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Abstract
We propose a novel approach to iterated sparse matrix dense

matrix multiplication, a fundamental computational kernel

in scientific computing and graph neural network training. In

cases where matrix sizes exceed the memory of a single com-

pute node, data transfer becomes a bottleneck. An approach

based on dense matrix multiplication algorithms leads to sub-

optimal scalability and fails to exploit the sparsity in the prob-

lem. To address these challenges, we propose decomposing

the sparse matrix into a small number of highly structured

matrices called arrow matrices, which are connected by per-

mutations. Our approach enables communication-avoiding

multiplications, achieving a polynomial reduction in commu-

nication volume per iteration for matrices corresponding to

planar graphs and other minor-excluded families of graphs.

Our evaluation demonstrates that our approach outperforms

a state-of-the-art method for sparse matrix multiplication on

matrices with hundreds of millions of rows, offering near-

linear strong and weak scaling.

1 Introduction
Iterated sparse-dense matrix multiplications (SpMM) have

numerous applications, including the training and inference

of graph neural networks [47] and the computation of eigen-

vectors [24, 32, 38]. As the matrices arising from these prob-

lems are often too large to fit into the memory of a single

GPU, they need to be decomposed and solved on compute

clusters [9, 11] or processed in several batches [50]. Data
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movement becomes the crucial bottleneck for such sparse

workloads [11, 45, 50].

Two existing approaches stand out. The first line adapts

efficient algorithms designed for dense matrices to the sparse

domain [9, 45, 47]. These techniques offer the advantage of

low overhead and simplicity, but they encounter limitations

due to their origin in dense algorithms. Consequently, their

ability to fully harness the available processing power in

the sparse matrix regime is limited. This deficiency forces a

compromise between latency, bandwidth, and memory.

The second line of work focuses on matrix reorderings [1,

15, 16, 21, 22]. This approach involves permuting the rows

and columns of a matrix to enhance computational and com-

munication efficiency. However, these methods often rely on

heuristic strategies [16, 23, 48] and are constrained by unfa-

vorable lower bounds and complexity results [21, 22, 35, 39].

Of particular concern is the sensitivity of these bounds to

the maximum degree and the diameter of the graph. This

drawback is especially pronounced in scale-free graphs and

those with skewed degree distributions.

To overcome these limitations, we provide a matrix de-

composition approach to sparse-matrix times dense-matrix

operations. The sparse input matrix A is decomposed into

a small number of matrices with bounded arrow-width 𝑏,

meaning that all non-zeros are concentrated in the first 𝑏

rows, columns, and a band of width 𝑏 around the diagonal.

Formally, A has arrow-width 𝑏 if for all 𝑖 > 𝑏 and 𝑗 > 𝑏 we

have that if𝐴𝑖 𝑗 ≠ 0, then |𝑖− 𝑗 | ≤ 𝑏. Arrow-width generalizes
the notion of an arrowhead matrix [26], for which 𝑏 = 1. We

decompose a matrix A into a sum of matrices of the form

A =
∑𝑙

𝑖=1 P𝜋𝑖B𝑖P⊤𝜋𝑖 , where each matrix B𝑖 has arrow-width

at most 𝑏 and each matrix P𝜋𝑖 is a permutation matrix. See

Figure 1 for an example of the B0 matrices. Given this de-

composition, the computation can be performed on those
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Figure 1. Non-zero structure of the first matrix B0 in an arrow matrix decomposition for matrices from the SuiteSparse Matrix

Collection. The color indicates the number of non-zeros per row; white blocks are empty. Each block has 5 million rows.

regularly-structured matrices in a communication-efficient

way and, finally, aggregated.

In contrast to traditional bandwidth-minimization, we

overcome the fundamental lower bounds with our decom-

position. In particular, while any adjacency matrix of a low-

diameter tree has Ω(𝑛/log𝑛) bandwidth, we show, in partic-

ular, how to decompose the adjacency matrix of such a tree

into 𝑂 (log𝑛) matrices of bandwidth 𝑂 (1). We show how

to construct such an arrow matrix decomposition for several

sparsity structures, as characterized by the graphs they repre-

sent. The main idea is to use the relationship with minimum

linear arrangement [14, 20, 41]. Moreover, we prove that the

pruning of high-degree vertices enabled by the arrow shape

provides a polynomial improvement in the communication

volume in power law graphs.

Our proposed approach is efficient and can construct the

arrow matrix decomposition in polynomial time for a va-

riety of families of graphs, including trees, chordal graphs,

planar graphs, and, more generally, 𝐾𝑟 -minor free graphs.

Additionally, we present a linear-time heuristic based on ef-

ficient layouts of random spanning trees that can effectively

decompose real-world graphs such as biological and web

traffic graphs into a small number of increasingly sparse

matrices. In our evaluation, we decompose 13 of the largest

matrices in the SuiteSparse matrix collection into just two to

four matrices of low arrow width, whereas their maximum

bandwidth can exceed 90% of the number of columns.

Our approach provides significant reductions in communi-

cation costs of sparse matrix-matrix multiplication compared

to traditional approaches. In our experiments, we demon-

strate the scalability of our approach by testing it on several

sparse matrices with over 50 million rows. On 128 GPUs,

our approach reduces the communication volume by 3 − 5
times compared to a 1.5D decomposition, a state-of-the art

approach for SpMM [45, 47]. Our approach uses less memory

per compute node and effortlessly processes sparse matrices

with over 200 million vertices and dense right-hand side

matrices with a larger number of columns.

Furthermore, our evaluation shows that on a related family

of sparse matrices from the same dataset, the runtime of our

approach only grows by 2.3−6.2% as we scale from a dataset

with 18 million rows to a dataset with over 200 million rows

when the ratio of vertices over GPUs remains constant. Over-

all, our approach shows better scaling both with the number

of sparse and the number of dense columns. We demonstrate

good strong scaling up to 256 compute nodes on matrices

with over 200million rows where we show speedups of 5.3x-

14.3x compared to the 1.5D baseline and 1.7x-58x compared

to the 1D hypergraph partitioning baseline.

2 Background
Graphs. Consider an undirected graph 𝐺 with 𝑛 vertices

𝑉 (𝐺) and 𝑚 edges 𝐸 (𝐺). The subgraph of 𝐺 induced by

𝑆 ⊆ 𝑉 is 𝐺 [𝑆]. The degree of a vertex 𝑣 is deg(𝑣) and the

maximum degree of 𝐺 is Δ(𝐺), or Δ for short when 𝐺 is

clear from the context. Given a rooted tree, the set of descen-

dants of a vertex 𝑣 is 𝑣↓. The diameter of a graph 𝐺 is 𝐷 (𝐺).
If there is a permutation 𝜋 of the vertices 𝑉 (𝐺) such that

max(𝑢,𝑣) ∈𝐸 (𝐺 ) |𝜋 (𝑢) −𝜋 (𝑣) | = 𝑤 ,𝐺 has bandwidth𝑤 [16, 21].

Matrices. We denote the adjacency matrix of 𝐺 by A,
meaning that the number of non-zeros in A is nnz(A) =𝑚.

We consider a dense tall and skinny feature matrix X =

X0 ∈ 𝑅𝑛×𝑘 , with 𝑘 features where 𝑘 ≪ 𝑛 [45]. Our goal is

to compute the matrix iteration X𝑡+1 = 𝜎 (AXt) for some

number of steps𝑇 . The function 𝜎 denotes some application-

dependent element-wise function or normalization opera-

tion. We will focus our attention on the computation of the

product Y = AX in the situation where 𝑇 ≫ 1. This means

that we can afford to preprocess the problem and amortize

the cost over the iterations. A matrix has bandwidth 𝑤 if

its nonzero elements are at most𝑤 away from the diagonal.

That is, the matrix A has bandwidth𝑤 if for all 𝑖 , 𝑗 we have

that if 𝐴𝑖 𝑗 ≠ 0, then |𝑖 − 𝑗 | ≤ 𝑤 .

