ΘTxk]))

, (5)

where X ∈ Rn×m is the input node features matrix, || is the concatenation operator, a ∈ R2k are
the learned attention parameters and f is the Leaky Rectified Linear Unit (Leaky ReLU) [28] with a
negative slope parameter of β ∈ R+. It is worth noting that the expression Θxi is actually the i-th
row of the matrix XΘ.
It is also possible for the GAT operator to have multiple attention heads. Let us denote the number of
heads by h. Using h attention heads is mathematically equivalent to concatenating results of h GAT
operators with different learned parameters.
Thus, the learned parameters of the layers are:

Θ =
[
Θ1 ... Θh

]
, (6)

b =
[
bT
1 ... bT

h

]
T , (7)

where Θq ∈ Rm×k denotes the weight matrix for the q-th head and bq ∈ Rk represents the bias for
q-th head.
The formulation for the output feature matrix of the q-th head is as follows:

X′
q = AqXΘq + ⊮nb

T
q , (8)

where q indicates the head index, X′
q ∈ Rn×k is output feature matrix of the q-th head. The matrix

Aq = (αqij) ∈ Rn×n represents attention weights of the q-th head which are computed as follows:

αq
i,j =

exp
(
f
(
aTq [Θ

T
q xi ∥ΘT

q xj]
))∑

k∈N (i)∪{i} exp
(
f
(
a⊤q [Θ

T
q xi ∥ΘT

q xk]
)) , (9)

where aq ∈ R2k are the learned attention parameters for the q-th head.
In the end, outputs for all heads are concatenated to create a single output matrix X′ ∈ Rn×hk:

X′ =
[
X′

1 ... X′
h

]
. (10)

G.4 GCN Backward Pass
In order to compute weight updates, we need to compute the gradients of the loss function L with
respect to the parameters of the GCN layer, namely Θ and b, as well as the gradients with respect to
the input node features X, in order to propagate the gradients to the previous layers.
In the derivations, we use the following property. Given some matrices A ∈ Ra×b,B ∈ Rb×c and
operation C = A ·B, and the gradient of some loss function ∂L

∂C , we can compute the following
gradients:

∂L
∂A

=
∂L
∂C

BT

∂L
∂B

= AT ∂L
∂C

Let ∂L
∂X′ ∈ Rn×k denote the gradient of the loss function with respect to the layer output X′. Then

we can express the gradient with respect to the parameters Θ and b as follows:

∂L
∂Θ

= XTA′T ∂L
∂X′ , (11)

∂L
∂b

=
∂L
∂X′

T

⊮n. (12)

20

Cached Operator Reordering: A Unified View for Fast GNN Training

In case of all layers except the first one, the gradients need to be propagated backward through the
model. Thus, we need to also compute the gradient of the loss function with respect to the input node
features X. The gradient ∂L

∂X ∈ Rn×m can be computed as:

∂L
∂X

= A′T ∂L
∂X′Θ

T . (13)

It is worth noting that matrix product A′T · ∂L
∂X′ can be interpreted as propagating the gradients

backward through the graph, hence the adjacency matrix is transposed in the backward pass.
Once we have computed the gradients ∂L

∂Θ , ∂L
∂b , and ∂L

∂X , we can use them to perform a parameter
update step using a selected optimizer, such as Stochastic Gradient Descent [24] or Adam [25].

G.4.1 GAT Backward Pass
In order to perform a gradient update step, we need to compute gradients of the loss function w. r. t.
learned parameters Θ, a,b and the input features X, respectively denoted by ∂L

∂Θ , ∂L
∂a , ∂L

∂b and ∂L
∂X .

Let us denote XΘ = M ∈ Rn×k, the i-th row of M as mi, and a =

[
asrc
adst

]
, where asrc, adst ∈ Rk.

