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ABSTRACT
We present a new parallel model of computation suitable for spatial
architectures, for which the energy used for communication heavily

depends on the distance of the communicating processors. In our

model, processors have locations on a conceptual two-dimensional

grid, and their distance therein determines their communication

cost. In particular, we introduce the energy cost of a spatial compu-

tation, which measures the total distance traveled by all messages,

and study the depth of communication, which measures the largest

number of hops of a chain of messages. We show matching energy

lower- and upper bounds for many foundational problems, includ-

ing sorting, median selection, and matrix multiplication. Our model

does not depend on any parameters other than the input shape and

size, simplifying algorithm analysis. We also show how to simulate

PRAM algorithms in our model and how to obtain results for a

more complex model that introduces the size of the local memories

of the processors as a parameter.

1 INTRODUCTION
Energy consumption has become a major economic and technical

factor in parallel systems [31, 32, 42]. For many chips, such as GPUs,

data movement is one of the main drivers behind non-idle energy

consumption [31]. Communicating with a distant off-chip memory

module is several orders of magnitude more costly than commu-

nicating within the same chip and more generally, the closer the

memory the less energy is required to access it [32]. Under these

circumstances, always needing to communicate over a monolithic

shared memory is inefficient. This has driven hardware architects

towards designs in which many cores have their own local memo-

ries and can communicate directly with each other. As this leads to

closer cores being able to communicate faster and with less energy,

this leads to a spatial computing architecture. Early approaches are

systolic architectures [33], while modern examples include Cerebras

Wafer-Scale Engine (WSE) [49], hierarchical many-cores [13, 54],

and Coarse-Grained Reconfigurable Architectures (CGRA) [15, 23].

The standard computation and communication complexity mod-

els do not suffice for spatial hardware. In the shared memory setting,

previous approaches to reduce data movement have focused on

the use of caches to maximize data reuse and reduce the need for

communication [3]. In the distributed memory setting, the goal

has been to reduce the total communication volume [52]. However,

larger caches provide diminishing returns in the context of spa-

tial hardware [42] and in practice the cost of communicating data

between processing elements depends on their distance [13, 31, 32].
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We propose to explicitly model the non-uniform communica-

tion costs on large chips, where each processor has its own local

memory. In our model, the energy consumed for communication

is proportional to the physical distance of the communicating pro-

cessors. We do not assume a fixed communication topology, but

instead provide parallelism bounds that translate to different physi-

cal realizations of the communication network on the chip. As such,

our model serves as a new bridging model between algorithms

and contemporary parallel computers. Because our model heavily

encourages spatial communication locality, we can determine the

effect of larger local memories without modeling them explicitly.

The new setting poses two particularly interesting algorithmic

challenges. (1) Data Layout. Because the distance of the communi-

cating processors is crucial for our energy cost, the data layout (in
2D space) becomes a central concern for algorithms and data struc-

ture design. This becomes exponentially important for recursive

algorithms. (2) Permutation Bottleneck. We show that permutation

(all-to-all communication) requires much more than linear energy.

Hence, it becomes the bottleneck in many classic algorithm designs.

To obtain near-linear energy bounds, permutation (or sorting) of

the whole input must be avoided and different techniques applied.

To address these challenges, we present several techniques. To ad-

dress the data-layout challenge, space filling curves provide energy-
optimal layouts that enable highly parallel computation. Moreover,

unrolling recursive algorithms a constant number of times provides

new opportunities for their efficient 2D layout. To overcome the

permutation bottleneck, we propose using sampling to avoid ex-

pensive all-to-all communication. If a small sample can be used to

progress the original problem towards its solution very quickly, we

obtain a linear-energy algorithm.

1.1 Trends in Parallel Computer Architecture
The development of new compute architecture paradigms is driven

by fundamental shifts in hardware design constraints [32]. Most im-

portantly, power consumption becomes the limiting constraint for

high performance systems. The high amounts of consumed power

are not only due to the increasing scales of developed architectures,

but also due to the fact that data movement is very power hungry,

and many modern applications and workloads, such as large-scale

deep learning [5, 6, 8], are dominated by data movement. To ad-

dress these challenges, fundamentally new hardware designs have

been proposed [7, 13, 22, 39, 53, 54]. Despite their differences, we

argue that spatial locality is the common key to design successful

algorithms for these architectures.

Hierarchical many-core architectures organize hundreds or thou-
sands of simple compute cores in a hierarchical fashion [13, 54].
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Input Shape Problem Energy Depth Wire-Depth Data-Oblivious Deterministic

√
𝑛 ×

√
𝑛 Broadcast / Reduce Θ(𝑛) 𝑂 (log𝑛) 𝑂 (

√
𝑛) ✓ ✓

√
𝑛 ×

√
𝑛 (†)

Parallel Scan Θ(𝑛) 𝑂 (log𝑛) 𝑂 (
√
𝑛) ✓ ✓

√
𝑛 ×

√
𝑛 Rank Selection Θ(𝑛) 𝑂 (log2 𝑛) 𝑂 (

√
𝑛) - -

√
𝑛 ×

√
𝑛 Sorting Θ

(
𝑛

3

2

)
𝑂 (log3 𝑛) 𝑂 (

√
𝑛) - ✓

𝑛 × 𝑛 Matrix Multiplication

Strassen 𝑂

(
𝑛3
√︁
log𝑛

)
𝑂 (𝑛0.861) 𝑂 (𝑛

√︁
log𝑛) ✓ ✓

Cubic Θ(𝑛3) Θ(𝑛) 𝑂 (𝑛) ✓ ✓

Table 1: Summary of energy and depth bounds on the spatial computer. We provide tight energy upper and lower bounds for
parallel scan, sorting, rank selection, and matrix multiplication. (†) Input and output stored in Z-order.

Conceptually, the cores are placed in a semi-regular grid onto the

chip and a tree is built on top of the cores. Siblings in this tree can

communicate with high bandwidth and low latency. However, the

communication bandwidth to the parents decreases towards the

root of the hierarchy. This is necessary to avoid using too much

fabric for the communication wires. Each node in the hierarchy has

its own storage that can be accessed similarly to a shared memory,

however with highly non-uniform cost. Examples of hierarchical

many-cores include Mempool [13], a chip with 256 cores organized

in a 3-level hierarchy, and Manticore [54], a chip with 4,096 cores

and a 5-level hierarchy.

We observe that for these systems, it is beneficial to reduce the

volume of the messages that occur between distant cores to avoid

congestion due to the limited bandwidth available between distant

cores. By penalizing communication by its spatial distance, we can

incentivize communication patterns that reduce communication

across any levels of the hieararchy (see Section 6.2). Moreover, we

observe that because of the hierarchical tree-like interconnects, the

latency between far-away cores is relatively small, meaning that

we want to incentivize highly parallel algorithms.