The 𝛼-𝛽 Model of Computation. We consider 𝑝 proces-

sors that can each send and receive one message simulta-

neously. Sending a message of size 𝑠 has a latency cost 𝛼

and a bandwidth cost 𝛽 · 𝑠 [13, 45]. A message𝑀 ′ depends
on another message𝑀 if its content, recipient, or existence

depends on 𝑀 . The latency cost of a computation is the

largest sum of latency costs along a chain of dependent mes-

sages. The bandwidth cost of an algorithm is the largest total

bandwidth cost over all processors.
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3 Related Work
Based on parallel algorithms for dense matrix multiplica-

tions [44], Selvitopi et al. [45] detail several approaches to

tile the sparse-times-dense-skinny SpMM, which trade off

communication cost with storage.

1.5D 𝐴-stationary. The 1.5D 𝐴-stationary algorithm [45,

47] arranges the processors in a
𝑝

𝑐
× 𝑐 grid, where 𝑐 is the

replication factor. It slices the matrix A into tiles of size

𝑛𝑐
𝑝
× 𝑛

𝑐
(splitting it both by row and column), with each pro-

cessor assigned a single tile. It splits the feature matrix X
along the row dimension into tiles of size

𝑛𝑐
𝑝
× 𝑘 , meaning

that each tile is replicated in the 𝑐 processors of a grid row.

The
𝑝

𝑐
processor of a grid column compute together a single

𝑛𝑐
𝑝
× 𝑘-sized tile of the output Y, with each processor holding

a partial tile of the same size. To do so, they require
𝑝

𝑐2
tiles of

X. The computation happens in
𝑝

𝑐2
rounds, broadcasting one

of those tiles along the grid column, so each processor needs

to hold only one extra X tile at any point of the execution.

After executing all rounds, each grid column performs an

all-reduce operation to compute the full tile. The commu-

nication cost is 𝑂
(
𝛼

𝑝

𝑐2
log𝑝 + 𝛽

(
𝑛𝑘
𝑐
+ 𝑛𝑘𝑐

𝑝

) )
[45]. The total

storage cost for all processors is𝑂 (𝑚 + 𝑐𝑛𝑘). For the special
case 𝑐 = 1, the algorithm is equivalent to a 1D version with

communication cost 𝑂
(
𝛼𝑝 log𝑝 + 𝛽

(
𝑛𝑘√
𝑝
+ 𝑛𝑘√𝑝

) )
and total

storage cost𝑂 (𝑚 + 𝑛𝑘). For full replication, 𝑐 = √𝑝 , the com-

munication cost is 𝑂
(
𝛼 log𝑝 + 𝛽 𝑛𝑘√

𝑝

)
, and the total storage

cost is 𝑂
(
𝑚 + √𝑝𝑛𝑘

)
. High values of the replication factor

thus reduce the communication cost but increase storage.

2D 𝐴-stationary. In contrast to the 1.5D algorithm, the

feature matrix X is sliced by columns as well in the 2D A-
stationary algorithm. However, this requires computing the

result in

√
𝑝 phases. This both reduces the size of the local

SpMM operations (which leads to decreased local SpMM

performance [45]) and leads to a higher communication cost.

Overall, the approach needs to store 𝑂 (𝑛/𝑝) rows of the fea-
ture matrix per processor and has a total communication cost

of𝑂
(
𝛼
√
𝑝 log𝑝 + 𝛽 𝑛𝑘 log𝑝√

𝑝

)
. Compared to the 1.5D algorithm

with 𝑐 =
√
𝑝 , this improves the storage by a factor of

√
𝑝

but increases the latency cost by a factor of Θ(√𝑝) and the

bandwidth cost by a factor of Θ(log𝑝). Previous work found
2𝐷 decompositions to scale less favorably compared to 1.5D

algorithms in for skinny feature matrices [45, 47].

2D 𝑌 -stationary. In the case where the matrix A has

fewer columns than rows, an algorithm that keeps the result

matrix Y-stationary improves communication costs [45]. As

we focus on the case where A is square (due to being an

adjacency matrix of a graph), this approach does not provide

any communication cost benefits in our settings.

Square Dense Matrices. For the case where the feature
matrix is also square, Koanantakool et al. [30] evaluate sev-

eral communication avoiding decomposition schemes. In our

work, we focus on approaches specifically designed for the

case where the feature matrix is skinny, but tall.

Graph Partitioning. Several (hyper-)graph-partitioning
approaches have been proposed for sparse matrix-vector [8,

12, 37, 46] and sparse matrix-matrix [6, 19] multiplication.

Our matrix decomposition approach is not based on graph

partitioning. Instead, our objective function is based on mini-

mum linear arrangement [14]. Our approach avoids commu-

nication load imbalance between the partitions as we use the

1.5D 𝐴-stationary algorithm, specialized to arrow matrices.

Graph Reordering. If the matrix A has low bandwidth,

one can efficiently compute the sparse matrix-matrix product

AXwith a small communication cost and low storage require-

ments using a 1.5D A-stationary algorithm. The bandwidth

of 𝐺 is at least ⌈ 𝑛−1
𝐷 (𝐺 ) ⌉ and at least

⌈
Δ(𝐺 )
2

⌉
[15] meaning that

low-diameter networks [3] and power-law networks [2] have

high bandwidth. Computing the bandwidth is NP-hard [22],

even on bounded degree trees [15].

4 Arrow Matrix Decomposition
Our approach is to decompose the graph𝐺 into as few graphs

as possible, each having low arrow-width. Then, we effi-

ciently perform an SpMM on each of the arrow matrices and

only need to aggregate the partial results. We demonstrate

in Section 5.6 that the arrow shape is necessary to effectively

represent graphs with skewed degree distributions.

In terms of matrices, this results in an arrow matrix decom-

position of the formA =
∑𝑙

𝑖=1 P𝜋𝑖B𝑖P
⊤
𝜋𝑖
, where each matrix B𝑖

has arrow-width at most 𝑏 and each matrix P𝜋𝑖 is a permuta-

tion matrix corresponding to a permutation 𝜋𝑖 of the vertices

of the graph. We call such a decomposition a 𝑏-arrow matrix

decomposition of order 𝑙 . Then, we can compute Y = AX as

AX =

𝑙∑︁
𝑖=1

P𝜋𝑖
(
B𝑖 (P⊤𝜋𝑖X)

)
, (1)

meaning that we have reduced the computation of the prod-

uct onto a series of arrow matrix multiplies, permutations,

and reductions.

It is desirable for an arrow matrix decomposition that

the number of non-zero rows decreases quickly with 𝑖 , as

this reduces storage and communication costs. Note that

in this case, we can always collect the non-zeros at the top

of the matrix. If the total number of non-zeros in B𝑖+1 is at
most

1

𝑥
times the total number of non-zeros in B𝑖 , then we

say the arrow matrix decomposition is 𝑥-compacting. For

𝑥 > 1, an 𝑥-compacting arrow decomposition has order

𝑂 (1 + log𝑥 𝑛). In our experiments, we will construct order

1 − 3 decompositions.

4.1 Distributed SpMM Algorithm
We present a distributed algorithm for SpMM using an arrow

matrix decomposition. In Section 6, we analyze the data
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Figure 2. In a distribution of an arrow matrix B, each tile

of B is 𝑏 × 𝑏 and each tile of D and C is 𝑏 × 𝑘 . The numbers

indicate the process ranks holding or contributing to the tile.

movement and storage requirements of this algorithm in the

𝛼 − 𝛽 model. In particular, it improves bandwidth cost and

storage requirements by a factor ofΘ(√𝑝) at a similar latency

cost compared to a fully replicated 1.5D decomposition.

We present a distributed algorithm for SpMM using an

arrow matrix decomposition. In Section 6, we analyze the

data movement and storage requirements of this algorithm

in the 𝛼 − 𝛽 model. This method notably improves band-

width cost and storage efficiency by a factor of Θ(√𝑝), while
maintaining comparable latency costs to a fully replicated

1.5D decomposition.

Algorithm 1: Arrow Matrix Multiply

Data: B, D, rank 𝑟
Result: C=BD

1 Broadcast(D(0) , root=0)
2 C(0) = B(0,i)D(i)

3 Reduce(C(0) , root=0)
4 if 𝑟 > 0 then
5 C(r) = B(r,0)D(0) + B(r,r)D(r)

6 return C(r)

Arrow Matrix SpMM. Let us begin with how to compute

the product BD = C when B has arrow width 𝑏. The arrow

matrix’s non-zeros appear in three bands, leading a 1.5D

decomposition to result in most tiles of B being zero, thus

yielding a communication-efficient algorithm. To further

enhance efficiency, we consider a block-diagonal band.