For clarity, let us denote the intermediate values wij , yij , si = asrcm
T
i , and dj = adstm

T
j in the

computation of attention weights:

f(a⊤[Θxi ∥Θxj]) = f(asrcm
T
i + adstm

T
j) = f(si + dj) = f(yij) = wij (14)

The gradient for b is computed in the same way as in case of GCN:

∂L
∂b

=
∂L
∂X′

T

⊮n. (15)

Then, using M = XΘ, the gradients for X and Θ can be computed as follows:

∂L
∂Θ

= XT ∂L
∂M

, (16)

∂L
∂X

=
∂L
∂M

Θ, (17)

where ∂L
∂M is the gradient w. r. t. M. In order to compute ∂L

∂M , ∂L
∂asrc

, ∂L
∂adst

we need to compute
multiple intermediate gradients.
Firstly, the gradient w. r. t. the attention weights, given that X′ = AM:

∂L
∂A

=
∂L
∂X′M

T (18)

Then, we need to backpropagate through the column-wise softmax.

∂L
∂wij

= αij

(∂L
∂αij

−
n∑

u=1

αiu
∂L
∂αiu

)
(19)

The next step is computing the derivative of Leaky ReLU. Its derivative is:

f ′(x) =

{
1 if x > 0,

β if x ≤ 0.
(20)

Then the gradient is as follows from the chain rule.

∂L
∂yij

= f ′(yij) ·
∂L
∂wij

(21)

Now we just need to compute the gradients for s = asrcM
T and d = adstM

T . Given that yij =
si + dj , computing the gradients just requires a summation along an appropriate axis.

∂L
∂si

=

n∑
u=1

∂L
∂yiu

,
∂L
∂dj

=

n∑
u=1

∂L
∂yuj

(22)

21

Cached Operator Reordering: A Unified View for Fast GNN Training

Now we can use ∂L
∂d , ∂L

∂s ∈ Rn in order to compute the gradients of the attention parameters:

∂L
∂asrc

= MT ∂L
∂s

,
∂L
∂adst

= MT ∂L
∂d

. (23)

Finally, having ∂L
∂d , ∂L

∂s also allows us to compute the gradient for M.

∂L
∂M

=
(∂L
∂d

)T

· adst +
(∂L
∂s

)T

· asrc +AT ∂L
∂X′ (24)

Plugging this value into Equations 16 and 17, we are able to obtain the gradients for the remaining
parameters.

H Figures

22

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128 256 512 1024
Output feature size

0

5

10

15

20

25

30

35
Ru

nt
im

e
[m

s]
FWD: Transform-first, BWD: fused-propagate
Adaptive, no caching
FWD: Propagate-first, BWD: split-propagate

1.
11 1.
40 1.

97 2.
93

4.
90

9.
47

18
.2

3

35
.5

6

1.
11 1.
40 1.

97 2.
92 3.

98

6.
01

9.
22

15
.3

7

2.
66 2.
94 3.
31 3.
71 4.

23

6.
01

9.
23

15
.3

7

.4
5

.5
2

.6
0 .8
8 1.
61 3.

26

6.
44

12
.8

3

.4
5

.5
2

.6
0 .8
8 1.
61 2.

67 4.
23

7.
34

1.
28

1.
35

1.
36 1.
53 1.
85 2.
67 4.

23

7.
35

(a) Runtime without calculating input gradients.

8 16 32 64 128 256 512 1024
Output feature size

0

5

10

15

20

25

30

35

40

Ru
nt

im
e

[m
s]

FWD: Transform-first, BWD: fused-propagate
Adaptive, no caching
FWD: Propagate-first, BWD: split-propagate

1.
70 2.
00 2.

58 3.
66

5.
95

10
.8

4

20
.6

0

39
.9

1

1.
70 2.
00 2.

59 3.
66

5.
95

9.
38

13
.5

7

21
.4

7

5.
23 5.
52 5.
91 6.
41 7.

28

9.
37

13
.5

6

21
.4

6

.4
5

.5
2

.6
0 .8
8 1.
65 3.

25

6.
45

12
.8

6

.4
5

.5
2

.6
0 .8
8 1.
65 2.
67 4.