Reconfigurable dataflow architectures consist of a 2D grid of re-

configurable units connected by a mesh-like network [9, 21–23].

Communication to distant units is possible either through a sepa-

rate network [23] or by going through multiple hops in the mesh

network [21, 49]. Examples include the SambaNova Reconfigurable

Dataflow Architecture [21], NeuFlow [22], Cerebras WSE [49], and

the Xilinx ACAP Versal [23]. We observe that these networks have

high latency to far away nodes and high bandwidth to close nodes.

This means we want to incentivize highly local communication and

reduce the physical length of the critical path.

1.2 The Spatial Computer
Our goal is to design a highly productive model for algorithm

designers that abstracts away the details of a specific hardware

architecture, but incentivizes (a) spatially local communication and

(b) large amounts of parallelism. If our goal was only (a), we would

get a mesh-like architecture [30, 36]. If our goal was only (b), we

would get an architecture where all communication cost are the

same for all pairs of processors [44, 52]. Next, we introduce our

new model of computation and communication cost model, which

models the key aspects of a spatial computer.

Computer Model. We consider an unbounded number of proces-

sors organized in a regular (Cartesian) 2-dimensional grid. This

grid does not restrict the ability of processors to communicate with

each other, but it determines the cost of doing so (c.f. cost model).
Each processor 𝑝𝑖, 𝑗 knows its position (𝑖, 𝑗) in the grid and has a

constant-sized memory. During each synchronous time-step, each

processor proceeds as follows. It can send a constant-unit-sized

message to an arbitrary other processor. This message arrives in

the next time step. Then, a processor can dequeue a message from

its receive queue and put it into its memory. Finally, a processor

can perform a constant number of arithmetic and logic operations

on its memory, and generate an independent, uniformly distributed

word-sized number. These operations determine which message

to send next. Note that the order in which messages arrive in the

receive queues is not deterministic. The receive queues are of con-

stant size. If a processor receives more than this constant number

of messages in a time-step, the behavior is undefined.

Initially, an input of size 𝑛 is distributed in some predefined

format on an ℎ×𝑤 sized processor subgrid containing the processor

at (0, 0), where 𝑛 = Θ(ℎ𝑤). For simplicity, we assume w.l.o.g. that 𝑛

is a power of 4. We sometimes refer to the processor 𝑝0,0 as the root
processor. For each problem, the output format is also predefined.

Cost Model. Sending a message from processor 𝑝𝑖, 𝑗 in the grid to

processor 𝑝𝑥,𝑦 in the grid costs |𝑥 − 𝑖 | + |𝑦 − 𝑗 | energy. The energy 𝐸
of a computation is the sum of the energy cost of the sent messages.

If a message𝑚′
is sent by a processor after receiving a message

𝑚 we say that 𝑚′ depends on 𝑚. The longest chain of messages

that consecutively depend on each other is the depth 𝐷 of the

computation. The largest total energy of any chain of messages that

consecutively depend on each other is thewire-depth𝐷𝑤 . We obtain

a simple upper bound on the wire-depth based on the diameter

of the utilized subgrid and the depth: an algorithm that uses a

ℎ ×𝑤 compute grid and has depth 𝐷 has wire-depth at most 𝐷𝑤 ≤
𝐷 (𝑤 + ℎ). Our goal is to improve on this trivial upper bound.

A bound 𝑓 (𝑛) ∈ 𝑂 (𝑔(𝑛)) holds with high probability (w.h.p.), if

for any constant 𝑑 , there exist constants 𝑛0 > 0 and 𝑐 > 0 such that

for all 𝑛 ≥ 𝑛0, 𝑓 (𝑛) ≤ 𝑐𝑔(𝑛) with probability at least 1 − 𝑛−𝑑 .
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1.3 Related Work
Fixed-Connection Network Model. The fixed-connection network

model [34] considers computation for several particular commu-

nication topologies, such as toruses, hypercubes, and meshes. In

contrast, we do not restrict the topology of the communication net-

work, but instead derive bounds that are meaningful for a variety of

concrete network topologies. Moreover, we explicitly consider the

distance traveled as a metric (mainly for energy reasons), whereas

Leighton’s fixed-connection network ignores the wire-lengths [34].

A related set of works focuses on computation on mesh net-

works [26, 30, 36, 37]. Note that any algorithm on a mesh network

could be executed in ourmodel: An algorithm that takes 𝐿 rounds on

a𝑤 ×𝑤 mesh network takes𝑂 (𝐿𝑤2) energy, has depth 𝐿 and wire-

depth 𝑂 (𝐿). However, since for many problems no sub-polynomial

round algorithms are possible on a mesh-interconnect, the algorith-

mic approaches for these models differ significantly from ours.

Very Large Scale Integration (VLSI). VLSI complexity [14, 38, 47,

50] considers a network wiring that satisfies certain geometric con-

straints on how densely gates can be placed and how many wire-

crossings are allowed. Then, the main concerns for such VLSI hard-

ware models are area-depth-product tradeoffs of the circuitry [35].

For calculation of the depth, the length of the wires is ignored [50].

In contrast, we model a spatial computer consisting of general pur-

pose cores whose communication patterns can depend on the data

and are routed through an on-chip network in a network-oblivious
way. Thus, our model is intended to have a higher level of abstrac-

tion and is geared towards algorithm design (rather than circuit

design). Moreover, we take the communication distance into ac-

count when measuring costs.

Work/Depth and PRAM. The work-depth model considers com-

putation as a directed acyclic graph and counts the total number

of operations (work) and the length of the critical path (depth). Up

to constant factors, the depth in the work-depth model is the same

as the depth in our model. The work and depth model is closely

related to the PRAMmodel. The PRAM [44] assumes a single shared

memory with uniform cost random access. An algorithm with work

𝑊 and depth 𝐷 ′
takes 𝑂 (𝑊 /𝑝 + 𝐷 ′) time on 𝑝 PRAM processors.

We will show how to simulate any PRAM algorithm in our model.

Usually, this will not lead to energy-optimal algorithms, as the ran-

dom accesses in PRAM might result in a full permutation of the

data in each time step.

PCRAM. Hora et al. [27] present an abstract model for FPGAs

as accelerators. They assume a simplified model where the FPGA

runs execution DAGs in a pipelined manner, abstracting away the

complexities of configuring circuits on the FPGA. The FPGA is con-

nected to a large random access memory. We take a fundamentally

different point of view, as we consider the spatial aspects of the

hardware and heavily penalize random access.

BSP. In the bulk-synchronous parallel model [1, 24, 25, 52] (BSP),

processors can communicate arbitrarily large messages in synchro-

nous rounds, called supersteps. The goal is to reduce the number

of rounds, the communication volume, and finally the computation

time. The model is well-suited to a coarse-grained parallel scenario

(where the number of processors is much smaller than the input size

and each processor has a large local memory), which occurs when

connecting many large machines into a cluster. In BSP, communica-

tion is assumed to have the same costs for each pair of processors. In

contrast, in our model the cost between communicating processors

is spatially dependent.