We tile the 𝑛 × 𝑛 matrix B, with arrow width 𝑏, into 𝑏 × 𝑏
tiles, indexed as B(i,j) . Due to the arrow structure, the non-

zeros occur in three types of tiles: ⌈𝑛
𝑏
⌉ row tiles (B(0,j) ), ⌈𝑛

𝑏
⌉

column tiles (B(i,0) for 𝑖 > 0), and ⌈𝑛
𝑏
⌉ diagonal tiles (B(i,i) ).

The matrices D and C are sliced into 𝑏 × 𝑘 tiles, indexed as

D(i) and C(i) . Each rank 𝑖 initially holds three tiles of B and

one slice of D, as depicted in Figure 2. The multiplication

using an arrowmatrix is detailed in Algorithm 1 and involves

two collective communication operations.

SpMM Algorithm. Next, we describe how to multiply

with a matrix given its arrow decomposition. Each rank is

assigned to one of the matrices of the decomposition. Each

matrix is distributed as in Figure 2. Initially, the first matrix

Algorithm 2: Arrow Decomposition Multiply

Data: Arrow Decomposition A =
∑𝑙

𝑖=1 P𝜋𝑖B𝑖P⊤𝜋𝑖 , X,
rank 𝑟 , where rank 𝑟 belongs to the 𝑗-th arrow matrix.

Result: Y=AX
1 for 𝑘 ← 1 to 𝑙 do
2 if 𝑘 == 𝑗 then
3 Send X(r) to matrix 𝑗 + 1
4 if 𝑘 + 1 == 𝑗 then
5 Receive X(r) = (P⊤𝜋 𝑗

X) (𝑟 ) from matrix 𝑗 − 1

6 Y(r)j = (B𝑗 (P⊤𝜋 𝑗
X)) (𝑖 )

7 for 𝑘 ← 𝑙 to 1 do
8 if 𝑘 == 𝑗 then
9 Send Y(r) to matrix 𝑗 − 1

10 if 𝑘 − 1 == 𝑗 then
11 Receive Ŷ(r) = (∑𝑙

𝑖=𝑟+1 P𝜋𝑖Y𝑖 ) (𝑟 ) from 𝑗 + 1
12 Y(r) += Ŷ(r)

alone contains the input matrix X, with each of its ranks

𝑟 holding a distinct block X(r) . This block is then sent to

the subsequent matrix in the sequence, propagating through

each matrix. This propagation utilizes a specific permutation,

𝜋 𝑗+1◦𝜋−1𝑗 , to shuffle the rows when transmitting frommatrix

𝑗 to matrix 𝑗 +1. Each matrix then computes its local product

as described in Algorithm 1, resulting in a partial output Yj,

with the segment Y(j)j stored by the rank 𝑟 assigned to matrix

𝑗 . Finally, the partial results Yj are aggregated in reverse

order, following the opposite pattern of the input matrix

distribution. For a detailed explanation of this procedure,

refer to Algorithm 2.

5 Constructing the Decomposition
When we construct an arrow matrix decomposition, there is

a trade-off between the time to compute the decomposition

and its compactness. We frame the decomposition problem

in a graph-theoretic language, which allows us to obtain algo-

rithms that are polynomial time and provide strong bounds

on certain sparsity structures.

The high-level idea is to consider the matrix as a graph

and find a permutation of its vertices, a so-called linear ar-

rangement, such that many edges connect vertices that are

close in the order of the permutation. We minimize a cost

function that sums over the distances of the edges in the

linear arrangement. Because high-degree vertices add high

costs, we collect those at the beginning of the order. Then,

we construct a remainder graph consisting of the edges that

are much further apart than the average cost of the solution

and proceed recursively.

In addition to provable polynomial time bounds on several

families of graphs, we present a near-linear time heuristic
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Figure 3. LA-Decompose produces a linear arrangement 𝜋0 of the vertices of the graph that corresponds to the sparsity

structure of the input matrix. This creates three parts in the matrix (1) A flipped ’L’ shape that contains the highest degree

vertices (in blue), (2) a band around the diagonal (in green), and (3) the remainder (in red). The first two parts form the first

matrix B0 of the decomposition. The rest of the decomposition proceeds recursively on the remainder.

based on high-quality linear arrangements of random span-

ning trees. Because of its scalability to hundreds of millions

of nodes, we use this random spanning forests approach to

compute our decompositions in our evaluation.

5.1 LA-Decompose
Any reordering of the matrices and rows of a square ma-

trix can be viewed as a permutation of the vertices of its

graph. Such a permutation is called a linear arrangement.

Our goal is to find a permutation that leads to most of

the non-zeros being close to the diagonal. Hence, we con-

sider the cost function 𝜆𝜋 (𝐺) of the linear arrangement 𝜋

as 𝜆𝜋 (𝐺) =
∑
(𝑢,𝑣) ∈𝐸 (𝐺 ) |𝜋 (𝑢) − 𝜋 (𝑣) |. If the graph𝐺 is clear

from the context, we omit 𝐺 from the notation. A linear ar-

rangement of𝐺 with the smallest cost is aminimum linear ar-

rangement (MLA) [14, 20, 41]. Computing a minimum linear

arrangement is NP-hard, however, it can be approximated in

polynomial time within a𝑂 (
√︁
log𝑛 log log𝑛) factor [14] and

solved exactly in polynomial time on trees [4] and chordal

graphs [42]. Note that a graph with bandwidth 𝑏 has a linear

arrangement of cost at most𝑚𝑏 or 𝑛𝑏2. In contrast, we show

there are graphs with a linear arrangement of cost𝑂 (𝑛 log𝑛)
but bandwidth Ω(𝑛/log𝑛).

The idea of our algorithm is that a linear arrangement 𝜋 of

cost 𝜆𝜋 (𝐺) concentrates a constant fraction of the non-zeros

along a 𝑂 (𝜆𝜋 (𝐺)/𝑚)-wide band along the diagonal. Remov-

ing this portion and repeating the process until no edges are

left leads to a compact arrow decomposition. We present a

framework for computing an arrow matrix decomposition

using a linear arrangement, called LA-Decompose(A, 𝑏):
We are given a matrix A and a desired arrow-width 𝑏 ≥ 2.

Set A0 = A and 𝑖 = 0. Until the number of non-zeros in A𝑖 is

at most 2𝑏, repeat the following steps:

1. Place the 𝑏 highest degree vertices 𝑉ℎ
𝑖 at the beginning

of the linear arrangement 𝜋𝑖 .

2. Compute a linear arrangement 𝜋 ′𝑖 of the induced sub-

graph 𝐺 ′𝑖 = 𝐺𝑖 [𝑉𝑖\𝑉ℎ
𝑖 ] of A𝑖 and concatenate it to 𝜋𝑖 .

3. Set B𝑖 equal to the submatrix of P⊤𝜋𝑖A𝑖P𝜋𝑖 consisting of

the first 𝑏 rows and columns and a symmetric 𝑏-wide

band around the diagonal.

4. Set A𝑖+1 = A𝑖 − P𝜋𝑖B𝑖P⊤𝜋𝑖 and increment 𝑖 .

Observe that the matrices A𝑖 do not need to be constructed

explicitly and one can instead work on the corresponding

graphs. See Figure 3 for an illustration of the approach.

Lemma 1. For 𝑥 = 𝑏𝑚
max𝑖 𝜆𝜋 ′

𝑖
(𝐺 ′

𝑖
) , LA-Decompose(A, 𝑏) com-

putes an 𝑥-compacting 𝑏-arrow matrix decomposition.

Proof. The arrow-width of any of the matrices B𝑖 is 𝑏 by

construction. Moreover, in step 𝑖 the average distance from

the diagonal is at most

𝜆𝜋 ′
𝑖
(𝐺 ′𝑖 )
𝑚

. No more than a
1

𝑥
fraction of

the entries can be more than 𝑥-times the average away from

the diagonal. Hence, in each iteration at most a
1

𝑥
fraction

of the edges remain, i.e., the decomposition is 𝑥-compacting.

□

Lemma 1 means that the number of nonzeros decreases

geometrically for the matrices in the decomposition as long

as 𝑏 is larger than the average cost of an edge in the linear

arrangements 𝜋 ′𝑖 . In our experiments, this will always be the

case for our choices of 𝑏.