23

7.
35

1.
28

1.
36

1.
36

1.
53 1.
89 2.
67 4.

23

7.
35

(b) Runtime including calculating input gradients.

Figure 11: Single GCN layer runtime on the OGB Arxiv dataset. Darker areas represent the time spent in the forward pass, total bar height is
the total time of forward and backward passes.

23

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph
sparse n × n

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×k

 → dense n×k

Output
n × k

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Output
n × k

Aggregated
features

n×m
save for backward

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×m

→ dense n×m

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Output
gradient

n × k

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×k

→ dense n×k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

required only if there is a
preceding layer

GEMM
n×m, n×k → m×k

Aggregated
features

n×m
saved from forward

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Graph
sparse n × n

Features
n × m

Weights
m × k

Output
n × k

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Features
n × m

Features
n × m

Output
gradient

n × k

Output
gradient

n × k

Weights
m × k

Weights
m × k

Weights
gradient

m × k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Weights
m × k

(a) Fused-propagate GCN backward pass, one n × k SpMM.

Graph
sparse n × n

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×k

 → dense n×k

Output
n × k

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Output
n × k

Aggregated
features

n×m
save for backward

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×m

→ dense n×m

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Output
gradient

n × k

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×k

→ dense n×k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

required only if there is a
preceding layer

GEMM
n×m, n×k → m×k

Aggregated
features

n×m
saved from forward

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Graph
sparse n × n

Features
n × m

Weights
m × k

Output
n × k

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Features
n × m

Features
n × m

Output
gradient

n × k

Output
gradient

n × k

Weights
m × k

Weights
m × k

Weights
gradient

m × k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Weights
m × k

(b) Split-propagate GCN backward pass, two n × m SpMMs.

Figure 12: Alternative schemes of computing the backward pass for GCN. Red area on the right indicates part of computation that does not
need to be executed if the feature gradients are not needed. Compute nodes of the same color operate on the same shapes, which are indicated on
the node in Einstein summation notation.

24

Cached Operator Reordering: A Unified View for Fast GNN Training

Graph
sparse n × n

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×k

 → dense n×k

Output
n × k

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Output
n × k

Aggregated
features

n×m
save for backward

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×m

→ dense n×m

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Output
gradient

n × k

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×k

→ dense n×k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

required only if there is a
preceding layer

GEMM
n×m, n×k → m×k

Aggregated
features

n×m
saved from forward

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Graph
sparse n × n

Features
n × m

Weights
m × k

Output
n × k

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Features
n × m

Features
n × m

Output
gradient

n × k

Output
gradient

n × k

Weights
m × k

Weights
m × k

Weights
gradient

m × k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Weights
m × k

(a) GCN forward pass with caching. One n × k SpMM.

Graph
sparse n × n

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×k

 → dense n×k

Output
n × k

Features
n × m

Weights
m × k

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Output
n × k

Aggregated
features

n×m
save for backward

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×m

→ dense n×m

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Output
gradient

n × k

GEMM
n×m, n×k → m×k

SpMM
sparse n×n, dense n×k

→ dense n×k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

required only if there is a
preceding layer

GEMM
n×m, n×k → m×k

Aggregated
features

n×m
saved from forward

GEMM
n×m, m×k → n×k

SpMM
sparse n×n, dense n×m

→ dense n×m

Graph
sparse n × n

Features
n × m

Weights
m × k

Output
n × k

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Graph
sparse n × n

Features
n × m

Features
n × m

Output
gradient

n × k

Output
gradient

n × k

Weights
m × k

Weights
m × k

Weights
gradient

m × k

Weights
gradient

m × k

GEMM
n×k, m×k → n×m

Features
gradient

n × m

SpMM
sparse n×n, dense n×m

→ dense n×m

required only if there is a preceding layer

Weights
m × k

(b) GCN backward pass using cached values. One n × m SpMM.