PIM Model. Kang et al. [29] present a model for processing-in-

memory (PIM) that combines aspects of a PRAM with aspects of a

BSP machine. A set of processing-in-memory cores are treated as a

distributed system that acts as an accelerator to a PRAM-like set of

host cores. This model leads to hierarchical solution approaches,

but treats all PIM cores and host processors as symmetric to each

other and does not consider any spatial aspects.

1.4 Discussion
Compared to previous communication cost models [17, 52], we

weight communication cost by the distance traveled. In addition

to improving energy-consumption, sending messages locally de-

creases congestion for links that connect far-away parts of the

system, as is important for hierarchical many-cores. An algorithm

with energy 𝐸 sends at most 𝐸/𝑘 messages to processors that have

distance 𝑘 or more. This bound is nontrivial if the energy is less

than

√
𝑛 times the number of messages sent, which is the case for

all our energy-optimal algorithms. In particular, an 𝑂 (𝑛) energy
algorithm will send only 𝑂 (𝑛/𝑘) messages farther than distance

𝑘 . This means that the bandwidth required to avoid congestion

decreases linearly with the distance.

Depth ignores the length of the path traveled. This is a good

estimate of the latency when the underlying communication net-

work on the chip [18] has a low diameter, such as in hierarchical

many-cores. Reconfigurable dataflow architectures use mesh-like

network topologies [21–23], which use little chip area [10, 46] and

are thus more economical. However, the latency grows with the

distance of the communicating units. Hence, it is desirable to con-

sider wire-depth as well. Our algorithms optimize spatial locality

in terms of both energy and wire-depth.

1.5 Our Contribution
For several foundational algorithmic problems, we present energy-

optimal, low-depth, and wire-depth optimal algorithms in the spa-

tial computer model. We show an energy-lower bound for the per-

mutation problem. In particular, permuting 𝑛 numbers on a square

grid takes Ω(𝑛3/2). Since sorting and square matrix multiplication

can be used to implement energy-intensive permutations, the en-

ergy lower bounds for these problems follow. The permutation

lower bound means that many classic techniques which rely on

permuting the data do not lead to efficient algorithms.

Instead, our algorithms exploit two-dimensional recursive pat-

terns to increase their communication locality, decreasing energy

cost and wire-depth. We provide communication primitives that

are optimal on subgrids that are not exponentially taller than wide.

Next, we study two comparison-based problems, rank-selection,

and sorting. In light of the permutation energy lower-bound, it is

remarkable that rank selection can be achieved in linear 𝑂 (𝑛) en-
ergy and low depth. Moreover, we provide energy-depth tradeoffs

for matrix multiplication. See Table 1 for a summary of our bounds.
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8x1 Broadcast (1D) two 4x4 Broadcasts (2D)

Figure 1: Example of an 8x4 broadcast. A 1D Broadcast sends
a message along a binary tree. Then, a set of 2D Broadcasts
send messages recursively along the quadrants.

We then show how to simulate existing PRAM algorithms us-

ing our energy-optimal sorting algorithm. This simulation can be

helpful to implement parts of an algorithm that are not the energy

bottleneck. Finally, we explore a model variant where processors

possess a larger local memory and can receive more than a constant

number of messages. We show that because our model weights

communication costs by the distance traveled, there is a direct

translation between results for constant-sized local memories and

larger local memories. This simulation result means we can focus

our attention on designing algorithms for the simpler model with

constant-sized memories.

2 COMMUNICATION PRIMITIVES
We start bymodeling communication primitives consisting of broad-

casts, reductions, and parallel scans. These will be used throughout

our algorithms. We present algorithms with logarithmic depth and

energy that is optimal for square subgrids.

2.1 Broadcast
Consider the problem of broadcasting a value from the processor

(0, 0) to all other processors in an ℎ ×𝑤 sub-grid that contains 𝑝0,0,

where w.l.o.g. ℎ ≥ 𝑤 and 𝑛 = 𝑤ℎ. We start with a lower bound.

Lemma 2.1. Abroadcast on aΩ(ℎ)×Ω(𝑤) subgrid takesΩ(log(ℎ)+
log(𝑤)) depth and Ω(ℎ +𝑤) wire-depth.

Proof. Consider a sequence of messages that depend on each

other. For the broadcast to be correct, there must be such a sequence

starting from the root and ending at every processor. Because each

processor can only send a message to a constant number of other

processors in each time step and we need to reach ℎ×𝑤 processors,

it requires Ω(log(ℎ ·𝑤)) time steps to do so. □

Now, we turn to the upper bound. Let us first consider the square

𝑤 ×𝑤 case (2D broadcast): We can solve the problem efficiently by

subdividing the grid into quadrants and proceeding recursively on

them: Send the value to the three processors in the top-left corners

of the other quadrants, then proceed recursively on each quadrant.

Next consider the ℎ × 1 case (1D broadcast). We build a binary

broadcast tree, as follows. The root has a child node directly next

to it and a child node at an offset (ℎ − 1)/2. Then, recursively
build a binary tree for each child’s subtree (each contains (ℎ − 1)/2
elements). Figure 1 shows an example of a 1D broadcast for 𝑛 = 8

and a 2D broadcast for 𝑛 = 16.

Now, consider the general case, where we want to broadcast on

an ℎ ×𝑤 grid, where ℎ ≥ 𝑤 . First, do a 1D broadcast on the first

column. Then, subdivide the grid into square𝑤 ×𝑤 subgrids and

run a 2D broadcast on each of them.

Lemma 2.2. Broadcast on an ℎ ×𝑤 subgrid (where ℎ ≥ 𝑤 ) takes
𝑂 (ℎ𝑤 + ℎ logℎ) energy, 𝑂 (log𝑛) depth, and 𝑂 (𝑤 + ℎ) wire-depth.

Proof. The 1D broadcast takes 𝑂 (ℎ logℎ) energy: Let 𝐸1 (ℎ) be
the energy required for the ℎ × 1 broadcast. Then, we have that:

𝐸1 (ℎ) ≤
{

0 if𝑤 ≤ 1

ℎ
2
+ 1 + 2𝐸1 (𝑤/2) otherwise,

which solves to 𝑂 (ℎ logℎ). The following ⌈ ℎ𝑤 ⌉ 2D broadcasts take

𝑂 (𝑤2) energy each: Let 𝐸2 (𝑤) be the energy required for the 2D

broadcast on a𝑤 ×𝑤 subgrid. Then, we have that:

𝐸2 (𝑤) ≤
{

0 if𝑤 ≤ 1

3𝑤
2

+ 3 + 4𝐸2 (𝑤/2) otherwise,

which solves to 𝑂 (𝑤2). The depth is clearly 𝑂 (log𝑤 + logℎ) =

𝑂 (log𝑛). Finally, the wire-depths of both the 1D and 2D broadcast

form geometric series and solve to 𝑂 (𝑤 + ℎ). □

Interestingly, the energy upper bound depends on the shape of

the subgrid. As long as the subgrid is not exponentially tall (that is,

ℎ ≤ 𝑒𝑂 (𝑤)
), the energy is linear in the number of processors in the

subgrid. This matches the trivial energy lower bound of𝑤 · ℎ up to

constant factors (when ℎ ≤ 𝑒𝑂 (𝑤)
).

