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Abstract—The interconnection network has a large influence on
total cost, application performance, energy consumption, and
overall system efficiency of a supercomputer. Unfortunately,
today’s routing algorithms do not utilize this important re-
source most efficiently. We first demonstrate this by defining
the dark fiber metric as a measure of unused resource in
networks. To improve the utilization, we propose scheduling-
aware routing, a new technique that uses the current state
of the batch system to determine a new set of network routes
and so increases overall system utilization by up to 17.74%. We
also show that our proposed routing increases the throughput
of communication benchmarks by up to 17.6% on a practical
InfiniBand installation. Our routing method is implemented
in the standard InfiniBand tool set and can immediately be
used to optimize systems. In fact, we are using it to improve
the utilization of our production petascale supercomputer for
more than one year.

Index Terms—High performance computing, Computer net-
work management, Routing protocols, Unicast

1. Introduction and Motivation

With Moore’s law slowly coming to an end, high-
performance computers (HPC) started to scale-out to larger
systems. It can be expected that the number of network
endpoints will grow significantly [1] which emphasizes the
role of the interconnection network as one of the most critical
components in a supercomputer. The network is largely
controlled by routing algorithms which determine how to
forward packets. These algorithms have to balance multiple,
partially conflicting, requirements. For example, they shall
provide the best forwarding strategy (in general an NP-hard
problem) while minimizing the runtime of the routing in
order to quickly react to failures of network components.

Routing algorithms have been the topic of many studies
ranging from topology-specific routing algorithms [2], [3]
through general deadlock-free algorithms [4], [5], more ad-
vanced deadlock-free algorithms balancing the routes [6], to
advanced path-caching for quick failover [7]; a good overview
is provided by Flich et al. [8]. Many advanced approaches for
application-specific [9], [10] or topology-specific [11], [12],
[13] routing and mapping assume idealized conditions such as
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(a) Taurus supercomputer (multi-island design with 2014
compute nodes connected by FDR/QDR InfiniBand)
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(b) Tsubame2.5 petascale system (1408 compute nodes
connected by a two full-bisection fat-tree QDR networks)

Figure 1. Batch job history (sampled every 10 min) of two petascale HPC
systems for one month of operation; only multi-switch jobs shown; total
system utilization (incl. single-node and single-switch jobs) usually higher

a regular topology without faulty components, isolated bulk-
synchronous applications communicating in synchronized
phases, and the absence of system noise. Unfortunately, these
assumptions are rarely true in practice [14].

A brief analysis of the job mix on two production
supercomputers emphasizes the complexity of real-world
installations. Figure 1 shows all batch jobs that are using
at least two network switches on two InfiniBand-based
petascale supercomputers, Taurus [15] and Tsubame2.5 [16],
in the timeframe of one month. We see that multiple parallel
applications are spread throughout the system at any time
and are thus contending for bandwidth on the shared network
resources. In fact more than 66% and 50% of the compute
jobs on Taurus and Tsubame2.5, respectively, are using
multiple switches. But at the same time, communications do
generally not cross from one parallel applications to another.

When computing (oblivious) routes for an interconnection
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(a) Oblivious routing EFI (b) Scheduling-aware routing
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(c) Histogram for Fig. 2a
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(d) Histogram for Fig. 2b

Figure 2. Comparison of EFI for inter-switch links (heat map in (a) and (b));
oblivious routing vs. scheduling-aware routing for three equal-sized batch
jobs on a 2-level fat-tree; two colors of individual full-duplex links in (a)
and (b) indicate different EFIs for the two opposite directions

network, the algorithm tries to balance the number of routes
across all links so that each physical network cable has a
similar number of routes crossing it. This number is called
the Edge Forwarding Index (EFI), a theoretical upper bound
for the worst-case congestion of a set of routes [17]. To
illustrate our idea, we perform the following experiment:
we route a two-level fat-tree network with an optimal
oblivious strategy (ideally balanced EFI) and schedule three
different applications (jobs) to the system. The allocation of
application processes to nodes logically partitions the network
into three pieces which are not crossed by communications.
Now, we compute the effective EFI for each link by only
counting routes connecting endpoints that belong to the same
job. Figure 2a shows a heat map of the effective EFIs for
each link in the network; Figure 2c shows the corresponding
EFI histogram. We derived two conclusions directly from the
figure: (1) there are hotspots of high route counts per link
which can decrease communication performance of one or
more jobs, and (2) some links are underutilized or not used
at all which reduces the system’s efficiency. A less obvious
observation is that the total number of switches and links
available for intra-job communication is suboptimal.

We now use this example to illustrate our idea of
scheduling-aware routing (SAR) which aims to maximize
the allocation of network resources per batch job. Hence,
using SAR, intra-job communication throughput increases
due to the increased available network hardware; this directly
increases the utilization of the overall supercomputer. In
other words, SAR exploits the knowledge of the batch
system (the current job mix) to determine the application
locality and guides the fabric manager in assigning routing
paths in the network. Furthermore, SAR has a similarly low
runtime complexity as other oblivious routing algorithms,
and broad applicability to current and future interconnection
technologies and supercomputers. Figures 2b and 2d show
the same three-job example as before but using our SAR
approach. It’s easy to see that the maximum EFI (i.e., upper
bound for congestion) reduced from more than 160 to a
mere 60 and the overall balance is greatly improved.

Our main contributions and findings are:

• We define the notion of dark fiber which describes
network hardware that is unused in a current system
configuration (job mix).

• We introduce the new concept of scheduling-aware
routing, which performs frequent path reconfigurations
based on concurrently running applications.

• We extend the formalism of per-packet consistent up-
dates for in-order delivery and deadlock-freedom and
show how to achieve both conditions using current
InfiniBand hardware.

• We implement a low-overhead scheduling-aware routing
for InfiniBand-based HPC systems and demonstrate its
benefits over state-of-the-art routing mechanisms using
simulations and communication benchmarks.

2. Background, Assumptions, and Definitions

This section formalizes network-related terms, as well as
new metrics, to evaluate and compare our scheduling-aware
routing approach with other state-of-the-art algorithms.