Next, we will show efficient algorithms for linear arrange-

ments and prove lower bounds for certain families of graphs.

The bounds on the cost of the linear arrangement will de-

pend necessarily on the maximum degree Δ of the graph.

This is why we removed the highest degree vertices before

computing the linear arrangement in LA-Decompose. In Sec-

tion 5.6, we show how the pruning of high-degree vertices

improves the arrow decomposition in graphs with a power

law degree distribution, which occur in real-word graphs [2].
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Table 1. Bounds on the cost of a linear arrangement.

Graph family Linear arrangement cost

𝐾𝑟 -minor free (§5.2, [28]) 𝑂 (𝑛Δ
√
𝑛𝑟 )

Planar (§5.2, [33]) 𝑂 (𝑛Δ
√
𝑛)

Treewidth 𝜏 (§5.2 [10, 43]) 𝑂 (𝑛𝜏 log𝑛)
Series-Parallel (§5.2) 𝑂 (𝑛 log𝑛)
Trees (§5.4) 𝑛Δ

5.2 Linear Arrangement using Separators
We show how to construct linear arrangements efficiently

by recursively partitioning the graph. This allows us to ob-

tain bounds on the cost of a linear arrangement for several

families of graphs that can be separated efficiently.

A set of vertices 𝑆 whose removal leaves the graph with

connected components of size at most
2

3
𝑛 is a

2

3
-separator.

For any positive integer 𝑘 ≤ 𝑛, let 𝑠𝑘 (𝐺) be the smallest

number such that all subgraphs of 𝐺 containing at most

𝑘 vertices have a
2

3
-separator of size 𝑠𝑘 (𝐺). The separation

number 𝑠 (𝐺) of 𝐺 is 𝑠 (𝐺) = 𝑠𝑛 (𝐺). Small separators can be

constructed, in particular, for clique-minor free graphs [28]

and bounded treewidth graphs [10, 43].

Separator-LA(𝐺) constructs a linear arrangement using

separators recursively:

1. Compute a
2

3
-separator 𝑆 of the current subgraph 𝐺 .

2. Place the vertices of 𝑆 at the beginning of the linear order.

3. Then, place the connected components of 𝐺 [𝑉 (𝐺)\𝑆]
that remain after removing 𝑆 in increasing order after 𝑆 .

Within each connected component, place vertices recur-

sively using Separator-LA.

Lemma 2. Separator-LA(𝐺) produces a linear arrangement

of cost 𝑂 (𝑛Δ𝑠 (𝐺) log𝑛). If 𝑠𝑛 (𝐺) ∈ Θ(𝑛𝜖 ) for some constant

𝜖 > 0, the linear arrangement has cost 𝑂 (𝑛Δ𝑠𝑛 (𝐺)).

Proof. The cost at a particular level of recursion is at most

𝑛Δ|𝑆 | ≤ 𝑛Δ𝑠𝑛 (𝐺). Let 𝑛0, . . . , 𝑛𝑖 be the sizes of the connected
components of the graph 𝐺 [𝑉 (𝐺)\𝑆] after removing 𝑆 . The

cost 𝜆(𝑛) of the linear arrangement on 𝑛 vertices is at most:

𝜆(𝑛) ≤ 𝑂 (𝑛Δ𝑠𝑛 (𝐺)) +
∑︁
𝑖

𝜆(𝑛𝑖 ) ,

which solves to𝑂 (Δ𝑛𝑠𝑛 (𝐺) log𝑛) because the depth of the re-
cursion is 𝑂 (log𝑛). Note that if 𝑠𝑛 (𝐺) ∈ Θ(𝑛𝜖 ),

∑
𝑖 𝑠𝑛𝑖 (𝐺) <

𝑠𝑛 (𝐺)/2. □

See Table 1 for a summary of the bounds obtained by

Separator-LA on various families of graphs.

5.3 Linear Arrangements using Random MSTs
For datasets with hundreds of millions of nodes, it is crucial

to have an algorithm that uses near-linear time. Computing

separators in𝐾𝑟 -minor-free graphs takesΩ(𝑚
√
𝑛) time using

state-of-the-art algorithms [40], which becomes prohibitive

for graphs with hundreds of millions of vertices. We propose

a linear arrangement scheme using a random spanning forest

of the input graph:

1. Construct a weighted graph𝐺 ′ by drawing edge weights

independently from the standard uniform distribution.

2. Compute a minimum spanning forest 𝐹 of 𝐺 ′.
3. Compute a linear arrangement of each tree in the forest

𝐹 in decreasing order of size and concatenate them.

In our experiments in Section 7, we evaluate the linear ar-

rangement using random forests and demonstrate its efficacy

on real-world datasets. As trees have separation number 2,

we directly get a linear arrangement of the spanning trees of

cost 𝑂 (𝑛Δ log𝑛) using Separator-LA. However, improving

the quality of the linear arrangement of trees is possible.

5.4 Linear Arrangement of Trees
In this section, we show an improvement in the cost of a lin-

ear arrangement over Separator-LA by a factor of Θ(log𝑛)
for trees. We can get a tighter bound on the arrow width of

an arrow decomposition of a tree with the following layout,

which we use in our experiments: Place the root at the first

position. Then, sort the children subtrees by size and arrange

these subtrees one after the other in this order. Arrange each

subtree recursively. This arrangement 𝜋 is called smallest-

first order. Instead of arguing about the cost of the linear

arrangement and then using that most edges are close to

the average, we directly argue about how many edges are

within a 𝑥Δ wide band around the diagonal. For every edge

(𝑢, 𝑣) in the 𝑥Δ-wide band around the diagonal, we have that
|𝜋 (𝑢) − 𝜋 (𝑣) | ≤ 𝑥Δ.

Lemma 3. In smallest-first order 𝜋 of a tree 𝑇 , at least

min

(
𝑛 − 1, ⌈ (𝑥 − 1) · (𝑛 − 1)

𝑥
⌉ + 1

)
edges are within an 𝑥Δ-wide band around the diagonal.

Proof. Observe that the vertices of every subtree are listed

consectively in the linear order 𝜋 . Hence, we can use strong

induction on the number of edges in the tree 𝑇 . We root the

trees at an arbitrary vertex. For a vertex 𝑣 , let 𝐸 (𝑣) be the set
of edges in the subtree rooted at 𝑣 . Let 𝐸𝑥 (𝑣) be the set of
edges in 𝐸 (𝑣) within the 𝑥Δ band around the diagonal. Let

𝑃 (𝑣) be the predicate

𝑃 (𝑣) ≡ If |𝐸 (𝑣) | ≥ 𝑥 , then at least

⌈
𝑥 − 1
𝑥
|𝐸 (𝑣) |

⌉
+ 1 edges

in 𝐸 (𝑣) are within a 𝑥Δ band around the diagonal .

Note thay if the tree has less than 𝑥 edges, then all its edges

are within an 𝑥Δ band around the diagonal. We prove induc-

tively that 𝑃 (𝑣) holds for all trees. As a base case, consider
an arbitrary tree rooted at 𝑣 with 𝑥 ≤ 𝐸 (𝑣) ≤ 𝑥Δ edges.

For such a tree, every edge is within a 𝑥Δ band around the

diagonal and |𝐸 (𝑣) | ≥ ⌈𝑥−1
𝑥
· |𝐸 (𝑣) |⌉ + 1. For the inductive

step, consider consider a tree rooted at 𝑣 where |𝐸 (𝑣) | > 𝑥Δ.
By induction, for each 𝑣 ′ ≠ 𝑣 in the subtree rooted at 𝑣 we
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may assume that 𝑃 (𝑣 ′) holds. We proceed by case distinction

on the degree of 𝑣 .

Case deg(v) = 1 Let 𝑢 be the child of 𝑣 . By definition of

smallest-first order, the distance between𝑢 and 𝑣 in the linear

arrangement 𝜋 is 1 and therefore the {𝑣,𝑢} ∈ 𝐸𝑥 (𝑣). Notice
that 𝐸𝑥 (𝑣) = {𝑣,𝑢} ∪ 𝐸𝑥 (𝑢). Because |𝐸 (𝑢) | = |𝐸 (𝑣) | − 1 ≥ 𝑥 ,
we conclude by 𝑃 (𝑢) that

𝐸𝑥 (𝑣) = 1 + |𝐸𝑥 (𝑢) |

≥ 1 +
⌈
𝑥 − 1
𝑥
· |𝐸 (𝑢) |

⌉
+ 1

≥
⌈
𝑥 − 1
𝑥
· |𝐸 (𝑣) |

⌉
+ 1 .