2.2 Reduce
Given an associative and commutative operator ◦ and 𝑛 inputs

𝐴0, . . . , 𝐴𝑛−1 stored in arbitrary order on an ℎ ×𝑤 subgrid contain-

ing the processor 𝑝0,0, a reduce computes 𝐴0 ◦𝐴1 ◦ . . . ◦𝐴𝑛−1 and
leaves the result in the root processor 𝑝0,0. To compute a reduce on

a subgrid, we can use the reverse commmunication pattern as the

broadcast. Hence, the result follows:

Corollary 2.3. Reduce on an ℎ ×𝑤 subgrid (where ℎ ≥ 𝑤 ) takes
𝑂 (ℎ𝑤 + ℎ logℎ) energy, 𝑂 (log𝑛) depth, and 𝑂 (𝑤 + ℎ) wire-depth.

An All-reduce can be implemented by a reduce followed by a broad-

cast. Hence, we conclude:

Corollary 2.4. All-Reduce on an ℎ ×𝑤 subgrid (where ℎ ≥ 𝑤 )
takes 𝑂 (ℎ𝑤 + ℎ logℎ) energy, 𝑂 (log𝑛) depth, and 𝑂 (𝑤 + ℎ) wire-
depth.
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2.3 Parallel Scan
Consider an array 𝐴0, . . . , 𝐴𝑛−1 stored on a 𝑤 ×𝑤 grid (n=𝑤2

) in

some order. We want to compute the prefix sums

𝐴0, 𝐴0 +𝐴1, 𝐴0 +𝐴1 +𝐴2, . . . ,

𝑛−1∑︁
𝑖=0

𝐴𝑖

where the i-th result

∑𝑖
𝑗=0𝐴 𝑗 is stored where the 𝑖-th input was

stored. The addition can be replaced by any associative operator,

resulting in a parallel scan. For ease of notation, we will present the
algorithm for the special case of addition (w.l.o.g.).

Z-Order Curve. If the array is stored in row-major order on the

grid, it is challenging to implement an energy-efficient parallel scan.

However, when the array is stored according to a locality preserving

traversal of the grid, we can adapt a parallel up-sweep/down-sweep

algorithm. The Z-Order curve (sometimes calledMorton space filling

curve [11, 40]) is one such traversal of a grid. We can define it

recursively: For a 𝑤 × 𝑤 subgrid, traverse the four quadrants in

order (visiting the top two quadrants first, left to right, then the

bottom two quadrants, left to right).

Observation 1. Sending a message along each edge of a Z-Order
curve of a𝑤 ×𝑤 subgrid takes 𝑂 (𝑤2) energy.

We now describe the up-sweep and down-sweep of the parallel

scan. The up-sweep computes partial sums on a quadrant-level

granularity. Then, the down-sweep uses these results for the final

prefix sums. Conceptually, we build a complete 4-ary summation

tree over the quadrants. The root corresponds to the whole subgrid,

its children are the quadrants of the subgrid, and so on, recursively.

Up-sweep. For each node in the quadrant tree, we want to com-

pute the sum of its leaf elements. If the current subgrid contains a

single processor, its element equals the value at a leaf. Otherwise,

proceed recursively.

• Recurse over all quadrants to obtain the sum of the element

of the children.

• Sum those values, store the result in the 𝑖-th processor of

the current subgrid (in Z-order), where 𝑖 is the distance to a

leaf in the 4-ary summation tree.

For an example of how the summation tree is mapped to the grid,

see Figure 2a.

Down-sweep. Now, we use the values from the up-sweep to com-

pute the prefix sum. The algorithm again recursively considers the

subgrid’s quadrants. At each step, a value 𝑥 gets passed down from

above. For the first invocation, 𝑥 = 0. This values 𝑥 is added to

all values in the current quadrant to account for values that occur

outside the current subgrid.

If the current subgrid has size 1, add 𝑥 to the value of 𝐴 in the

subgrid’s only processor. Otherwise, proceed recursively. Consider

the four quadrants in the current subgrid, 𝑆0, 𝑆1, 𝑆2, 𝑆3 in Z-order

and their respective values 𝑠0, 𝑠1, 𝑠2, 𝑠3 that were computed during

the up-sweep. The value that gets passed down to quadrant 𝑆𝑖 is

𝑥 +∑𝑖−1
𝑗=0 𝑠 𝑗 . These values are passed down to the top left processor

of each subgrid. Figure 2b illustrates one step of the down-sweep.

Lemma 2.5. A parallel scan on an array of 𝑛 elements in Z-order
takes 𝑂 (𝑛) energy, 𝑂 (log𝑛) depth, and 𝑂 (

√
𝑛) wire-depth.

(a) The up-sweep computes par-
tial sums along a 4-ary tree. The
root of a height 𝑖 subtree is in the
𝑖-th node in Z-Order of the sub-
tree’s quadrant.

(b) The down-sweep computes
prefix sums over the values
from the up-sweep. It sends
these prefix sums to the quad-
rants recursively.

Figure 2: The energy-optimal parallel scan operates recur-
sively in Z-order.

Proof. The energy equals that of a Z-order curve up to constant

factors. Note that in the up-sweep, each processor stores at most 2

values of the summation tree. Because of the recursive construction,

the wire depth forms a geometric series. □

Segmented Scan. To operate efficiently on multiple consecutively

stored arrays, we consider segmented scans. The input array is

partitioned into consecutive segments. The result of a segmented

scan is the same as executing a scan on each segment. For any

associative operator, we can define a segmented associative operator

that has the logic of the segments built-in [44]. Hence, we can use

the same algorithm for a segmented scan:

Corollary 2.6. A segmented scan on an array of 𝑛 elements in
Z-order takes 𝑂 (𝑛) energy, 𝑂 (log𝑛) depth, and 𝑂 (

√
𝑛) wire-depth.

3 SELECTION AND SORTING
We present a low-depth energy-optimal sorting algorithm. It is easy

to prove a non-linear lower bound on the energy to permute (and

hence sort) the input.

Lemma 3.1. Permuting ℎ ×𝑤 elements on an ℎ ×𝑤 subgrid takes
Ω(max(𝑤,ℎ)2 ·min(𝑤,ℎ)) energy.