First, we define an interconnection network as a multi-
graph where each pair of network devices is connected by
one or more full-duplex links (or channels). These full-duplex
links can be used in opposing directions without interference
or throughput degradation. Furthermore, we assume that the
link capacity, i.e., the maximum achievable throughput, in
the network is uniform and constant over time.

Definition 1 (Interconnection network). An interconnec-
tion network I := G(N,C) is a connected multigraph
with the node set N . The channel set C consists of di-
rected (multi-)channels, denoted by ordered pairs (·, ·). We
call nx ∈ N a terminal if exactly one ny exists with
(ny, nx) ∈ C, otherwise nx is called a switch. With C∗ ⊆ C
we denote inter-switch links connecting two switches of I .

Terminals can be further subdivided into compute nodes,
executing scientific applications in a supercomputer, and sup-
plementary nodes, responsible for storage, administration,
etc. Network nodes communicate via messages of arbitrary
length, which are transferred as payload of one or more
network packets from sending node to receiving node. The
packet routes, see Definition 2 for all nodes to all other
nodes are calculated by a routing algorithm, see Definition 3,
within the multigraph representing the network.

Definition 2 (Route or path). A route Pnx,ny
of length h ≥ 1

from node nx to node ny in the network I = G(N,C)
is defined as a sequence of links (c1, . . . , ch) =: Pnx,ny

.
These links have to satisfy the following two conditions:
{c1, . . . , ch} ⊆ C, with c1 := (nx, ·), ch := (·, ny), and if
cq = (·, nz) then cq+1 = (nz, ·) for all 1 < q < h.

Definition 3 (Flow-oblivious, destination-based routing).
A routing function R : N × N → C for a network
I := G(N,C) assigns the next channel cq+1 on the path
depending on the current node nz and the destination
node ny , which is encoded in the packet header. The entirety
of all paths in the network configured by a single routing
function is called routing configuration.



Furthermore, we presume that the routing algorithm
must calculate deadlock-free routes [18], to be applicable to
lossless interconnection networks, which are primarily used
in modern supercomputers. This deadlock-freedom can be
ensured if the routing satisfies the necessary and sufficient
condition of Dally and Seitz’s first theorem [4], i.e., the
corresponding channel dependency graph for a routing needs
to be acyclic. Generally speaking, the (deadlock-free) routing
configuration is part of the switching rules for a network,
which define a set of valid forwarding rules and packet
modifications along the path to the destination. We call these
switching rules a (global) network state from here on.

One problem while performing network updates, i.e.,
the transition between two network states, is to preserve
per-packet or per-flow consistency [19], [20], and therefore
preserve certain properties satisfied by each network state.
Usually, “atomic” state transitions for the whole network
are impossible, hence without consistency, these network
updates can lead to security vulnerability, loss of packets, etc.
We summarize the comprehensive theoretical groundwork
given by Reitblatt et al. [19] in the two Definitions 4 and 5.

Definition 4 (Per-packet and per-flow consistency). Per-
packet consistency of the network operation is achieved if
and only if each packet injected into the network is processed
by exactly one network state. If all packets of each injected
message or flow are processed by the same network state,
then we refer to this as per-flow consistency.

Definition 5 (Per-packet consistent network update). Let us
be a sequence of atomic updates u applied to a set of network
switches. Then, for two (distinguishable) network states S
and S′, the transition S →us S′ is called a per-packet
consistent update if and only if each packet is processed
by either S or S′, but not any inconsistent state in-between.
Per-flow consistent updates are defined analogously.

The property preservation of network updates, as stated
by Theorem 1 of Reitblatt et al. [19], is a direct result
when per-packet consistent updates are performed. However,
this only holds for properties related to single packets, e.g.,
connectivity or loop-freedom. Other network properties, such
as in-order delivery or deadlock-freedom, which are based
on the correlation of multiple packets are harder to achieve.
Hence, for our purpose of scheduling-aware rerouting of
HPC systems, we extend Reitblatt’s property preservation to
be applicable to lossless and deadlock-free interconnects.

Definition 6 (Property Preserving Network Update). The
transition S →us S

′ between two network states S and S′ is
called a property preserving network update for a lossless
interconnection network if the following conditions hold:

1) both network states, S and S′, are based on deadlock-
free routing configurations;

2) S →us S
′ is a per-flow consistent update for reliable

channels of communication, and per-packet consistent
update for unreliable connections; and

3) a temporally simultaneous processing of packets, either
by S and S′, during a transition is deadlock-free.

Attribute 2 of Definition 6 can be weakened to per-packet
consistent updates when in-order delivery is not required
for reliable connections. Assuming our scheduling-aware
(re-)routing is a property preserving network update, then
we can guarantee fault-free execution of parallel applications
(w.r.t. network-related problems) and guarantee uninterrupt-
ible operation of the HPC system. Further network properties
based on multiple packets, such as congestion control or
quality of service, are beyond the scope of this paper.

Besides the commonly known network metrics through-
put and latency, we will make use of two new metrics.
The first metric extends the established edge forwarding
index [17] to differentiate between “useful” intra-job paths
and paths connecting compute nodes which do not work
on the same scientific problem, see Definition 7. In this
regard, a batch job, or short job j, is a (parallel) application
scheduled onto a subset of compute nodes, Nj ⊆ N , which
collectively work on a given task during a finite timeframe.

Definition 7 (Effective Edge Forwarding Index). The effec-
tive edge forwarding index γe of a switch port or outgoing
link cq ∈ C∗ is the sum of intra-job routes being forwarded
via this port, i.e.,

γe(cq) :=
∑
j

∣∣{Pnx,ny
| nx, ny ∈ Nj ∧ cq ∈ Pnx,ny

}
∣∣

for all jobs j running on the system.

Our second metric describes the amount of superfluous
links in the network, metaphorically speaking: the proportion
of “dark fiber” to links usable for intra-job communication,
see Definition 8. Please note, that our latter metric does not
differentiate between copper or fiber cables, and we use fiber
as a synonym for link. Furthermore, this metric is only based
on intra-job paths, and we ignore any other traffic related
to supplementary nodes, such as I/O traffic to and from a
remote filesystem or administrative data paths.