Figure 13: GCN computation scheme using caching to avoid recalculation. Red area on the right indicates part of computation that does not
need to be executed if the feature gradients are not needed. Compute nodes of the same color operate on the same shapes, which are indicated on
the node in Einstein summation notation.

25

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128 256 512 1024
Output feature size

0

5

10

15

20

25

30

35
Ru

nt
im

e
[m

s]
FWD: Transform-first, BWD: fused-propagate
Adaptive with caching
FWD: Propagate-first, BWD: split-propagate, with caching

1.
11 1.
40 1.

97 2.
93

4.
90

9.
47

18
.2

3

35
.5

6

1.
11 1.
40 1.

97 2.
63 3.

16

4.
94

8.
16

14
.3

1

1.
60 1.
87 2.
24 2.
60 3.

16

4.
94

8.
15

14
.2

7

.4
5

.5
2

.6
0 .8
8 1.
61 3.

26

6.
44

12
.8

3

.4
5

.5
2

.6
0 1.
53 1.
85 2.
67 4.

24

7.
35

1.
28

1.
35

1.
36 1.
53 1.
86 2.
67 4.

23

7.
35

(a) Runtime without calculating input gradients.

8 16 32 64 128 256 512 1024
Output feature size

0

5

10

15

20

25

30

35

40

Ru
nt

im
e

[m
s]

FWD: Transform-first, BWD: fused-propagate
Adaptive with caching
FWD: Propagate-first, BWD: split-propagate, with caching

1.
70 2.
00 2.

58 3.
66

5.
95

10
.8

4

20
.6

0

39
.9

1

1.
70 2.
00 2.

58 3.
66

6.
21

8.
31

12
.4

9

20
.4

2

2.
53 2.
83 3.
35 4.

31

6.
20

8.
30

12
.4

9

20
.3

9

.4
5

.5
2

.6
0 .8
8 1.
65 3.

25

6.
45

12
.8

6

.4
5

.5
2

.6
0 .8
8 1.
89 2.
67 4.

23

7.
35

1.
28

1.
36

1.
36

1.
53 1.
89 2.
67 4.

23

7.
35

(b) Runtime including calculating input gradients.

Figure 14: Single GCN layer runtime on the OGB Arxiv dataset using caching. Darker areas represent the time spent in the forward pass, total
bar height is the total time of forward and backward passes.

26

Cached Operator Reordering: A Unified View for Fast GNN Training

0.0

0.5

1.0

1.5

2.0

Co
ra

Ru
nt

im
e

[m
s]

DaCe COO (adapt, cached)
DaCe CSC (adapt, cached)
Torch CSR
Torch Edge List (compiled)

.5
3

.5
3

.5
3

.5
2 .5
4 .6

4

1.
07

2.
03

.5
5

.5
4

.5
4

.5
4 .5
6 .6

6

1.
08

1.
97

.7
9

.7
9

.7
8

.7
9

.8
0

.8
1

1.
17

2.
14

.9
7

.9
8

.9
8

.9
7

.9
8

.9
9 1.
02

1.
96

.0
8

.0
8

.0
9 .1
2 .1
7 .2
7 .4

8

1.
11

.0
9

.1
0

.1
0 .1
3 .1
8 .2
8 .4

8

1.
02

.2
5

.2
4

.2
4

.2
4

.2
4 .3
1 .5

4

1.
06

.3
0

.3
0 .3
4

.3
4

.3
0

.3
0 .4

5

.9
2

0

1

2

3

4

5

Ci
te

se
er

Ru
nt

im
e

[m
s]

DaCe COO (adapt, cached)
DaCe CSC (adapt, cached)
Torch CSR
Torch Edge List (compiled)

.5
2

.5
2

.5
2

.5
4 .6

9

1.
22

2.
33

4.
45

.5
3

.5
4

.5
4

.5
5 .7

2

1.
24

2.
36

4.
43

.7
8

.7
9

.7
9

.8
0

.8
1

1.
31

2.
53

4.
74

1.
02

1.
02

1.
03

1.
04

1.
04 1.