Proof. Assume w.l.o.g. that ℎ > 𝑤 . Otherwise, the situation is

transposed. Consider the permutation that reverses the order in

which elements appear in a row-wise layout. The elements in the

first ℎ/3 rows need to be sent to one of the last ℎ/3 rows, which
takes at least ℎ/3 energy per element (of which there are ℎ𝑤/3). □

The lowest permutation cost is obtained when 𝑤 = ℎ. Since

sorting can be used to implement permutation, the sorting lower

bound follows.

Corollary 3.2. Sorting 𝑛 elements takes Ω(𝑛
3

2 ) energy.

By the permutation lower bound, the matching upper bound can

only be obtained when the input is contained in a ℎ ×𝑤 subgrid

where𝑤 = Θ(ℎ). Hence, we will focus on the case where𝑤 = ℎ. We
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16 8 4 2

(a) 1D Bitonic Merge

16=4x4 8=2x4 

4=1x4 2=1x2

(b) 2D Bitonic Merge

Figure 3: Bitonic Merge network in 1D and 2D layout. In 2D,
the recursion first splits into fewer columns (4x4 - 2x4 - 1x4),
then fewer rows (1x2). Because the recursion does not reduce
both rows and columns simultaneously, 2D Bitonic Merge-
sort is energy-suboptimal.

begin by analysing the energy of a sorting network in our model,

which we show to be sub-optimal. Then, we present an energy-

optimal 2D Mergesort algorithm, which has 𝑂 (log3 𝑛) depth and

𝑂 (𝑛3/2) energy on a

√
𝑛 ×

√
𝑛 grid.

In light of the permutation lower bound, it is surprising that, as

we will show, median selection (and more generally rank selection)

takes linear 𝑂 (𝑛) energy.

3.1 Sorting Networks
Sorting networks are data-oblivious (and stable) sorting algorithms

of oftentimes low depth [2, 4, 41, 43] . For each time step, they

define a set of pairs of indices to compare (and swap if necessary).

Each index into the array is thought of as a "wire". In each step, a

wire can be compared with at most one other wire. A natural idea

is to map a sorting network to our processor grid: each wire in the

sorting network is assigned to a processor. For example, we can

assign wires to processors in row-major order. Interestingly, this

approach does not easily lead to energy-optimal sorting algorithms.

We present the results for Bitonic Sort [4].

The Bitonic Sort is a simple network with 𝑂 (log2 𝑛) depth and

𝑂 (𝑛 log2 𝑛) comparisons. As it is defined recursively on halves

of its input, it exhibits some degree of spatial locality. A Bitonic

Sort makes use of a Bitonic Merge network, which can be defined

recursively: For an input of size 𝑛, compare and swap each wire

𝑖 with index less than 𝑛/2 with wire 𝑖 + 𝑛/2. Then, recursively
merge both halves. See Figure 3 for an illustration of a 4× 4 Bitonic

Merge with wires mapped to the compute grid in row-major order.

A Bitonic Sort recursively invokes itself on both halves of its input,

then invokes a Bitonic Merge on the input.

We begin with the analysis of the recursive Bitonic Merge.

Lemma 3.1. On anℎ×𝑤 subgrid, BitonicMerge takesΘ(ℎ2𝑤+𝑤2ℎ)
energy, Θ(log𝑛) depth, and Θ(𝑤 + ℎ) wire-depth.

Proof. We split the energy cost into two parts: (1) when there

is more than one row left; (2) when there is a single row left. When

there are ℎ > 1 rows left, the network sends Θ(𝑤 · ℎ) messages

across a distance of ℎ/2. Hence, the energy 𝐸1 (ℎ) for this part
is 𝐸1 (ℎ) = Θ(ℎ2𝑤) + 2𝐸 (ℎ/2) if ℎ > 1, which solves to 𝐸1 (ℎ) =

Θ(ℎ2𝑤). When there is a single row left of length𝑤 , the network

sends Θ(𝑤) messages across a distance of Θ(𝑤). Hence, the energy
𝐸2 (𝑤) for this part is 𝐸2 (𝑤) = Θ(𝑤2) + 2𝐸 (𝑤/2) , which is in

Θ(𝑤2). The algorithm reaches the situation ℎ times, meaning that

the total cost of this part is 𝑂 (ℎ𝑤2). The wire-depth is a geometric

series (first over ℎ, then over𝑤 ). □

Next, we describe and analyze the cost of the bitonic sorting

network. Because the Bitonic Sort has a 1D recursive pattern that

first reduces the number of rows, and only then the number of

columns, it has to pay the energy of the Bitonic Merge a logarithmic

number of times in one dimension, leading to the following bound:

Lemma 3.2. On an ℎ × 𝑤 subgrid, Bitonic Sort takes Θ(ℎ2𝑤 +
𝑤2ℎ logℎ) energy, Θ(log2 𝑛) depth, and Θ(ℎ +𝑤 logℎ) wire-depth.

Proof. We again divide the energy cost into the part where

there is more than one row and the part when there is a single row

left. The energy 𝐸1 (ℎ) when there are ℎ > 1 rows left is

𝐸1 (ℎ) ≤ 𝑂 (ℎ2𝑤 +𝑤2ℎ) + 2𝐸 (ℎ/2) if ℎ > 1.

We can see that 𝐸1 (ℎ) = 𝑂 (ℎ2𝑤 +𝑤2ℎ logℎ). When there is a single

row left of length𝑤 , the energy 𝐸2 (𝑤) for this part is

𝐸2 (𝑤) ≤ 𝑂 (𝑤2) + 2𝐸 (𝑤/2) ,

which solves to 𝑂 (𝑤2). This cost occurs ℎ times.

For the wire-depth, observe that as long as there are is more

than one row, the cost is𝑂 (𝑤 +ℎ). Because𝑤 stays the same while

there is more than one row, the wire-depth is 𝑂 (𝑤 logℎ + ℎ). □

In conclusion, Bitonic Sort takes 𝑂 (𝑛
3

2 log𝑛) energy to sort 𝑛

numbers, a logarithmic factor away from optimal. Note that the sub-

optimality is not because of the suboptimal number of comparisons

performed by the bitonic sorting network, but instead because the

network eventually turns into a 1D algorithm (when the recursion

becomes smaller than a single row). Moreover, Bitonic Sort is also

not wire-depth optimal, as it has Θ(
√
𝑛 log𝑛) wire-depth. We now

present an energy and wire-depth optimal algorithm.

3.2 Energy-Optimal Sorting
We design a spatial energy-optimal variant of Mergesort [16, 28, 51].

On a high level, the 2D Mergesort works similarly to traditional

Mergesort. However, instead of recursing on two halves of the array,

we recurse on the four quadrants of the subgrid:

• Recursively sort the four quadrants of the subgrid.

• Merge the two top quadrants

• Merge the two bottom quadrants

• Merge the results of the two previous merges

The challenge lies in an energy-efficient implementation of the

Merge subroutine, that we present in the rest of this subsection.