Definition 8 (Dark Fiber Percentage). The dark fiber per-
centage is the percentage of links in the system, which are
not used for intra-job routes, and can therefore be derived
from γe in the following way:

θ :=

∣∣{cq ∈ C∗ | γe(cq) = 0}
∣∣

|C∗|

3. Example Implementation of SAR

In Section 3.1, we outline the basic components, in-
cluding relevant features and limitations, available on our
petascale Taurus HPC system, followed by Section 3.2 giving
details on how we extend and combine these building blocks
to implement a scheduling-aware routing (SAR).

3.1. Hardware/Software Building Blocks

3.1.1. InfiniBand and OpenSM. The InfiniBandTM tech-
nology [21], as defined by the architecture specification
(IBTAspec) [22], is widely used in current HPC systems to
network compute and storage nodes. Each network device



in the fabric is identified by one or more local identifiers
(LIDs), configured via a lid mask control (LMC) parameter
such that the total number of LIDs per device is 2LMC.

The IBTAspec defines a layer, called verbs, between
the software/operating system and the InfiniBand hardware.
Communication between two IB devices is implemented via
queue pairs (QPs) that establish a send and receive channel
between one source LID and one destination LID for unicast
traffic1. However, the verbs layer also allows modifications
of QPs, e.g., performing path migrations (APM) or draining
all outstanding work requests (SQD), which we will use in
Section 3.3 to enforce property preserving network updates.

Applications such as Open MPI (cf. Section 3.1.3) post
work requests (WRs) to a queue pair to initiate data transport
to a remote node. InfiniBand’s hardware offloading and
kernel-bypass characteristics allow the processing of these
WRs asynchronously to the application. The channel adapter
(HCA; network interface card of IB) splits a scheduled
message into packets, configures packet headers, and dis-
patches them. Achieving per-flow consistency is made more
complicated because of this asynchronicity, which we will
elucidate further in Section 3.3. InfiniBand ensures lossless
processing of WRs for reliable channels through credit-based
flow control, both on a per-link basis and end-to-end between
send/receive queues. However, reliable channels require in-
order delivery of all packets of one WR, otherwise the IB
hardware drops messages and requests retransmission.

Moreover, IB supports virtual lanes (VLs), which are
basically different sets of buffers within one port. InfiniBand
network ports must support up to 15 VLs for data traffic—
8 data VLs is common on current hardware—and one VL
for management traffic. Data VLs can be used for quality of
service or to avoid potential deadlock configurations in the
forwarding tables of switches. Various routing approaches
use this feature to combine the ith VL of each port into
virtual layers and assign paths to different layers to create a
deadlock-free routing configuration [6], [23], [24].

The IB fabric is controlled by a subnet manager, which
is responsible for assigning LIDs and LMCs to nodes,
reacts to topological changes and failures in the fabric, and
calculates the routing configuration for the fabric, among
other things. An open-source version of this subnet manager
is called OpenSM [25], which currently implements nine
flow-oblivious routing algorithms for a variety of supported
network topologies [14]. These algorithms can be categorized
into topology-aware routings, such as Up*/Down* [5] or
fat-tree [26], and topology-agnostic routings, e.g., layered
shortest path routing (LASH) [24] or (deadlock-free) single-
source shortest-path routing [6], [27]. Once a new routing
configuration is calculated, OpenSM updates the linear
forwarding tables (LFT) of all IB switches, and packets
are forwarded according to these new switching rules. The
LFTs are per-packet lookup tables with the destination
as index for the array and egress port stored in it, i.e.,
egress port = LFT[LID]. A LFT update usually only hap-

1. Multicast traffic is beyond the scope of this paper, because it is performed
unreliably in InfiniBand, and therefore generally not used by parallel applications.
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Figure 4. Open MPI’s modular component architecture establishes an
message passing interface between application and hardware to enable
inter-process communication (highlighted: openib BTL for InfiniBand)

pens in response to a topological change in the fabric, e.g.,
when network components fail or new nodes are being added.

3.1.2. Simple Linux Utility for Resource Management.
Many supercomputers utilize SLURM [28] as cluster re-
source manager and batch system. SLURM is open-source
and offers a plugin interface, which makes it a preferred
solution for many HPC sites, since it offers the ability for
enhancements depending on individual needs and it offers
the option to test research ideas. The SLURM architecture,
see Figure 3, primarily consists of three parts: (1) user
commands, (2) controller daemon, and (3) compute node
daemons. The controller daemon manages most of the
system’s compute resources, and schedules batch jobs onto
free compute nodes. However, the controller is partially or
fully unaware of other resources, such as remote storage
or interconnection network. For example, while SLURM is
aware of the system’s physical topology, i.e., node-to-switch
mapping and inter-switch connectivity, it is unaware of the
deployed routing configuration. The SLURM controller can
be attached to a database, see Figure 3, which stores the
historical and current state of job allocations for a system.
We make use of this information in Section 3.2 to obtain a
snapshot of simultaneously running jobs and their locality.

3.1.3. Open MPI. The message passing interface (MPI)
specification [29] standardizes an API for parallel applica-
tions to perform inter-process communication, either locally
on a compute node or via the interconnection network.
One widely used open-source implementation of the MPI
standard is Open MPI [30]. The Open MPI library assigns
one rank (∈ [0, . . . , n − 1]) to each processes within a
single MPI-parallelized application, and therefore provides
an abstract interface to the application to perform point-
to-point or collective operations between ranks. Open MPI
uses a modular component architecture (MCA) to support a
variety of interconnection technologies and transport services,
see Figure 4. The OMPI layer provides the MPI API to



the applications and implements communication algorithms
for point-to-point and collective operations, monitoring and
profiling interfaces, etc. One framework within the MCA is
the byte transfer layer (BTL), responsible for point-to-point
communication between MPI processes. The BTL for IB
networks is called “openib”, see Figure 4b. This openib
component interfaces with the verbs layer, see Section 3.1.1,
to set up QPs, schedule send or receive WRs, and handle
events raised by the InfiniBand hardware, among other things.
When Open MPI is configured with threading support (for
POSIX threads), then the openib component spawns one
asynchronous event thread per MPI process. In Section 3.3,
we will use that asynchronous event thread to establish com-
munication channels between OpenSM and MPI programs
to achieve per-flow consistent network updates.