24

2.
37

4.
51

.1
5

.1
5

.1
6 .2
2 .3
3 .5
7 1.

17

2.
12

.1
6

.1
7

.1
7 .2
3 .3
3 .5
8 1.

16

2.
09

.2
4

.2
4

.2
5

.2
4 .3
5 .6
3 1.

26

2.
29

.2
9

.2
9

.3
4

.3
4

.3
3 .5
7 1.

17

2.
14

0

2

4

6

8

Pu
bm

ed
Ru

nt
im

e
[m

s]

DaCe COO (adapt, cached)
DaCe CSC (adapt, cached)
Torch CSR
Torch Edge List (compiled)

.5
2

.5
2

.5
1 .6
6 .9

8

1.
98

2.
97

4.
90

.5
4

.5
4

.5
3 .6
9 .9

9 1.
72

2.
72

4.
67

.8
0

.8
0

.8
0

.8
4 1.

39

2.
48

4.
74

8.
97

1.
04

1.
04

1.
03

1.
03

1.
04

1.
84

3.
69

7.
16

.1
7

.1
8

.1
8

.2
5 .4
1 1.
16 1.
69 2.

67

.1
8

.1
9

.1
8

.2
5 .3
9 .9
2 1.
42 2.

42

.2
8

.2
5

.2
6 .3
8 .6
4 1.
19 2.

27

4.
42

.3
4

.3
5

.3
4

.3
3

.4
2 .8
1 1.
63

3.
30

0

10

20

30

40

50

Fl
ick

r
Ru

nt
im

e
[m

s]

DaCe COO (adapt, cached)
DaCe CSC (adapt, cached)
Torch CSR
Torch Edge List (compiled)

1.
63

1.
83 2.
21 3.
27 5.

45

12
.1

6 16
.7

9

26
.7

4

1.
74

1.
92 2.
27 3.
28 5.

37 9.
00

13
.6

7

23
.5

7

3.
32 3.
70 4.
05 5.
53 8.

50

14
.5

4

26
.3

2

50
.4

1

1.
25

1.
51 1.
92 3.
24 5.

68

11
.6

2

22
.3

2

44
.0

5

.7
2

.7
6

.9
1

1.
51 2.
70 8.

85 11
.2

6

15
.9

4

.7
0

.7
7

.8
6

1.
25 2.
08 5.

62 8.
01 12

.7
4

1.
56

1.
75

1.
94 2.
67 4.
08 7.
05 12

.9
7 24

.8
4

.5
5

.6
5

.8
4

1.
39 2.
52 5.
01 10

.0
1 20

.4
2

8 16 32 64 12
8

25
6

51
2

10
24

Hidden size

0

20

40

60

80

OG
B

Ar
xi

v
Ru

nt
im

e
[m

s]

DaCe COO (adapt, cached)
DaCe CSC (adapt, cached)
Torch CSR
Torch Edge List (compiled)

2.
96 3.
37 4.
08 5.
39 6.
47 8.
78 13

.5
0 22

.5
3

3.
13 3.
55 4.
32 5.
40 6.
50 8.
76 13

.4
9 22

.4
8

7.
88 8.
32

8.
60 10

.8
5

15
.3

4 24
.1

6

42
.1

8

77
.7

3

2.
45

2.
79 3.
31 4.
66 7.

34 13
.4

7

25
.9

7

51
.4

4

.9
9

1.
07

1.
38 2.
68

3.
22 4.
24 6.
40 10
.6

4

1.
04

1.
19

1.
36

2.
17

2.
68 3.
72 5.
89 10
.0

5

5.
01

5.
29

5.
49 6.
68 9.
15 14

.0
9

24
.0

3 43
.7

4

.9
9

1.
10

1.
35

1.
90 3.
05 5.
70 11

.1
9 22
.4

9

Figure 15: Detailed GCN runtime results, comparison of PyTorch Geometric and our work. Darker regions indicate the forward pass, total bar
height is the sum of forward, loss and backward runtime.