Case deg(v) ≥ 2. Let 𝐶 (𝑣) = 𝑢1, ..., 𝑢deg(𝑣) be the list of chil-
dren of 𝑣 , sorted in increasing order by the size of their sub-

tree. Let 𝑖 be the largest index such that |𝜋 (𝑣) − 𝜋 (𝑐𝑖 ) | ≤ 𝑥Δ,
i.e., {𝑣,𝑢𝑖 } is in the 𝑥Δ band. Notice that ∀𝑗 ≤ 𝑖 |𝜋 (𝑣) −
𝜋 (𝑢 𝑗 ) | ≤ 𝑥Δ, by the definition of smallest-first order. Because

𝑣 ’s subtree is of size greater than 𝑥Δ, we have 𝑖 < deg(𝑣). It
now follows that:

|𝐸𝑥 (𝑣) |

= 𝑖 +
deg(𝑣)∑︁
𝑤=1

|𝐸𝑥 (𝑢𝑤) |

=

(
𝑖∑︁

𝑤=1

|𝐸𝑥 (𝑢𝑤) | + 1
)
+

deg(𝑣)∑︁
𝑤=𝑖+1

|𝐸𝑥 (𝑢𝑤) |

≥
(

𝑖∑︁
𝑤=1

⌈
𝑥 − 1
𝑥
|𝐸 (𝑢𝑤) |

⌉
+ 1

)
+

deg(𝑣)∑︁
𝑤=𝑖+1

⌈
𝑥 − 1
𝑥
|𝐸 (𝑢𝑤) |

⌉
+ 1

≥
deg(𝑣)∑︁
𝑤=1

⌈
𝑥 − 1
𝑥
|𝐸 (𝑢𝑤) |

⌉
+ 1

≥ deg(𝑣) +
deg(𝑣)∑︁
𝑤=1

⌈
𝑥 − 1
𝑥
|𝐸 (𝑣) |

⌉
≥ deg(𝑣) + 𝑥 − 1

𝑥
|𝐸 (𝑢𝑣) |

≥
⌈
𝑥 − 1
𝑥
|𝐸 (𝑣) |

⌉
+ 1 .

We now explain the first inequality. First, we look at vertices

in

∑𝑖
𝑤=1 (|𝐸𝑥 (𝑢𝑤) | + 1). If |𝐸 (𝑢𝑤) | ≥ 𝑥 , we have by induction

hypothesis that |𝐸𝑥 (𝑢𝑤) | + 1 ≥
⌈
𝑥−1
𝑥
|𝐸 (𝑢𝑤) |

⌉
+ 1. If 𝑢𝑤 has

less than 𝑥 edges in its subtree, we cannot use the induction

hypothesis, but we still have |𝐸𝑥 (𝑢𝑤) | + 1 = |𝐸 (𝑢𝑤) | + 1 ≥⌈
𝑥−1
𝑥
|𝐸 (𝑢𝑤) |

⌉
+ 1. Next, observe that

∑𝑖
𝑤=1 |𝐸 (𝑢𝑤) | ≥ 𝑥Δ

because otherwise {𝑣,𝑤𝑖+1} would be in the 𝑥Δ band. This

means that at least one child 𝑢𝑤 with 𝑤 ≤ 𝑖 has to have at

least 𝑥 edges in its subtree. Because the subtrees are sorted

by size, it follows that all children 𝑢𝑤 with 𝑤 > 𝑖 satisfy

|𝐸 (𝑢𝑤) | ≥ 𝑥 and we can use the induction hypothesis. . □

We immediately get a more efficient 𝑥-compacting arrow

matrix decomposition for trees using LA-Decompose:

Corollary 1. A tree has an 𝑥-compacting 𝑥Δ-arrow decom-

position that can be computed in 𝑂 (𝑛) work.

Proof. Follows from Lemma 1 and Lemma 3. □

Note how this result contrasts with the bounds on the

bandwidth of a tree graph: The bandwidth of a balanced

binary tree is Ω(𝑛/log𝑛), whereas, we can construct a de-

composition into 𝑂 (log𝑛) matrices of bandwidth 𝑂 (1).

5.5 Lower Bounds
The linear dependence on the maximum degree Δ is neces-

sary for any linear arrangement of the graph families listed

in Table 1. We prove the lower bound for trees first, which

then implies the other lower bounds:

Lemma 4. For every Δ > 3, there are trees with a minimum

linear arrangement of cost Ω(𝑛Δ).

Proof. First, consider a star graph of Δ − 1 nodes. Any linear

arrangement costs at least Ω(Δ2), as, at least a quarter of

the nodes are at least Δ/4 away from the central node (no

matter where it is placed). Moreover, observe that inserting

additional nodes into the graph can only increase the cost

incurred by the edges in the star.

Now, consider a complete (Δ − 1)-ary tree. The parents

of the leaf nodes together with their descendants constitute

Ω(𝑛/Δ) disjoint star graphs with degree Δ − 1. Their layout
costs Ω(Δ2) each, which implies the result. □

The Ω(𝑛Δ) lower bound on the cost of a linear arrange-

ment applies to all families in Table 1 and is tight for trees,

as shown in Section 5.4. The linear dependence on the maxi-

mumdegree is undesirable, asmany sparse real-world graphs

exhibit a largemaximum degree [2]. Next, we show the arrow

decomposition overcomes this dependence on the maximum

degree by pruning the highest-degree vertices.

5.6 Pruning in Power Law Graphs
Many real-world graphs, such as the web graph, social net-

works, and protein interaction networks, exhibit a power law

degree distribution [2]. This means that while the average

degree is small, the maximum degree can be a significant

fraction of the number of vertices. On these graphs, the first

step of LA-Decompose (pruning the highest degree vertices)

provides a polynomial improvement in the arrow width. We

proceed to bound the improvement analytically as a function

of the power law.

There are various probability distributions that generate

a power law [5, 7, 31, 51]. To model the vertex degrees, it is

appropriate to choose a discrete distribution that is bounded

to the interval of the number of vertices. Hence, we model

the degree distribution of a vertex as a discrete truncated

Zipf distribution [7], truncated between 1 and 𝑛 with shape
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parameter 𝛼 . Note that for simplicity of notation, we are

considering 𝑛 + 1 vertices here giving degrees between 1 and

𝑛. We exclude the possibility of singleton vertices, as they

do not contribute to the arrow width.

The probability mass function 𝑝 (𝑥) of a discrete truncated
Zipf distribution is given by

𝑝 (𝑥) = 𝑥−𝛼∑𝑛
𝑗=1 𝑗

−𝛼 . (2)

The term in the denominator is the generalized harmonic

number 𝐻𝑛,𝛼 . Note that as 𝑛 goes to infinity, the general-

ized harmonic numbers approach the Riemann zeta function

𝜁 (𝛼) = ∑∞
𝑗=1 𝑗

−𝛼
. For an integer 𝑥 ≥ 0, the survival probabil-

ity 𝑆 (𝑥) is given by

𝑆 (𝑥) = 𝐻𝑛,𝛼 − 𝐻𝑥,𝛼

𝐻𝑛,𝛼

. (3)

The expected number of vertices with degrees larger than

some given 𝑥 is at most 𝑛𝑆 (𝑥). This tells us how many ver-

tices we need to prune (in expectation) to be left with a graph

with maximum degree 𝑥 . To derive a bound on this expec-

tation 𝑛𝑆 (𝑥), we derive a closed-form approximation to the

survival function:

Theorem 1. For all 𝑥 larger than some constant, the survival

function 𝑆 (𝑥) of the truncated Zipf distribution with shape 𝛼 >

1 truncated between 1 and 𝑛 is bounded by 𝑆 (𝑥) ≤ 𝑥1−𝛼

(𝛼−1)𝜁 (𝛼 ) .