3.2. Scheduling-Aware Routing Optimization

3.2.1. Filter between Batch System and Subnet Manager.
Performing a scheduling-aware routing optimization for a
supercomputer is only beneficial for parallel applications
when their compute nodes are attached to multiple switches.
Therefore, we create a filtering tool, see Figure 5, which
periodically polls SLURM for the current state of the
system, i.e., information about batch jobs, including job
state (pending, running, etc.), job identifier, and allocated
compute nodes. This information is obtainable through
SLURM’s squeue command. Furthermore, we require the
topology information, i.e., terminal-to-switch mapping, which
is stored among SLURM’s configuration files. This topology
information is used to filter out a list of multi-switch jobs
containing all currently running applications which have their
compute nodes attached to at least two switches. The list
of multi-switch jobs is compared to the list of the previous
iteration while ignoring the actual job identifiers. Hence, we
can avoid unnecessary calculations of LFTs, since replacing
one job with another job on the same compute nodes will not
result in a different routing configuration while using SAR,
see Algorithm 1. If the two lists of multi-switch jobs differ,
then our filtering tool writes a job-to-terminal mapping file
for OpenSM, informs the OpenSM about the configuration
change, and replaces the previous list with the new list for
the next iteration. We extend OpenSM’s signal handler to
process the SIGUSR2 signal to inform the OpenSM about
an updated job-to-terminal mapping.

We refrain from having a direct interface between
SLURM and OpenSM for the following reasons: First off,
portability, to easily support other batch systems or subnet
managers, such as PBS [31] and derivatives, or the fabric
manager for Intel Omni-Path [32]. Furthermore, the SLURM
controller and OpenSM can run on different management
nodes of a HPC system. Lastly, integrating the filtering
functionality into the SLURM controller will increase the
latency experienced by users when submitting many jobs.

3.2.2. Routing Optimization with DFSSSP. As basis for
our SAR we choose the deadlock-free single-source shortest-
path routing (DFSSSP) for three reasons: (1) DFSSSP is
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Figure 5. Flowchart of a filtering tool; collect information about currently
running multi-switch batch jobs and initiate recalculation of LFT via SAR

deadlock-free and topology-agnostic, and therefore supports
a wide variety of network topologies [6], (2) DFSSSP
offers high global throughput for the complete HPC system
and offers a well-balanced EFI across the system [14],
and (3) DFSSSP already distinguishes three terminal types
(compute, storage, and others nodes), and optimize their
routing separately. Hence, SAR inherits the characteristics
listed in (1) and (3) and improves upon (2).

DFSSSP routing computes the destination-based paths
for the nodes of the interconnection network by applying
a modified version of Dijkstra’s shortest-path algorithm,
optimized for multigraphs. DFSSSP iterates over all nodes of
the network, and firstly applies Dijkstra’s algorithm, followed
by an update of the edge weights in the graph. This edge
weight update, increasing the weight by +1 for every new
path on a link, ensures the well-balanced EFI, which we
mentioned above in reason (2). After calculating a path
for every node-to-node combination, DFSSSP assigns these
paths into virtual layers to achieve a deadlock-free routing
configuration, similar to other routings, such as LASH [24].

We extend the DFSSSP routing to include knowledge
about batch job locations, and enable the algorithm to
optimize the path calculation for intra-job paths, shown as
pseudo code in Algorithm 1. Our main modifications are
outlined in lines 1–10, while subsequent lines are shown for
sake of completeness and sketch the remainder of the already
existing DFSSSP implementation in OpenSM. In the first
part of Algorithm 1, we analyze the job-to-terminal mapping
given by the filtering tool, see Section 3.2.1. Each node in the
multigraph, representing the interconnection network, gets
extended by a job array which stores all jobIDs currently
running on this node. We presort these nodes descending by
the size of largest job executed on the node, i.e., compute
nodes belonging to the largest job running on the HPC system
will be processed first in the following loop, see line 6. Hence,
this sorting ensures that intra-job path balancing is increased
and the number of overlapping paths is minimized. Since
edge weights are only updated when actually used by an
intra-job path, see lines 9 and 10 of Algorithm 1, the resulting
paths should improve the network metrics compared to other



Algorithm 1: Scheduling-aware DFSSSP routing
Input: Network I = G(N,C)

Job-to-terminal mapping B := [(nodeName, jobID), . . .]
Result: Scheduling-aware and deadlock-free routing configuration

(Pnx,ny for all nx, ny ∈ N )
/* Process job-to-terminal mapping */

1 foreach node n ∈ N do
2 n.jobList ← empty list []
3 foreach pair (nodeName,jobID) ∈ B do
4 if n.nodeName = nodeName then n.jobList.append(jobID)

/* Optimize routing for compute nodes */
5 Nsorted ← Sort N descending by the job size executed on n ∈ N
6 foreach node nd ∈ Nsorted do
7 Calculate one path Pnx,nd

for every pair (nx, nd), with nx ∈ N ,
with the modified Dijkstra algorithm (details in [6])

8 foreach node nx ∈ N do
9 if nx.jobList

⋂
nd.jobList 6= ∅ then

10 Increase edge weight by +1 for each link in path Pnx,nd

/* Optimize routing for storage nodes */
11 foreach storage node nd ∈ N do
12 Calculate one path Pnx,nd

for every pair (nx, nd), with nx ∈ N
13 Update edge weights for all links used by P (·, nd)

/* Optimize routing for all other nodes */
14 foreach node nd ∈ N ∧ nd not processed before do
15 Calculate one path Pnx,nd

for every pair (nx, nd), with nx ∈ N
16 Update edge weights for all links used by P (·, nd)

/* Create deadlock-free routing configuration */
17 foreach route Pnx,ny calculated above do
18 Assign Pnx,ny to one virtual layer without creating a cycle in the

corresponding channel dependency graph (see [6] for details)

state-of-the-art oblivious routings, which we will demonstrate
in Section 4. The rest of the base DFSSSP algorithm is kept
in place to ensure deadlock-freedom and a well-balanced
routing configuration towards the remote filesystem.