27

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128
0

500

1000

1500

2000

2500

M
em

or
y

[M
B]

Forward
Cache features, edge mask, edge weights
Cache features and node attention
Cache only features
No caching

31
7.

39
 M

B

44
1.

46
 M

B

68
9.

60
 M

B

1.
16

 G
B

2.
13

 G
B

27
8.

96
 M

B

40
3.

04
 M

B

65
1.

18
 M

B

1.
12

 G
B

2.
09

 G
B

31
7.

39
 M

B

44
1.

46
 M

B

68
9.

60
 M

B

1.
16

 G
B

2.
13

 G
B

20
0.

15
 M

B

28
2.

88
 M

B

44
8.

34
 M

B 77
9.

25
 M

B

1.
41

 G
B

8 16 32 64 128
Hidden size

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y

[M
B]

Backward
Cache features, edge mask, edge weights
Cache features and node attention
Cache only features
No caching

40
0.

12
 M

B

60
6.

92
 M

B

10
20

.5
2

M
B

1.
80

 G
B

3.
42

 G
B

36
1.

69
 M

B

56
8.

49
 M

B

98
2.

10
 M

B

1.
77

 G
B

3.
38

 G
B

35
0.

07
 M

B

55
6.

87
 M

B

97
0.

47
 M

B

1.
76

 G
B

3.
37

 G
B

28
2.

88
 M

B

44
8.

34
 M

B

77
9.

25
 M

B 1.
41

 G
B

2.
70

 G
B

Figure 16: GAT memory use of different caching schemes on the OGB Arxiv dataset.

28

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128
Hidden size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ru

nt
im

e
[m

s]
Cache features, edge weights and mask
Cache features and node attention
Cache only features
No caching

0.
98 1.

04 1.
17

1.
64

2.
60

1.
00 1.

07 1.
20

1.
67

2.
63

1.
06 1.

15

1.
28

1.
76

2.
72

1.
14 1.

23

1.
49

2.
13

3.
48

0.
28 0.
33 0.
42 0.

64

1.
10

0.
29 0.
34 0.

44 0.
64

1.
10

0.
30 0.
33 0.

43 0.
64

1.
09

0.
30 0.
33 0.

43 0.
64

1.
10

(a) GAT runtime, Cora dataset.

8 16 32 64 128
Hidden size

0

1

2

3

4

5

6

7

8

Ru
nt

im
e

[m
s]

Cache features, edge weights and mask
Cache features and node attention
Cache only features
No caching

1.
03

1.
36

1.
82

3.
01

5.
19

1.
06

1.
38

1.
85

3.
04

5.
23

1.
13

1.
47

1.
94

3.
13

5.
33

1.
31

1.
76

2.
45

4.
19

7.
28

0.
37 0.
49 0.

76

1.
36

2.
31

0.
37 0.
49 0.

76

1.
36

2.
32

0.
37 0.
48 0.

76

1.
36

2.
31

0.
39 0.
49 0.

76

1.
36

2.
31

(b) GAT runtime, Citeseer dataset.

8 16 32 64 128
Hidden size

0

2

4

6

8

10

12

Ru
nt

im
e

[m
s]

Cache features, edge weights and mask
Cache features and node attention
Cache only features
No caching

1.
55

2.
06

3.
12

4.
90

8.
72

1.
64

2.
14

3.
19

4.
99

8.
80

1.
79

2.
31

3.
36

5.
18

9.
13

1.
93

2.
57

3.
87

6.
15

11
.0

2

0.
60 0.
78 1.

11 1.
85

3.
47

0.
61 0.
78 1.

11 1.
85

3.
47

0.
60 0.
77 1.

11 1.
85

3.
47

0.
60 0.
77 1.

11 1.
85

3.
47

(c) GAT runtime, Pubmed dataset.