Our merging subrouting relies on a naive sorting routine (All-Pairs

Sort), which we discuss next.
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All-Pairs Sort. A simple idea for a low-depth sorting algorithm

is to compare every element with every other element. This can

be done by using our efficient broadcast and reduce patterns. The

implementation “explodes” the computation onto a larger subgrid.

This leads to low depth. However, because the computation grid has

a larger diameter, the energy cost increases to more than quadratic.

• Subdivide a 𝑛 × 𝑛 subgrid into 𝑛 subgrids Γ𝑖 of size
√
𝑛 ×

√
𝑛

each. Scatter the elements of 𝐴 such that 𝐴𝑖 is sent to the

first processor of the subgrid Γ𝑖 , for each 𝑖 .
• Within each subgrid Γ𝑖 , broadcast the element 𝐴𝑖 .

• Copy the array 𝐴 to each grid Γ𝑖 by using the same com-

munication pattern as for the 2D broadcast (by treating the

array 𝐴 and the subgrids Γ𝑖 as units).
• Now, each processor compares its two elements.

• Each subgrid Γ𝑖 performs a reduction to compute the rank

of element 𝐴𝑖 in the sorted sequence. Gather these ranks.

Lemma 3.3. All-Pairs Sort of 𝑛 elements takes 𝑂 (𝑛5/2) energy,
𝑂 (log𝑛) depth, and 𝑂 (𝑛) wire-depth.

Proof. Scattering the𝑛 elements over a distance of at most𝑂 (𝑛)
takes 𝑂 (𝑛2) energy. Let 𝐸 (𝑘) be the energy of the broadcast when

𝑘 · 𝑘 subgrids remain. Then, we have the recurrence

𝐸 (𝑘) ≤
{

𝑂 (𝑛) if 𝑘 ≤ 1 ;

𝑛3/2𝑘 + 4𝐸 (𝑘/2) otherwise,

which is in 𝑂 (𝑛3/2𝑘2). As initially, 𝑘 =
√
𝑛, we get that the en-

ergy is𝑂 (𝑛5/2). Computing the reductions takes𝑂 (𝑛2) energy and

gathering these ranks takes 𝑂 (𝑛2) energy.
The depth is bottlenecked by the broadcasts. Finally, the wire-

depth is bottlenecked by scattering the elements in the 𝑛×𝑛 subgrid.
□

Merging Two Sorted Arrays. The challenging part of our merging

algorithm is an energy-efficient and low-depth merging subroutine.

We cannot use classical approaches because they do not lead to

balanced recursive cases (which is needed to organize them into

square subgrids). Consider two arrays 𝐴 and 𝐵 containing 𝑛𝐴 and

𝑛𝐵 sorted numbers in row-major order. The goal is to construct an

array𝐶 that contains the 𝑛 = 𝑛𝐴 +𝑛𝐵 elements of𝐴 and 𝐵 in sorted

row-major order.

At any point in the recursion, the algorithm operates on a square

subgrid Γ. The larger of the two current subarrays𝐴 and 𝐵 is stored

in a square subgrid Γ′ ⊆ Γ, while the other array is stored in row-

major order filling up the rest of the subgrid Γ, in a “mirrored L”

shape, as illustrated in Figure 4a. The idea of the algorithm is as

follows.

• Let 𝐴∥𝐵 be the concatenation of 𝐴 and 𝐵. Split 𝐴 and 𝐵 by

the rank 𝑛/4, rank 𝑛/2 and rank 3𝑛/4 elements of 𝐴∥𝐵 into

4 subarrays each.

• Reorganize the resulting subarrays into the four quadrants,

such that the first quadrant contains the 𝑛/4 smallest ele-

ments of 𝐴∥𝐵, and so on.

• Recursively merge each quadrant.

• After finishing the recursion, the array is sorted in Z-Order.

Hence, permute the array to row-major order.

See Figure 4 for an example.

(a) (b)

(c) (d)

Figure 4: (a-c) The 2Dmerge recursively splits the two sorted
arrays (colored in black and grey) by the encircled rank 𝑛/4,
𝑛/2 and 3

4
𝑛 elements into quadrants. (d) Finally, it permutes

the array from Z-Order into row-major order.

Rank selection in two sorted arrays. To implement the merge,

we still need to answer how to efficiently find the rank 𝑘 element

of 𝐴∥𝐵 (in particular for 𝑘 = 𝑛/4, 𝑛/2, 3𝑛/4). The idea is to use

deterministic sampling to quickly rank a subset of the elements

and determine much smaller subarrays of 𝐴 and 𝐵 that contain the

rank-𝑘 element.

• Gather every ⌊
√
𝑛⌋-th element of 𝐴 and 𝐵 into a sample 𝑆 .

Specifically, select from 𝐴 the elements at indices 𝑖 ⌊
√
𝑛⌋ for

𝑖 in the range 1, . . . , ⌊𝑛𝐴/⌊
√
𝑛⌋⌋ and similarly for 𝐵.

• Sort the sample 𝑆 with an All-Pairs Sort.

• Let 𝑙 = ⌊ 𝑘−1⌊
√
𝑛⌋ ⌋.

• If 𝑙 = 0 let 𝑠𝑙 (𝐴) and 𝑠𝑙 (𝐵) refer to the first elements of 𝐴

and 𝐵, respectively.

• If 𝑙 > 0, let 𝑠𝑙 be the rank 𝑙-th element in 𝑆 . Find the pre-

decessor 𝑠𝑙 (𝐴) and 𝑠𝑙 (𝐵) of 𝑠𝑙 among the sampled elements

of 𝐴 and 𝐵, respectively (with a binary search). If no such

element exists, set it to the first element in the array.

• In any case, let 𝑠𝑟 (𝐴) and 𝑠𝑟 (𝐵) be the next sampled element

following 𝑠𝑙 in 𝐴 and 𝐵, respectively. If no such element

exists, set it to the last element in the array.

• Narrow the search to the two smallest subarrays that contain

the elements 𝑠𝑙 (𝐴), 𝑠𝑟 (𝐴) and 𝑠𝑙 (𝐵), 𝑠𝑟 (𝐵).
• Determine the rank 𝑘 − 𝑙 ⌊

√
𝑛⌋ element in the concatenation

of the narrowed subarrays using All-Pairs Sort.

Lemma 3.4. Given two sorted arrays 𝐴 and 𝐵, Deterministic sam-
pling determines the rank 𝑘 element in 𝑂 ((𝑛𝐴 + 𝑛𝐵)5/4) energy,
𝑂 (log𝑛) depth, and 𝑂 (

√
𝑛) wire-depth.

Proof. Energy, depth, and wire-depth are bottlenecked by the

All-Pairs Sort of the sample 𝑆 . Because 𝑆 has𝑂 (√𝑛𝐴 + 𝑛𝐵) elements,

the result follows by Lemma 3.3.
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Next, we prove the correctness of the algorithm. Case 1: 𝑙 = 0.