3.3. Property Preserving Network Update for IB

Changing the routing configuration of an InfiniBand
network cannot be done atomically. OpenSM splits the LFT
of each switch into multiple management datagram (MAD)
packets, each carrying a payload of 64 bytes, to distribute
new LFTs to all switches. This non-atomicity can cause out-
of-order packet delivery for a flow, and therefore preventing
per-flow consistency and disrupting InfiniBand’s reliable
connection service, see Section 3.1.1, resulting in application
crashes in the worst case.

Multiple network update protocols for software defined
networks (SDN) have been proposed [19], [20]. For example,
the proposed two-phase updated installs passive routing
configurations which are activated when the switch identifies
a certain packet, so that subsequent packets follow the same
path. Unfortunately, none of these protocols are applicable
to IB due to missing features, i.e., the ability to deploy two
routing configurations simultaneously, to distinguish between
flows, or to tag packets. The only safe method of updating
the forwarding rules of a path in InfiniBand is if we can
guarantee that no packet or flow is using the entire path
during the update process.

We propose a five-phase update protocol guaranteeing
property preserving network updates for reliable connections,
see Definition 6, within the limitations of the InfiniBand
architecture specifications (IBTAspec) [22]. For our prototype
implementation of this update protocol we use Open MPI in
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Figure 6. Sequence diagram of a five-phase update protocol to achieve
property preserving network updates of InifiniBand networks

version 1.8.4 and OpenSM in version 3.3.18, however we are
most certain that this protocol can be applied to other services
in a supercomputer, e.g., for reliable communication with a
remote filesystem. The sequence diagram in Figure 6 exem-
plifies the interaction between an MPI-parallel application
and OpenSM, which performs the routing reconfiguration.

The initial assumptions for our update protocol to be
applicable are the following, and will ensure deadlock-
freedom prior to the network update:

1) OpenSM assigns two LIDs (we distinguish between
baseLID and highLID, which equals to baseLID + 1)
for each node in the network (via LMC=1);

2) The Routing configuration for baseLIDs is calculated
by our Algorithm 1 (using VLs 0, . . . , n− 2);

3) Routing configuration for highLIDs is calculated by
Up*/Down* and uses VL = n− 1; and

4) Packets are only sent from baseLIDs to baseLIDs or
among highLIDs, but not a mixture of both.

During phase 1, an MPI-parallelized application, or the
asynchronous event thread (AsyncThread) of rank 0 (see
Section 3.1.3) to be precise, uses InformInfo MAD packets
to subscribe for event forwarding, see IBTAspec Sections
13.4.8.3 and 13.4.11. All packets for inter-process commu-
nication within the MPI application are using baseLIDs for
destination addressing. The MPI application uses a uMAD
library to send userspace management datagram packets to
communicate with the OpenSM. The uMAD library also
allows the AsyncThread of rank 0 to periodically poll for
MAD packets send by the OpenSM. The AsyncThread
subscribes2 only for unpath and repath traps, see IBTAspec

2. Theoretically, subscriptions and forwarded traps contain individual
paths records, however our subscriptions apply for the whole subnet’s LID
range, and traps contain empty path records. This increases scalability by
reducing the number of MADs handled by both sides, i.e., only one MAD,
with either unpath or repath trap, has to be sent out to each subscriber.



Section 14.4.12. These traps are intended to inform terminals
about usability changes of certain routes. Once the OpenSM
calculates a new routing configuration for the baseLIDs, in
consequence of our approach outlined in Section 3.2, it raises
an unpath trap and forwards the trap to all subscribers, but
it withholds to reconfigure any LFT. The AsyncThread of
rank 0 forwards the unpath trap to all other ranks of the same
application by the use of MPI calls, i.e., primarily MPI Isend,
MPI Irecv, and MPI Test. This tree-like approach is required,
because the uMAD library cannot be used simultaneously
by multiple AsyncThreads on one compute node.

In phase 2, all processes of all subscribed parallel
applications modify their queue pairs, which belong to
reliable connections, to enter the draining state, see IBTAspec
Section 10.3.1.5. While in draining state, MPI processes can
still post new WRs to the verbs layer, however these will not
be send out before the QP reenters the “ready-to-send” state.
Once the draining of an QP is complete, the IB HCA sends
an event notification to the AsyncThread. After receiving
this “QP drained”-notification, the AsyncThread triggers
a path migration to the highLIDs, see IBTAspec Section
10.4, changes the QP back into the “ready-to-send” state,
and then loads a new alternate path. The new alternate
path is always the opposite of the current path, i.e., if the
current path is baseLID→baseLID, then the new alternate
path will be highLID→highLID. When all local QPs have
been migrated to the highLID, then each process informs
rank 0, and acknowledges the successful migration. The
AsyncThread of rank 0 uses a “local changes” trap, see
IBTAspec Section 14.3.13, informing the OpenSM about
the successful draining of baseLID-related traffic, after it
received acknowledgments by all ranks.

When OpenSM received confirmation by all subscribers,
indicating that no reliable connections are using baseLIDs
in the entire network, the protocol switches to phase 3.
OpenSM reconfigures all switches with new LFTs, which
were calculated during phase 1, for the baseLIDs. The routing
configuration for the highLIDs is never changed, since it
relies on the oblivious Up*/Down* routing, and is kept in
place until a failure in the network requires fault-recovery
and routing recalculation for baseLIDs and highLIDs3.

Phase 4 starts after all switches have been reconfigured,
and it is essentially a copy of phase 2 with the exception
that the OpenSM requests the subscribers to migrate all
their reliable connections from the highLIDs back to the
baseLIDs. During phase 5, OpenSM listens for applications
canceling their forwarding subscriptions and waits for new
scheduling-aware rerouting requests. Upon completion of
the MPI-based application the AsyncThread of rank 0 sends
out unsubscribe InformInfo MADs to the OpenSM.