8 16 32 64 128
Hidden size

0

10

20

30

40

50

60

70

Ru
nt

im
e

[m
s]

Cache features, edge weights and mask
Cache features and node attention
Cache only features
No caching

8.
21

10
.7

7

16
.5

4

28
.5

6

54
.9

7

8.
93

11
.4

7

17
.2

3

29
.2

6

55
.7

2

9.
64

12
.2

2

18
.1

3

30
.2

7

57
.2

1

10
.3

2 13
.3

5

20
.3

0

34
.5

7

65
.4

6

3.
51 4.
14 6.

17 10
.9

7

21
.2

5

3.
51 4.
15 6.

17 10
.9

8

21
.2

9

3.
51 4.
15 6.

16 10
.9

6

21
.2

4

3.
51 4.
14 6.

17 10
.9

7

21
.2

4

(d) GAT runtime, Flickr dataset.

8 16 32 64 128
Hidden size

0

10

20

30

40

50

60

70

80

Ru
nt

im
e

[m
s]

Cache features, edge weights and mask
Cache features and node attention
Cache only features
No caching

13
.0

0 16
.1

3

22
.6

6

37
.2

0

68
.1

4

14
.1

2 17
.2

2

23
.7

9

38
.5

2

69
.2

3

15
.1

3 18
.3

1

25
.1

1

39
.8

3

71
.5

9

15
.5

2 19
.1

6

26
.7

1

43
.3

2

78
.4

6

4.
83 5.
57 7.

88 13
.1

3

23
.9

2

4.
86 5.
66 7.

86 13
.0

8

23
.9

1

4.
85 5.
59 7.

76 12
.9

6

23
.8

9

4.
83 5.
57 7.

96 13
.1

1

24
.0

7

(e) GAT runtime, OGB Arxiv dataset.

Figure 17: Detailed GAT runtime results, comparison of various caching schemes. Darker regions indicate the forward pass, total bar height is
the sum of forward, loss and backward runtime.

29

Cached Operator Reordering: A Unified View for Fast GNN Training

8 16 32 64 128
Hidden size

0

1

2

3

4

Ru
nt

im
e

[m
s]

DaCe COO, full caching
Torch CSR
Torch DGNN-GAT
Torch DGNN-GAT (compiled)
Torch Edge List (compiled)

0.
98 1.

04 1.
17

1.
64

2.
602.

74 2.
76 2.
78

3.
23

4.
36

1.
92

1.
95

2.
25

2.
51

3.
43

2.
86 2.

90 2.
97 3.
15

3.
88

1.
62 1.
63

1.
63 1.
66

2.
28

0.
28 0.
33 0.
42 0.

64

1.
10

1.
43

1.
45

1.
46 1.

64

2.
11

0.
92

0.
94 1.

09 1.
28

1.
63

1.
23 1.
27 1.
33 1.

49

1.
87

0.
56

0.
58

0.
57

0.
59

1.
01

(a) GAT runtime, Cora dataset.

8 16 32 64 128
Hidden size

0

1

2

3

4

5

6

7

Ru
nt

im
e

[m
s]

DaCe COO, full caching
Torch DGNN-GAT
Torch DGNN-GAT (compiled)

1.
03

1.
36

1.
82

3.
01

5.
19

1.
99

2.
24

2.
78

3.
90

6.
10

2.
89 3.

00

3.
46

4.
58

6.
56

0.
37 0.
49 0.

76

1.
36

2.
31

1.
00 1.
10 1.

42

1.
96

2.
87

1.
28 1.
41 1.

65

2.
21

3.
07

(b) GAT runtime, Citeseer dataset.

8 16 32 64 128
Hidden size

0

2

4

6

8

10

12

14

16

Ru
nt

im
e

[m
s]

DaCe COO, full caching
Torch CSR
Torch DGNN-GAT
Torch DGNN-GAT (compiled)
Torch Edge List (compiled)

1.
55 2.

06

3.
12

4.
90

8.
72

2.
97

3.
74

5.
60

9.
07

15
.8

9

2.
79 3.