Then 𝑘 is at most ⌊
√
𝑛⌋. Hence, it must be contained within the first√

𝑛 elements of one of the two subarrays. Case 2: 𝑙 > 0. The rank of

𝑠𝑙 in 𝐴| |𝐵 is at most 𝑙 ⌊
√
𝑛⌋ ≤ 𝑘 − 1. Hence, by removing elements

smaller than 𝑠𝑙 we do not exclude the rank 𝑘 element. Moreover, the

rank of 𝑠𝑙 in 𝐴| |𝐵 is at least 𝑘 − 1− ⌊
√
𝑛⌋. Since we always consider

the next ⌊
√
𝑛⌋ + 1 ranked elements, correctness follows. □

We now bound the cost of the merging subroutine.

Lemma 3.3. Merging two arrays𝐴 and 𝐵 with 𝑛𝐴 and 𝑛𝐵 elements
located on adjacent square subgrids takes 𝑂 ((𝑛𝐴 + 𝑛𝐵)3/2) energy,
𝑂 (log2 (𝑛𝐴 + 𝑛𝐵)) depth, and 𝑂 (

√
𝑛) wire-depth.

Proof. Let 𝐸 (𝑛𝐴, 𝑛𝐵) be the energy of merging arrays 𝐴 and 𝐵

with 𝑛𝐴 and 𝑛𝐵 elements in total. Then, the energy in each step

of the recursion is 𝑂 ((𝑛𝐴 + 𝑛𝐵)5/4) for determining the splitting

elements and 𝑂 ((𝑛𝐴 + 𝑛𝐵)3/2) for performing the necessary per-

mutations. Each of the recursive calls operates on four pairs of

subarrays. We get the recurrence for the energy

𝐸 (𝑛𝐴, 𝑛𝐵) ≤


(𝑛𝐵)

3

2 if 𝑛𝐴 = 0

(𝑛𝐴)
3

2 if 𝑛𝐵 = 0

𝑂 ((𝑛𝐴 + 𝑛𝐵)3/2) +
∑
4

𝑖=1 𝐸 (𝑛𝑖𝐴, 𝑛
𝑖
𝐵
) else,

where𝑛𝑖
𝐴
+𝑛𝑖

𝐵
= (𝑛𝐴+𝑛𝐵)/4. Since the number of elements remains

constant when summed over all nodes in the same level of the re-

cursion, and the ‘diameter’ term

√
𝑛𝐴 + 𝑛𝐵 decreases geometrically

in each level of the recursion (for all recursive calls), the recurrence

solves to 𝐸 (𝑛𝐴, 𝑛𝐵) ≤ 𝑂 ((𝑛𝐴 + 𝑛𝐵)3/2). □

Note that for the case where 𝑛𝐴 = 𝑛𝐵 , the energy to merge the

subarrays is 𝑂 (𝑛
3

2 ), the permutation bound.

Finally, we can bound the costs of 2D Mergesort:

Theorem 3.4. 2DMergesort takes𝑂 (𝑛3/2) energy,𝑂 (log3 𝑛) depth,
and 𝑂 (

√
𝑛) wire depth on a square subgrid.

Proof. By Lemma 3.3 , the energy 𝐸 (𝑛) is

𝐸 (𝑛) ≤
{

0 if 𝑛 ≤ 1;

𝑂 (𝑛
3

2 ) + 4𝐸 (𝑛/4) else,

which solves to 𝑂 (𝑛
3

2 ). □

3.3 Energy-Optimal Selection
We can determine the median of 𝑛 elements, and more generally the

rank-𝑘 element with linear energy and poly-logarithmic depth. We

can assume without loss of generality that 𝑘 ≤ ⌈𝑛/2⌉, as otherwise
we can reverse the order of the elements and select the rank 𝑛 − 𝑘
element.

The idea is similar to the deterministic ranking we used for

merging sorted subarrays. However, since we do not start with

a partially sorted array, we have to sample randomly. We create

a sample that is as large as possible, rank this sample, and use

the ranking of the sample to eliminate a polynomial fraction of

the input elements. Because it takes 𝑂 (
√
𝑛) energy to gather an

element in a subgrid, the largest sample we can gather in 𝑂 (𝑛)
energy contains 𝑂 (

√
𝑛) elements. The idea of using sampling is

similar to an idea by Reishuk [45]. Our goal is to prove that 𝑂 (1)
iterations suffice with high probability.

Initially, all elements are marked as active. Elements will be

gradually marked inactive until we find the rank-𝑘 element. Let 𝑁

be the current number of active elements. Choose a constant 𝑐 with

𝑐 ≥ 3: Repeat the following step until 𝑁 ≤ 𝑐
√
𝑛.

• Create a sample 𝑆 by including every active element inde-

pendently with probability 𝑐𝑁−1/2
.

• Gather those elements in a square subgrid, using a scan to

assign each sampled element an index within the subgrid

and a broadcast to communicate the size of the sample.

• Choose two pivots. The first pivot is the element 𝑠𝑟 at rank

𝑟 = min( |𝑆 |, 𝑐𝑘𝑁−1/2 + 𝑐
2
𝑁 1/4√

ln𝑛) . If 𝑘 ≥ 1

2
𝑁 3/4√

ln𝑛,

the second pivot is the element 𝑠𝑙 at rank 𝑙 = 𝑐𝑘𝑁−1/2 −
𝑐
2
𝑁 1/4√

ln𝑛 . Otherwise, the second pivot is the dummy

element 𝑠𝑙 = −∞. Sort the sample 𝑆 using Bitonic Sort to

determine 𝑠𝑙 and 𝑠𝑟 .

• Broadcast 𝑠𝑙 and 𝑠𝑟 in the original subgrid.

• Count the number of active elements𝑁<𝑙 smaller than 𝑠𝑙 and

the number of active elements 𝑁>𝑟 larger than 𝑠𝑟 with an

all-reduce. If 𝑁<𝑙 ≥ 𝑘 or 𝑁>𝑟 ≥ 𝑁 − 𝑘 , sort the input using
2D Mergesort and return the rank 𝑘 element. Otherwise, set

𝑘 = 𝑘 − 𝑁<𝑙 and continue.

• For each active element 𝑎, inactivate it if 𝑎 < 𝑠𝑙 or 𝑎 > 𝑠𝑟 .

• Count the number of remaining active elements 𝑁 with an

all-reduce. If 𝑘 > ⌈𝑁 /2⌉, set 𝑘 = 𝑁 −𝑘 and reverse the order

of the elements (logically, that is, by henceforth flipping the

result of the comparator).

Once the iteration terminates, gather the elements in a square

subgrid, sort them and return the rank 𝑘 element.

The idea behind the energy efficiency proof is that the number of

input elements of rank at most 𝑘 is highly concentrated around their

expectation. Hence, the probability that the true rank 𝑘 element is

between the pivot elements 𝑠𝑙 and 𝑠𝑟 is high.