The whole draining and path migration process is trans-
parent to the overlying application. At most, the application
could experience a minor latency increase for a particular
QP while it is draining, and experience reduced throughput
while the highLIDs are used.

3. Property preserving network updates during fault-recovery in an
InfiniBand network is beyond the scope of this paper.

4. Evaluation

4.1. Current Limitations and Problems

When this research was conducted, we experienced
minor problems while implementing our network update
protocol, shown in Figure 6. For the sake of completeness,
we will list these limitations without going into much
detail about possible solutions. First off, the communication
between the AsyncThread of rank 0 and the OpenSM is
potentially subject to packet loss, because (u)MAD packets
to subscribe and forward traps use QP0 and QP1, special QPs
configured for unreliable transport service, see IBTAspec
Sections 3.9.4 and 3.9.5. However, both the uMAD library
and OpenSM usually send MADs multiple times if they are
not acknowledged in time. Second, Open MPI combined
with the openib component does not support simultaneous
calls to the MPI API from multiple threads of one process.
Manually serializing MPI calls between the main application
and the AsyncThread via a pthread mutex lock is our current
workaround. And lastly, any attempts to modify QPs into
the draining state was prevented by the tested firmwares for
our IB devices. Depending on firmware version, either the
verbs call was possible but had no effect, or the firmware
rejected the verbs call. Therefore, we refrain from showing
practical results of the property preserving network update
protocol for our petascale system in the following sections.
However, we successfully tested the entire update protocol
(apart from the QP draining) presented in Sections 3.2 to 3.3
on a small test bed, see Section 4.3.4.

4.2. Theoretical Evaluation of Network Metrics

Our evaluation and comparison of the effective edge
forwarding index and dark fiber percentage, see Definitions 7
and 8, is based on the same batch job history we presented
in Figure 1 for the two HPC systems, called Taurus [15] and
Tsubame2.5 [16]. Hence, we “replay” exactly the same job
composition of each system and investigate the effects of dif-
ferent routing algorithms. These algorithms are Up*/Down*,
fat-tree, and DFSSSP, all implemented in OpenSM [25], and
we compare them against our SAR implementation. It is
worth noting that the vendor of our Taurus HPC system
originally suggested the usage of fat-tree routing before we
deployed SAR, see Section 4.3. Furthermore, fat-tree routing
is the current default on the Tsubame2.5 supercomputer.

4.2.1. Effective Edge Forwarding Index. We are analyzing
two metrics with respect to the EFI. The first metric is
γemax := max

cq∈C∗
γe(cq), i.e., the maximum γe of all links,

which implies hotspots of links shared by multiple jobs. The
second metric is the maximal edge forwarding index γmax(j)
per job j, which should also be as low as possible, because
it bounds the worst-case congestion within a job, i.e., the
link with the most intra-job routes crossing it.

The results for γemax are shown in the top plot of Figure 7a
and 7b. As one can see, our scheduling-aware routing
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Figure 7. Replay of job history (Figure 1) for two HPC systems; four routings applied per sampling point; Metrics collected: maximal γe across all links
(top), γm averaged for all jobs (2nd plot), dark fiber percentage (3rd plot), and used links averaged for all jobs (bottom); lower is better for first three plots

TABLE 1. IMPROVEMENTS BY OUR SCHEDULING-AWARE ROUTING COMPARED TO DFSSSP, FAT-TREE, AND UP*/DOWN* ROUTING

Taurus HPC system Tsubame2.5 HPC system

Metric DFSSSP fat-tree Up*/Down* DFSSSP fat-tree Up*/Down*
max. / in % avg. / in % max. / % avg. / % max. / % avg. / % max. / % avg. / % max. / % avg. / % max. / % avg. / %

max
cq∈C∗

γe(cq) 279.0 / 50.8 57.3 / 23.3 18.0 / 21.2 -1.1 / -0.6 18.0 / 21.2 -1.1 / -0.6 321.0 / 61.2 119.4 / 38.5 1186.0 / 71.2 80.5 / 29.7 354.0 / 48.7 69.9 / 26.8

avg
j∈J

γmax(j) 16.0 / 39.0 4.3 / 23.4 1.6 / 11.4 -0.3 / -2.1 1.6 / 11.4 -0.3 / -2.1 18.9 / 46.0 6.7 / 30.1 38.0 / 49.8 2.7 / 14.8 10.6 / 29.9 2.4 / 13.2

θ [in %] 9.38 6.03 7.64 3.62 7.64 3.62 12.06 7.63 17.74 9.99 9.24 5.51

avg
j∈J

#links(j) 16.5 / 15.0 7.7 / 11.1 14.1 / 13.8 6.6 / 9.4 14.1 / 13.8 6.6 / 9.4 49.2 / 26.7 18.3 / 17.4 75.1 / 43.9 26.5 / 27.3 22.3 / 14.9 7.4 / 6.4

(blue line) outperforms DFSSSP for the Taurus system
and outperforms the other three routing algorithms on the
Tsubame2.5 supercomputer. For a quantitative comparison,
we summarize the results in Table 1. The results in the table
show the improvement by SAR for each metric (given as
maximum and as average across all sample points within the
month, as well as the improvement in percent). For example,
the 279.0 and 56.41 for DFSSSP mean that SAR reduced
γemax by 279.0 (or 50.8%), at least once compared to DFSSSP
routing, and reduced γemax by 56.41 (or 23.1%), on average
during the full month.

We see a reduction of γemax when SAR is used for both
HPC systems, especially for Tsubame2.5. This indicates that
the worst-case link congestion is lowered. The tremendous
differences between fat-tree and our SAR on Tsubame2.5,
around day 16 and day 28, indicate very unfortunate job-
to-node placements, which does not match the default fat-
tree routing of Tsubame2.5. SAR slightly increases γemax on
Taurus in comparison to fat-tree and Up*/Down* routing,
however on average SAR assigned only on more path onto
the link with the highest load. This disadvantage in the worst-
case bound of SAR is negligibly small, especially in the
context of the other two metrics, link utilization and link

availability. We also remark that Taurus had a fault-free and
regular topology and we assume that SAR will outperform
fat-tree and Up*/Down* if the system’s network topology
becomes more irregular over time due to network faults [14].