31

4.
24

6.
35

10
.3

7

3.
32 3.

58

4.
20

6.
00

9.
63

1.
60

1.
61

2.
49

4.
58

8.
59

.6
0 .7
8 1.
11 1.

85

3.
47

1.
66 1.
79 2.

41

3.
76

6.
51

1.
11 1.
31 1.
66 2.

41

4.
04

1.
27 1.
40 1.
69 2.

44

4.
07

.5
4

.5
5 .9
3 1.

73

3.
41

(c) GAT runtime, Pubmed dataset.

8 16 32 64 128
Hidden size

0

20

40

60

80

100

120

Ru
nt

im
e

[m
s]

DaCe COO, full caching
Torch CSR
Torch DGNN-GAT
Torch DGNN-GAT (compiled)
Torch Edge List (compiled)

8.
21 10

.7
7 16

.5
4

28
.5

6

54
.9

7

12
.8

8 20
.0

2

34
.2

9

60
.0

4

11
2.

50

17
.2

6

19
.4

6 23
.9

3

34
.2

3

55
.2

3

16
.7

5

18
.3

6 22
.2

4

31
.7

8

50
.9

0

5.
94 8.

97

17
.3

0

34
.3

8

62
.6

8

3.
51 4.
14 6.
17 10

.9
7 21

.2
5

5.
99 8.
43 13

.6
7 23

.9
6

44
.6

3

4.
91 5.
60 7.
17 10

.9
3 19

.1
2

4.
77 5.
32 6.
60 10

.3
3 18

.5
4

2.
33 3.
53 5.
87 11

.2
1 21

.6
9

(d) GAT runtime, Flickr dataset.

8 16 32 64 128
Hidden size

0

20

40

60

80

Ru
nt

im
e

[m
s]

DaCe COO, full caching
Torch CSR
Torch DGNN-GAT
Torch DGNN-GAT (compiled)

13
.0

0 16
.1

3

22
.6

6

37
.2

0

68
.1

4

23
.2

5

32
.7

2

51
.5

3

85
.3

0

OO
M

27
.7

5 30
.7

0

36
.7

9

50
.9

1

78
.6

7

26
.3

7

28
.3

9 33
.1

5

45
.7

6

69
.9

3

4.
83 5.
57 7.

88 13
.1

3 23
.9

2

10
.5

6

13
.9

0 20
.7

9

33
.8

1

5.
54 6.
52 8.
52 12

.8
5 22

.6
0

5.
16 5.
86 7.
31 11

.5
8 21

.3
8

(e) GAT runtime, OGB Arxiv dataset.

Figure 18: Detailed GAT runtime results, comparison of our DaCe implementation against PyTorch. Darker regions indicate the forward pass,
total bar height is the sum of forward, loss and backward runtime. Some data points for the compiled PyTorch implementation using edge lists
are missing due to compilation errors.

30

	1 Introduction
	2 Background
	3 Algorithmic View on Graph Neural Networks
	3.1 Analysis of the GCN Computational Graph
	3.2 Analysis of the GAT Computation

	4 Evaluation
	4.1 Graph Convolutional Network
	4.2 Graph Attention Network

	5 Related Work
	6 Conclusion
	A No memory overhead with GCN caching
	B GAT Operator Reordering
	C GAT Caching
	D Sparse Formats
	D.1 Compressed Sparse Row and Compressed Sparse Column
	D.2 Coordinate Format
	D.3 ELLPACK Format
	D.4 Hybrid Formats

	E Common Sparse Operators
	E.1 Sparse Matrix-Matrix Multiplication
	E.2 Sampled Dense-Dense Matrix Multiplication

	F GCN Evaluation
	G Implementations
	G.1 GCN Operator Implementation
	G.2 GCN Forward Pass
	G.3 GAT Forward Pass
	G.4 GCN Backward Pass
	G.4.1 GAT Backward Pass

	H Figures