Proof. We lower bound the cumulative distribution function

𝐹 (𝑥) = 1 − 𝑆 (𝑥) = 𝐻𝑥,𝛼

𝐻𝑛,𝛼
, which gives us an upper bound

on 𝑆 (𝑥). The main technical challenge is to obtain a suit-

able closed-form approximation to the generalized harmonic

numbers. We employ the Euler-Maclaurian summation for-

mula [25] to bound 𝜁 (𝛼) − 𝐻𝑛,𝛼 , which implies that for any

constant 𝛼 > 1

𝐻𝑛,𝛼 = 𝜁 (𝛼) + 𝑛
1−𝛼

1 − 𝛼 +
𝑛1−𝛼

2𝑛
− 𝛼𝑛

1−𝛼

12𝑛2
+𝑂

(
𝛼𝑛1−𝛼

𝑛3

)
.

For large enough 𝑥 and 𝑥 + 1 ≥ 𝛼 > 1, the first two terms

dominate:

𝐻𝑥,𝛼 ≥ 𝜁 (𝛼) +
1

1 − 𝛼 𝑥
1−𝛼 ,

𝐻𝑥,𝛼 ≤ 𝜁 (𝛼) +
1

2(1 − 𝛼)𝑥
1−𝛼 .

Using these inequalities we can proceed:

𝐹 (𝑥) ≥
𝜁 (𝛼) + 1

1−𝛼 𝑥
1−𝛼

𝜁 (𝛼) + 1

2(1−𝛼 )𝑛
1−𝛼

=
2(𝛼 − 1)𝑛𝛼−1𝜁 (𝛼) − 2𝑛𝛼−1

𝑥𝛼−1

2(𝛼 − 1)𝑛𝛼−1𝜁 (𝛼) − 1

≥ 1 − 𝑥1−𝛼

(𝛼 − 1)𝜁 (𝛼) ,

which implies the result. □

Note that this implies that the survival function itself takes

on the shape of a power law. The larger 𝛼 , the quicker the

survival function diminishes. We are now ready to bound

the number of high-degree vertices in a power law graph.

Lemma 5. Consider a graph 𝐺 whose degree distribution

follows a truncated Zipf distribution with shape parameter

𝛼 > 1. For any 𝑏 ≥ Ω(1) and Δ0 ≥ Ω(1), the probability that

𝐺 has more than 𝑏 vertices of degree larger or equal to Δ0 is at

most

𝑛Δ1−𝛼
0

𝑏 (𝛼−1)𝜁 (𝛼 ) .

Proof. The expected number of vertices with degrees larger

than Δ0 is at most𝑛𝑆 (Δ0). The result follows from Theorem 1

and Markvov’s inequality. □

Let us see what this implies for the question of pruning

high-degree vertices. If we set Δ0 = 𝑛𝛿 for some constant

𝛿 > 0, we get that after pruning the𝑏 ∈ 𝜔 (𝑛 (1−𝛼 )𝛿+1) vertices
of largest degree, the maximum degree of the remaining

subgraph is at most Δ0 with probability 1 − 𝑜 (1). As our
bounds on the cost of a linear arrangement depend linearly

on the maximum degree of the subgraph that remains after

pruning the high-degree graphs, we would like to balance

the number of pruned vertices with the remaining maximum

degree. The parameter 𝛿 that achieves this balance is 𝛿 = 1

𝛼
.

We conclude with the implication of this result for the

arrow decomposition of trees and note that we can derive

similar statements for the other considered graph families:

Corollary 2. Consider a tree whose degree distribution follows

a truncated Zipf distribution with shape 𝛼 > 1. LA-Decompose

with parameter 𝑏 = 𝜔 (𝑛 1

𝛼 ) produces an 𝑥-compacting 𝑥𝑏-

arrow matrix decomposition with probability 1 − 𝑜 (1).

Proof. Follows from Lemma 5 and Corollary 1. □

Observe that this bound is now independent of the maxi-

mum degree in the original graph, which would have been

Ω(𝑛) in expectation. Hence, pruning the high-degree ver-

tices provides a polynomial improvement in the arrow width

of power law graphs.

6 Data Movement Analysis
Sparsematrixmultiplication is a typical memory-bound oper-

ation when the dense matrix is tall and skinny, as the number

of arithmetic operations is of a similar order of magnitude

to the number of memory accesses. Hence, minimizing data

movement is paramount to achieving the best performance

and scalability. Note that for sparse datasets, the size of the

feature matrix X dominates the storage, i.e.,𝑚 ≪ 𝑛𝑘 . Our

algorithm falls into the class of A-stationary algorithms,

where the sparse matrix remains local and only the dense

feature matrix and the result of the SpMM are communicated.

We show that at the cost of a slightly increased latency, a

𝑐-compacting arrow decomposition enables a Θ(√𝑝) reduc-
tion in bandwidth requirements compared to a direct 1.5D
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decomposition and a Θ(√𝑝) storage improvement in the

setting where the feature matrix dominates the storage.

6.1 Data Movement
Multiplying with an Arrow Matrix. We now analyze

the communication cost incurred by our approach from Sec-

tion 3.1 in the 𝛼 − 𝛽 model of computation. We focus first on

the multiplication of an arrow matrix B with a tall-skinny

matrix X.

Lemma 6. Consider a matrix B ∈ 𝑅𝑛×𝑛 with arrow-width 𝑏

and a matrix X ∈ 𝑅𝑛×𝑘 . If 𝑝 = ⌈𝑛/𝑏⌉, computing 𝑌 = BX has

a communication cost of 𝑂 (𝛼 log𝑝 + 𝛽 𝑏𝑘 log𝑝).

Proof. Recall that we have ⌈𝑛
𝑏
⌉ row tilesB0,j, ⌈𝑛𝑏 ⌉ column tiles

Bi,0 and ⌈𝑛𝑏 ⌉ diagonal tiles Bi,i. Let X also be split row-wise

into ⌈𝑛
𝑏
⌉ blocks of size 𝑏 × 𝑘 . We distribute the calculation

of BX as follows: For each row tile B0,j, there is a processor

responsible for calculating B0,jXj. The intermediate results

are reduced and summed at one node. For each column tile

Bi,0 with 𝑖 > 0, we have a processor responsible for calcu-

lating Bi,0X0 + Bi,iXi. Due to the arrow shape, we only have

two non-zero tiles per row when 𝑖 > 1. Hence, we can do

the calculation of the entire row on one processor.

Overall, we have ⌈ 2𝑛
𝑏
⌉ − 1 computation tasks which we

assign to our 𝑝 processors. We assume that the tiles of B are

already correctly distributed as they remain fixed throughout

the iterations. Note that half of the computation tasks will

require a copy of X0, i.e. we will need one broadcast of X0
to half of the processors which incurs a communication

cost of𝑂 (𝛼 log𝑝 + 𝛽 𝑏𝑘 log𝑝). The reduce-operation for the

row tiles incurs the same cost (the reduce-operation also

involves
𝑝

2
processors since the row tiles make up half of

the computation tasks). Lastly, we will need to send the

diagonal blocks of X to the right processors using pairwise

communication. Since each processor only needs a single

block from X, this only incurs a cost of 𝑂 (𝛼 + 𝛽 𝑏𝑘). □

Multiplying with an Arrow Decomposition. Next, we
analyze the communication cost of combining the intermedi-

ate products B𝑖 (P⊤𝜋𝑖X) of our matrix decomposition to finally

arrive at Y = AX. To improve the efficiency of multiplying

repeatedly with the same matrix A, we leave the rows of Y
permuted in the order of the first matrix in the decompo-

sition. In the end, we might need to permute back to the

original order of rows depending on the application. If the

result is required in the original order of rows, the commu-

nication cost of this permutation is fully amortized after at

most log
2 𝑝 iterations of multiplying with A. The key insight

is that when the number of nonzeros decreases quickly, we

can implement the permutations for the aggregation more

efficiently than doing a naive all-to-all.

Theorem 2. For a matrix A ∈ 𝑅𝑛×𝑛 with an 𝑥-compacting

𝑏-arrow decomposition and a feature matrix X ∈ 𝑅𝑛×𝑘 , if

𝑥 ≥ Ω(log2 𝑝) and 𝑝 = Θ( 𝑛
𝑏
), computing P⊤𝜋0

Y = P⊤𝜋0

AX has

a communication cost of 𝑂 (𝛼 log2 𝑝 + 𝛽 𝑛𝑘
𝑝
).