For the second metric, the maximal edge forwarding
index per job (2nd plot in Figure 7), we see a similar behavior.
Our SAR approach lowers the maximum number of inter-
job routes compared to the other routings, which should
accelerate the achievable throughput within the job, which
we will showcase in Section 4.3.4.

4.2.2. Available Links per Job and Dark Fiber. While
the EFI provides upper bounds for worst-case congestion,
we now evaluate a more direct metric for utilization. For
this, we analyze the number of switch-to-switch links that
are available to each job and to the overall set of jobs.
The dark fiber percentage θ is shown in the third plot of
Figure 7a and 7b for both supercomputers, and is summarized
in the third row of Table 1. Especially for Tsubame2.5, the
improvement to θ by our scheduling-aware routing is clearly
visible in the plot. We see that SAR increases the number
of links available to running batch jobs by up to 17.74%
for Tsubame2.5 in comparison to the default routing on



this system. For both systems, SAR consistently increases θ
and thus enables a more efficient resource utilization. SAR
utilizes between 3.6% and 9.9% more links on the month-
long average than the other oblivious routing mechanisms.

Lastly, the bottom plots of Figure 7 show that SAR
increases the number of intra-job links as well (“higher
is better” applies to these two plots) directly leading to a
higher effectively available bandwidth for the applications.
Depending on the routing algorithm and HPC system, our
SAR approach allows the average multi-switch job to use
between 6 and 26 more links.

4.3. Practical Evaluation on a Production System

We are using our scheduling-aware routing, as presented
in Section 3.2, now for more than one year on our petascale
Taurus production system [15] at the TU Dresden. The
system’s InfiniBand fabric is designed as a multi-island
network. Multiple smaller 2-level full-bisection fat-trees are
connected by a 216-port director switch. The following four
subsections show numbers collected while our system was
open to regular users. However, we omit showing runtime
comparisons to calculate the linear forwarding tables with
SAR for the following reasons: (1) SAR and DFSSSP have
the same runtime complexity of O

(
|N |2 · log |N |

)
, for the

node set N , (2) measurements revealed a negligible runtime
overhead introduced by our extensions, shown in Algorithm 1,
and (3) the competitive runtime of DFSSSP routing has
been shown before, e.g., refer to [6], [33], [34] for detailed
comparisons.

4.3.1. Runtime of the Filtering Tool. Our current recon-
figuration tool runs with a 5 min interval (cf. Figure 5) to
minimize the chance that SAR reroutes for batch jobs that
only run for a very short time. We measure the runtime of the
tool including polling the SLURM controller and analyzing
currently running jobs. The average time spent by our filtering
tool is 16 s, with a low of 0.02 s. In 99.1% the runtime was
below 2 min. We only experienced three occasions in over a
year, where the runtime was above 10 min. The vast majority
of the runtime of our tool results from the latency to obtain
the list of scheduled jobs via the squeue command, which
depends on the load of the SLURM controller.

4.3.2. New Routing Configurations per Day. The num-
ber of reconfigurations of the network per day, due to a
substantive change in the job mix and job locations, ranges
between 0 and 57, with an average of 14 reconfigurations per
day. Therefore, approximately every two hours our system’s
forwarding tables are adjusted to increase the performance
of the running parallel applications. Only for four days in
over a year of operation no reconfigurations were needed,
and three out of these four days were on weekends, and one
time on Monday, i.e., matching the typical days of lower
load on a production system in a university environment.

4.3.3. Runtime for Configuring LFTs of all IB Switches.
The time it takes to reconfigure all switches in the IB
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network is of importance. Either because it defines the time
window, where out-of-order packet delivery can happen if
property preserving network updates are not enforced, or
because it defines the timeframe during which the network
throughput might be decreased due to the use of the highLIDs
(routed by the less efficient Up*/Down*). We measured an
average of 4.6µs to send a LFT block to a switch and
receive an acknowledgment. Instead of reconfiguring all
LFT blocks of a switch at once, OpenSM iterates over the
block numbers and sends out the first LFT block of each
switch, before processing the second block, and so on. So,
theoretically OpenSM could reconfigure one block number
for all 210 switches in our Taurus system in under 1 ms,
however we measure a runtime between 25 ms and 50 ms
for this process. Despite this OpenSM-internal overhead,
the whole LFT reconfiguration for our system is completed
in ≈0.8 s on average. Hence, the likelihood for an out-of-
order packet delivery, which cannot be compensated by
InfiniBand’s packet timeout/retry mechanism and therefore
cause an application crash, is close to zero. In fact, we are
unaware of any application crash caused by SAR on our
HPC system, even though the system cannot use the full
network update protocol discussed in Section 3.3 due to
limitations in the HCA firmware.

4.3.4. Effects on MPI Traffic. The optimal latency between
any two nodes in the system is not affected by our SAR
approach, due to the fact that the underlying algorithm always
calculates shortest paths. Therefore, any reconfiguration
of the fabric with our Algorithm 1 will not increase the
number of hops between nodes. Changes in the observable
latency for small messages are possible, i.e., better or worse
compared to algorithms for individual messages depending
on the congestion in the system. However, from the two
network metrics evaluated in Section 4.2, we can deduce
that the likelihood of congestion is reduced and therefore the
observable latency for small messages improves on average
using SAR. Hence, we refrain from showing measured
latency results, since the optimal latency does not change.

We conduct an MPI runtime measurement on our pro-
duction system to showcase the impact of our scheduling-
aware routing compared to other routing approaches. The
benchmark emulates a bulk-synchronous application us-
ing an MPI Alltoall collective operation followed by an
MPI Barrier to synchronize the time measurement. Every
MPI process sends 1 MiB to every other process, and the
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runtime of the slowest process is written into a log file. This
benchmark is scheduled to 28 nodes of one full-bisection
fat-tree island of Taurus. We switched between three routing
algorithms while the benchmark was running. Due to natural
fragmentation of the production system, the 28 nodes ended
up connected to ten different switches in the island.

Figure 8 summarizes the results: We ran the default fat-
tree routing for the first three minutes. Then, we switched the
subnet manager to standard DFSSSP routing, approximately
between iteration 1,600 and 2,600. We observe a runtime
increase of 7.1% due to the change from fat-tree routing to
DFSSSP routing. For the last time segment, we started our
SAR routing, which initiates the scheduling-aware routing for
the whole system. The path optimizations by our scheduling-
aware routing decreases the runtime for the benchmark by
17.6% compared to DFSSSP routing and 11.7% compared
to fat-tree routing. We also plot the theoretical peak per-
formance, assuming all data can be transferred without
congestion and MPI library overhead. This shows that SAR
essentially halves the congestion overhead caused by the
highly optimized fat-tree routing, even on a regular fat-tree.

4.3.5. Property Preserving Network Updates on Testbed.
Even so draining of the queue pairs currently does not work,
as outlined in Section 4.1, we are able to successfully perform
path migrations and update the routing configuration. To
showcase that our network updates are safe in practice,
we use a small test system, consisting of two IB QDR
switches (connected by two links) and four nodes with
IB FDR host channel adapters (two nodes connected to
each switch). The modified OpenSM, which supports our
network update protocol, is running on an administration
node. We execute an MPI benchmark, which repeatedly
performs MPI Bcast with a 1 MiB send buffer, on two
compute nodes to stress the fabric, and perform a scheduling-
aware rerouting, see Figure 9. While running the benchmark,
we query the performance counters of the inter-switch links
approximately every 0.07 s, and use them to calculate the
shown throughput. Additionally, we added an artificial delay
of 10 s in OpenSM between sending unpath and repath traps,
so that the path migration is easier to identify, see the area
between sample 400 and 560. The path migration between
the two links is clearly visible in Figure 9 and our update
protocol has no negative impact on the throughput of the
broadcast operation.

5. Related Work

The state-of-the-art routing method for supercomputers is
static and flow-oblivious routing (e.g., [22], [35]), but a few
alternatives, such as adaptive routing strategies (e.g., [32],
[36], [37]) exist. Research shows that oblivious routing
can result in local congestion, which increases application
runtime, when the routes and communication pattern does
not match properly [38]. Yet, its simplicity and practicality
makes it the most-used routing mechanism, for example, in
all InfiniBand and Ethernet networks. The objective of these
flow-oblivious routings, such as the deadlock-free single-
source shortest-path routing (DFSSSP) [6], Up*/Down* [5],
or fat-tree routing [26], is to distribute the routes evenly
across the interconnection network. However, this static and
global balancing approach is only effective when the system
is used by a single parallel application. SAR improves this
flow-oblivious approach by including knowledge about the
job-to-node mapping during the path calculation.

Optimizing communication performance for multi-user
HPC system has been studied in the past resulting in many
different approaches. Mellanox’s proprietary traffic-aware
routing, short TARA [39], monitors active applications and
the network port counters, and attempts path adjustments
when congestion is identified. However, TARA is a reactive
optimization and depends on the time to collect and analyze
all port counters. Furthermore, we are unaware of TARA’s
ability to enforce property preserving updates of the LFTs,
hence out-of-order packet delivery is possible.

Application-aware routings, e.g., [9], [40], have been
developed, but require detailed knowledge about traffic
patterns and injection rates of each application. Additionally,
this optimization approach has no notion of a timely behavior
of the applications, and might assign too few links to each
applications assuming they communicate simultaneously.
In contrast, our scheduling-aware approach increases the
network resources available to each application.

Optimizing job-to-node assignment via the batch system,
while considering the network topology [41], [42], is feasible
for regular networks, but assumes idealized routing or
ignores it completely. Performing a routing-aware job-to-node
mapping [43] by the batch job scheduler has been proposed
as alternative. However, the computational complexity to
solve the mapping problem is usually infeasible for an online
scheduling of batch jobs, or fast, but imprecise, heuristics are
used. In addition, this job-to-node mapping might increase
the system’s fragmentation, or it is hindered by the logical
separation of the system through batch queues.

Multiple network update protocols have been developed
in the past, but these are usually specific to certain technolo-
gies and their properties, such as for the broader gateway
protocol (BGP) [44], [45] or for SDN networks [19], [20],
to name but a few. Our property preserving network update
is similar in this regard, but is customized for the conditions
and requirements found in lossless InfiniBand fabrics.



6. Conclusion

The network of flow-oblivious routed supercomputers,
e.g., the 47% InfiniBand-based systems of the Top500 list,
suffers from underutilization when used simultaneously by
many users, and application performance is reduced by local
congestion in the network. Our scheduling-aware routing
(SAR) approach for the interconnection network is able to
mitigate these problems. As a result, the observable through-
put for MPI-parallelized applications improves considerably,
and is less sensitive to actual locality of the compute nodes
within the supercomputer. Furthermore, the amount of dark
fiber, i.e., installed but unused cables, is reduced.

We successfully integrated a filtering tool, periodically
performing analyses of batch jobs, and a modified subnet
manager (supporting SAR) into our IB-based petascale
HPC system. Combining the knowledge of two different
resource management domains has proven to be effective in
theory, as well as in practice in over one year of usage on our
system. We believe that SAR will be beneficial for other HPC
centers which use obliviously routed networks, because of its
low computational overhead and its transparency to parallel
applications. Furthermore, the SAR approach could optimize
pre-calculated alternatives for adaptive routing algorithms,
theoretically reducing the flow migrations by the switches.

Changing the forwarding rules, not subject to error correc-
tion, within a interconnection network can cause unintended
network packet delivery, such as out-of-order delivery, packet
drops, and deadlocks, etc. Upper layer protocols, such as
MPI, might fail, if a lossless interconnection technology is
not able to handle these problems. Our proposed network
update protocol for InfiniBand preserves required forwarding
properties to ensure fault-free operation. Unfortunately, miss-
ing features within the hardware vendor’s firmware prevent
us currently from using this property preserving network
update protocol. Nonetheless, we have not experienced any
application crashes due to scheduling-aware reroutings of
our HPC system, presumably because of resiliency features
build into the transport layer of InfiniBand.
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