Proof. Assuming we calculated Y𝑖 = B𝑖 (P⊤𝜋𝑖X) for each Bi
matrix in our decomposition using Lemma 6, it remains

to aggregate the results. We need to sum the Yi matrices,

however, each of them has its rows permuted differently. Let

Y𝑖 and Y𝑖+1 be any two of these matrices that we want to

sum and let 𝑃𝑖 be the set of processors among which the

blocks of Y𝑖 are distributed.

If we were to send all the rows of Yi+1 to their correspond-
ing processor in 𝑃𝑖 naively, in the worst case we would have

to perform one scatter operation for each processor in 𝑃𝑖+1
to all the processors in 𝑃𝑖 . To alleviate this, we will first sort

the rows of Yi+1 by their destination processor in 𝑃𝑖 . Then,

for any 𝑝𝑖+1𝑗 ∈ 𝑃𝑖+1, it holds that if it stores rows of Yi+1 that

need to be sent to processors 𝑝𝑖𝑡 ...𝑝
𝑖
𝑡+𝑘 then for any processor

𝑝𝑖+1
𝑙

with 𝑙 > 𝑗 , it holds that it only stores rows of Yi+1 that

need to be sent to 𝑝𝑖𝑚 ...𝑝
𝑖
𝑚+𝑘 ′ where𝑚 ≥ 𝑡 + 𝑘 .

Note that we can determine the destination processor for

each row in advance since the permutation matrices are fixed

in the pre-processing. We can also pre-determine the desti-

nation processor range of each processor in 𝑃𝑖+1 this way.
After sorting, we can schedule the scatter operations much

more efficiently in parallel: Observe that each processor logi-

cally receives a message from at most two scatter operations

and that these come from neighboring processors in 𝑃𝑖+1.
Hence, we can perform the scatter operations in two phases

involving first all evenly-indexed processors in 𝑃𝑖+1 and then
oddly-indexed processors in 𝑃𝑖+1. This scattering then incurs

a communication cost of 𝑂 (𝛼 log𝑝 + 𝛽 𝑛𝑘
𝑐
log𝑝).

As for the sorting itself, we can employ a sorting network

and place each processor of 𝑃𝑖+1 on a wire. When two pro-

cessors 𝑝𝑖+1
𝑘

and 𝑝𝑖+1
𝑙

with 𝑘 < 𝑙 are connected, 𝑝𝑖+1
𝑘

will send

𝑝𝑖+1
𝑙

all its rows that are above its range and 𝑝𝑖+1
𝑙

will send

𝑝𝑖+1
𝑘

all its rows that are below. For a bitonic sorting network

with depth 𝑂 (log2 𝑝), this leads to a communication cost of

𝑂 (𝛼 log2 𝑝 + 𝛽 𝑛𝑘
𝑐
log

2 𝑝). Sorting networks with a smaller

depth exist but are unwieldy in practice.

Overall, we can thus perform the sorting and the subse-

quent scattering with a communication cost of 𝑂 (𝛼 log2 𝑝 +
𝛽 𝑛𝑘

𝑐
log

2 𝑝). Assuming we have a 𝑐-compacting decomposi-

tion, recall that it holds that the total number of non-zeros

of 𝑌𝑖+1 is at most
1

𝑐
times that of 𝑌𝑖 . Thus, if we perform

the summation of all 𝑙 parts in decreasing order, the total

communication can be upper-bounded by the summation of

𝑌0 and 𝑌1, i.e., 𝑂 (𝛼 log2 𝑝 + 𝛽 𝑛𝑘
𝑐
log

2 𝑝). For 𝑐 ≥ Ω(log2 𝑝),
we arrive at a communication cost of 𝑂 (𝛼 log2 𝑝 + 𝛽 𝑛𝑘

𝑝
) for

one matrix iteration, as desired.

To prepare the next iteration, the accumulated result is

distributed in the reverse communication pattern (replac-

ing scatters with gather). This concludes the calculation of

P⊤𝜋0

AX. □
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This result shows that given an adequate arrow decompo-

sition, we obtain a communication cost that improves on a

fully replicated 1.5D decomposition by a factor

√
𝑝 in terms

of bandwidth at the cost of a log𝑝 factor in terms of latency.

Compared to a 1D decomposition, the latency cost is a factor

Ω( 𝑝

log𝑝
) smaller. Compared to an A-stationary 2D decompo-

sition, the bandwidth cost is a factor Θ(√𝑝) smaller and the

latency cost is a factor Θ
( √

𝑝

log𝑛

)
smaller.

6.2 Storage Requirements
We propose to store the matrix A in a sparse format, such as

compressed sparse row (CSR), and store the dense matrices

in row-major. Because an arrow matrix has fewer blocks

compared to amatrix that has been 1.5D decomposed directly,

we can afford to have smaller blocks with the same number

of processors. This removes the main downside of a 1.5D

decomposition with full replication, namely its high storage

requirements.

Lemma7. Consider amatrixA ∈ 𝑅𝑛×𝑛 with an𝑥-compacting

𝑏-arrow decomposition and X ∈ 𝑅𝑛×𝑘 . If 𝑥 ≥ 1 + 𝜖 for a

constant 𝜖 and the blocks of A are stored in CSR, the total

storage cost is𝑚 +𝑂 (𝑛𝑘).

Proof. The number of nonzero rows in the matrices of the

decomposition decreases geometrically because the decom-

position is 𝑥-compacting. Hence, the cost to store X is𝑂 (𝑛𝑘)
and the cost to store row and index pointers for A is 𝑂 (𝑛).
Since each edge occurs in exactly one matrix of the decom-

position, the value arrays take up𝑚 space. □

The storage matches that of a 2D decomposition. Com-

pared to a 1.5D decomposition with replication factor 𝑐 , the

storage used by the dense matrices is a factor Θ(𝑐) smaller.

For full replication, this constitutes a factorΘ(√𝑝) saving. In
conclusion, the arrowmatrix decomposition shares the favor-

able space requirements of 1D and 2D decompositions while

improving on the bandwidth cost and memory requirements

of a fully replicated 1.5D decomposition.

7 Evaluation
We benchmark the scalability of sparse matrix multiplication

with our decomposition compared to a 1.5D decomposition

and a 1D hypergraph partitioning decomposition.

7.1 Setup
System. We ran our SpMM experiments on the Piz Daint

supercomputer on the Cray XC50 nodes with Aries routing

and a dragonfly network topology. Each node has a 12-core

HT-enabled Intel Xeon E5-2690 v3 CPU with 64GB of RAM

and one NVIDIA Tesla P100 GPU with 16GB of memory. For

decomposing the graphs, we ran our algorithm on single

nodes with 4 Intel(R) E7-4830 v4 CPUs and 2TB of memory,

and 2 AMD EPYC 7742 CPUs with 512GB of memory.

Table 2. Summary of the datasets’ density properties.

Dataset Vertices 𝑛
nnz(𝐴)

𝑛
Max. Degree Δ

MAWI 226M 226,196,185 2.12 210,795,477

MAWI 69M 68,863,315 2.08 63,040,326

GenBank 214M 214,005,017 2.17 8

GenBank 68M 67,716,231 2.05 35

WebBase 118M 118,142,155 8.63 816,127

OSM Europe 50,912,018 2.12 13

GAP-twitter 62M 61,578,415 23.85 770,155

sk-2005 51M 50,636,154 38.50 8,563,808

Datasets. We evaluate our approach on sparse graph

datasets with 18-226 million rows and up to a 1.9 billion

nonzeros from the SuiteSparse Matrix Collection [18]. See

Table 2 for a summary of the dataset’s characteristics. We

considered all matrices with at least 50M rows and fewer

than 100 nonzeros per row on average. The denser graphs

cause out-of-memory issues and timeouts with both the base-

lines and our approach. For the feature matrices, we use 128,

64, and 32 columns.

Implementation. We implement all SpMM algorithms as

a Pythonmodule, using numpy v1.24.2 [27], scipy v1.10.1 [49],

cupy v11.6 [36], and mpi4py v3.1.4 [17]. The single-block

intra-node GPU SpMM operations are implemented with

the CSR-times-dense matrix multiplication (CSRMM) ker-

nels found in the NVIDIA cuSPARSE (v11.0). Our experi-

ments use Cray-MPICH v7.7.18. The code is available at:

https://github.com/spcl/arrow-matrix

Our approach utilizes the linear arrangement framework

(Section 5.1) with pruning (Section 5.6). We construct the

linear arrangements using the random spanning MSTs algo-

rithm (Section 5.3). For each tree, we employ the algorithm

from Section 5.4. The decomposition uses Julia v.1.9.3. Our

implementation may leave a few ranks unused when the

block size does not evenly divide the matrix size.

1.5D Baseline. We compare our approach based on the

1.5D decomposition of an arrowmatrix decomposition against

the direct 1D and 1.5D decomposition schemes. We use the

same libraries and kernels to ensure a comparison that fo-

cuses on the merits of the decomposition schemes. Similarly

as Tripathy at et al. [47] we include a parameter 𝑐 that in-

terpolates between the 1𝐷 decomposition (𝑐 = 1) and the

single-round 1.5D decomposition (𝑐 =
√
𝑝). As shown in Fig-

ure 4, a larger 𝑐 leads to lower runtimes, as expected from the

theory. Hence, we use 𝑐 =
⌊√
𝑝
⌋
in our experiments, result-

ing in one or two computational rounds. For larger feature

sizes, the whole data sometimes do not fit in GPU memory.

In this case, we further tile the single-round computation

into smaller blocks. This approach is significantly faster than

lowering 𝑐 since host-to-device memory transfers are faster

than the network.

https://github.com/spcl/arrow-matrix
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Figure 4.Weak scaling of the 1D / 1.5D baseline for varying

replication factors 𝑐 on the MAWI datasets.

Hypergraph Partitioning Baseline. Additionally, we
compare our implementation against a 1D hypergraph parti-

tioning scheme (HP-1D). We adapt the PETSc-style variant

from previous work on SpMV [29] to the SpMM setting. The

matrix is permuted according to a hypergraph partitioning.

The hypergraph contains a vertex for each row 𝑖 and a net for

each column 𝑗 that connects all vertices 𝑖 for which the ma-

trix has a nonzero entry in row 𝑖 and column 𝑗 . To partition

the hypergraphs, we use HYPE [34]. After permuting, the

matrices are split row-wise in 1D. The computation consists

of two parts; a local SpMM that requires no communication

and a non-local SpMM for which features of other processors

are needed. The local SpMM can overlap with the message

exchange, hiding computational costs. We implement this

overlap using MPI nonblocking send and receive.

Measurements. We run each SpMM for at least 7 iter-

ations and drop the first iteration, as it includes GPU and

library initialization costs. We report the mean over the iter-

ations of the maximum runtime of any participating rank.

Additionally, we show the minimum and maximum over the

iterations when they deviate more than 5% from the mean.

7.2 Decomposition Results
We executed our random forests algorithm on each dataset,

varying the arrowwidth as𝑏 ∈ 0.5 × 106, 1 × 106, . . . , 5 × 106.
This approach yielded, at most, 4 matrices in the decomposi-

tion for all datasets. Additionally, the second matrix in the

decomposition contained between a few hundred and 25

million nonzero rows, constituting less than 0.1% − 13% of

the rows. This aligns with our assumptions in Theorem 2,

affirming our algorithm’s generation of highly compact de-

compositions for these sparse datasets.

Refer to Figure 1 for a depiction of the first matrix in the

decomposition (with analogous outcomes for all MAWI and

GenBank matrices). Notably, the datasets exhibit distinct

characteristics: In the MAWI data, most nonzeros cluster in

the ’pruned’ part near the matrix’s top and left corners. Con-

versely, for the GenBank and OSM Europe data, the majority

of nonzeros appear in the diagonal band. The Webbase and

GAP-twitter datasets showcase a notable number of nonze-

ros in the pruned segment, yet they are less skewed than the

MAWI datasets. These patterns correspond with the datasets’

maximum degrees. Specifically, the MAWI datasets feature

a nearly equal maximum degree and vertex count due to

the prevalence of large star subgraphs. In contrast, the Web-

base and GAP-twitter datasets have a maximum degree of

8 − 13% of the vertex count. The GenBank k-mer and OSM

Europe datasets, on the other hand, display a maximum de-

gree at most 20 times the average. Our approach handles

these diverse matrix behaviors robustly.

Comparisonwith 1.5D. We contrast the count of nonzero

blocks in our arrow decomposition matrices with those in a

1.5D decomposition employing equally sized blocks. As ma-

trix rows increase, our method uses notably fewer nonzero

blocks. For the two largest datasets, our decomposition re-

sults in 15-20 times fewer nonzero blocks at 𝑏 = 5 × 106, and
over 100 times fewer at 𝑏 = 10

6
. Our SpMM experiments

demonstrate this improves the scalability of our approach.

ComparisonwithHypergraph partitioning. HYPEwas

able to effectively partition the graphs with low maximum

degree. On the GAP-twitter and sk-2005 graphs, the results

are mixed. Especially for smaller number of partitions (≤ 32)

we observe a high partition cost. We attribute this to the

power-law distribution of those graphs, which makes them

challenging to partition in a balanced way. On the MAWI

series of graphs, the partitioning is completely ineffective as

it leads to one partition being connected to an overwhelming

majority of the other vertices. This is because fundamentally,

the partitioning cost is lower bounded by the maximum

degree, which we overcome using pruning.

7.3 SpMM Experiments
Strong Scaling. Figure 5 summarizes our strong scaling

evaluation for varying GPU counts and feature matrix col-

umn sizes (𝑘 ∈ 32, 128). Our approach outperforms the 1.5D

baseline by significant margins in all instances, except for

GAP-twitter on 16 ranks and k=32. In the other cases, the

speedup is between 1.7x and 14x. For the MAWI graphs,

the hypergraph partitioning baseline does not scale and is

up to 58 times slower than our approach. On sk-2005 and

GAP-twitter our approach is up to 1.4 and 2 times faster,

respectively. On the other graphs, our approaches has a sim-

ilar runtime with HP-1D. Generally, the more features, the

greater the runtime improvement over both baselines. The

more skewed the degree distribution is, the larger our im-

provement over the hypergraph partitioning baseline.

We noticed significant load imbalance in GPU kernels on

the MAWI graphs, reaching up to 8x. This imbalance renders

both baselines less effective in reducing SpMM kernel run-

time with increasing ranks. Moreover, when 𝑐2 ≤ 𝑝 , more

communication rounds are needed for the 1.5D baseline.

Hence, sometimes increasing the number of ranks increases

the runtime on MAWI. We observe that the MAWI datasets

contain very large star subgraphs, leading to a high maxi-

mum degree. Moreover, they cause load imbalance issues on

the GPU, which we think responsible for the comparatively

long execution times on the MAWI instances.
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Figure 5. Strong scaling results for varying features sizes.

Weak Scaling. Weapplied our decomposition to allMAWI

datasets, maintaining a consistent arrow width of 3 million

for a constant computational load per rank. As depicted in

Figure 6, as the dataset size grows from 19 million to 226

million vertices, the runtime only increases marginally by

2.4 − 6.2%. In contrast, the 1.5D baseline decelerates by a

factor of 3− 3.18 when going from the smallest to the largest

dataset, along with poorer absolute runtimes. The Hyper-

graph partitioning baseline’s runtime grows near-linearly

with the number of rows. This is because of the inherent

limitations of a 1D decomposition on matrices with highly

skewed degree distributions.

8 Conclusion
In conclusion, we introduce a novel matrix decomposition,

investigating its properties both theoretically and experi-

mentally. The resulting matrices exhibit a distinctive ’arrow’
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Figure 6.Weak scaling on the MAWI datasets. Missing data-

points represent out-of-memory events.

structure that facilitates distributed computation. We demon-

strate its efficacy in scenarios of extreme sparsity, where

graphs possess an average of 2 to 38 nonzeros per row, even

in cases of severely skewed degree distribution.

Building upon this matrix decomposition, we propose

a distributed approach for sparse times tall-skinny-dense

matrix multiplication. This method, grounded in a 1.5D de-

composition of the arrow matrices, addresses the memory

constraints inherent in direct 1D and 1.5D decompositions.

Remarkably, it has low communication costs, all the while

avoiding the need to partition the computation into numer-

ous steps.We substantiate this claim through both theoretical

analysis and empirical evaluation.

Our comparison against the 1.5D decomposition and a 1D

hypergraph partitioning demonstrate our method’s scalabil-

ity and efficiency. Strong scaling experiments highlighted its

superiority in handling larger matrices and features, while

weak scaling tests showcased its stable runtimewith growing

datasets.
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