Lemma 3.5. The probability that 𝑁<𝑙 ≥ 𝑘 or 𝑁>𝑟 ≥ 𝑁 − 𝑘 is at
most 2𝑛−𝑐/6.

Proof. Let 𝐾 be the random variable denoting the number of

rank at most 𝑘 elements of the input that are sampled. Let 𝛿 =

𝑐𝑁 1/4√
ln𝑛

2E[𝐾 ] . We first consider the case where 𝑘 ≥ 1

2
𝑁 3/4√

ln𝑛 and

there are two non-trivial pivots. Observe that 𝑁<𝑙 ≥ 𝑘 occurs

when 𝐾 > 𝑙 and 𝑁>𝑟 ≥ 𝑁 − 𝑘 occurs when 𝐾 < 𝑟 . Note that

E[𝐾] = 𝑐𝑘𝑁−1/2
. Hence, it remains to bound the probability that 𝐾

deviates from its expectation by more than
𝑐
2
𝑁 1/4√

ln𝑛. Note that

0 < 𝛿 ≤ 1. By a Chernoff bound [20], we get

𝑃

[
|𝐾 − E[𝐾] | ≥ 𝑐

2

𝑁 1/4√
ln𝑛

]
= 𝑃 [|𝐾 − E[𝐾] | ≥ 𝛿 E[𝐾]]

≤ 2𝑒−𝛿
2 E[𝑘 ]/3

≤ 2𝑒
− 𝑐2𝑁 1/2

ln𝑛
12E[𝐾 ]

≤ 2𝑛−𝑐/6 .

For the case where 𝑘 < 1

2
𝑁 3/4√

ln𝑛, we have that 𝑁<𝑙 = 0. Thus,

we only need to bound 𝑃 [𝐾 ≥ (1 + 𝛿) E[𝑘]]. Note that 𝛿 > 1. We
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can conclude by another Chernoff bound [20]:

𝑃 [𝐾 ≥ (1 + 𝛿) E[𝑘]] ≤ 𝑒𝛿 E[𝑘 ]/3 < 𝑒−2𝑁
1/4

.

□

Next, we bound the size of the number of active elements after

one iteration. The idea is that it is unlikely that more than the

expected number of elements are between 𝑠𝑙 and 𝑠𝑟 .

Lemma 3.6. Let 𝑁𝑡 be the number of active elements after the
𝑡-th iteration, 𝑁0 = 𝑛. Given 𝑁𝑡 = 𝑛𝑡 and any constant 0 < 𝜖 < 1,

with probability at least 1 − 𝑒−𝑐𝜖𝑛
1/4
𝑡

√
ln𝑛/4, we have that 𝑁𝑡+1 ≤

(1 + 𝜖)𝑛3/4𝑡
√
ln𝑛.

Proof. We define a binomially distributed random variable𝑋 to

bound the probability, as follows. Consider the rank of 𝑠𝑙 within the

array after the 𝑡-th iteration. Now consider the next (1+𝜖)𝑛3/4𝑡
√
ln𝑛

subsequently ranked elements (after the 𝑡 iteration) in order. If an

element is sampled in the (𝑡 + 1)-th iteration, it is counted as a

success. Recall that this occurs with probability 𝑐𝑛
−1/2
𝑡 . The event

that 𝑁𝑡+1 > (1 + 𝜖)𝑛3/4𝑡
√
ln𝑛 occurs exactly when 𝑋 ≤ 𝑐𝑛1/4𝑡

√
ln𝑛.

Note that E[𝑋 ] = (1 + 𝜖)𝑐𝑛1/4𝑡
√
ln𝑛. We bound the tail probability

of 𝑋 by a Chernoff bound (for 𝛿 = 𝜖
1+𝜖 ):

𝑃 [𝑋 ≤ 𝑐𝑛1/4𝑡
√
ln𝑛] = 𝑃 [𝑋 ≤ (1 − 𝛿) E[𝑋 ]]

≤ 𝑒−𝛿
2 E[𝑋 ]/2

= 𝑒−
( 𝜖
1+𝜖 )𝑐𝑛1/4𝑡

√
ln𝑛)

2

≤ 𝑒−
𝑐𝜖
4
𝑛
1/4
𝑡

√
ln𝑛 .

□

Theorem 3.7. Rank Selection takes𝑂 (𝑛) energy,𝑂 (log2 𝑛) depth,
and 𝑂 (

√
𝑛) wire-depth w.h.p. in 𝑛 (and also in expectation).

Proof. It takes 𝑂 (𝑛) energy to send the 𝑂 (
√
𝑛) sampled ele-

ments across the𝑂 (
√
𝑛) diameter compute grid. Sorting the sample

takes 𝑂 (𝑛3/4 log𝑛) = 𝑜 (𝑛) energy. The remaining operations take

𝑂 (𝑛) energy using our communication primitives. Hence, each iter-

ation takes 𝑂 (𝑛) energy. The depth is bottlenecked by the Bitonic

Sort, which takes𝑂 (log2 𝑛) depth. The wire-depth is𝑂 (
√
𝑛) in each

iteration. For all 𝑁𝑡 larger than a constant, by Lemma 3.6 we have

that 𝑁𝑡+1 ≤ 𝑁
4/5
𝑡 with high probability in 𝑛. Hence, the algorithm

performs a constant number of iterations. By Lemma 3.5, each of

those iterations resorts to sorting the whole input with probability

at most 2𝑛−𝑐/6 ≤ 2𝑛−1/2, which implies the expectation bounds. By

choosing an appropriate constant 𝑐 , the probability of success can

be boosted to 1 − 𝑛−𝑑 for any constant 𝑑 . □

4 MATRIX MULTIPLICATION
For matrix multiplication algorithms, the size of the subgrid used

for computation plays a crucial role in determining the energy

cost. Generally, using a larger subgrid (by replicating parts of the

matrices) allows for lower depth but leads to a larger energy cost.

We focus on square matrix multiplication, for which we show tight

energy upper and lower bounds.

(a) (b)
Figure 5: The matrices 𝑨 and 𝑩 are grey and black, respec-
tively. (a) In the naive matrix multiply, the matrix 𝑨 is
copied 𝑛 − 1 times. For 𝑛 = 4, this leads to a 16 × 16 subgrid.
(b) One shifting step of Cannon’s algorithm reuses the 4 × 4

subgrid.

Interestingly, we can obtain a tight lower bound on the energy

to multiply two square matrices. The idea is to use a permutation

matrix as one of the matrices.

Lemma 4.1. Multiplying two 𝑛 × 𝑛 matrices stored on a 𝑛 × 𝑛
subgrid in row-major order takes Ω(𝑛3) energy.

Proof. Consider an arbitrarymatrix𝑩 and a permutationmatrix

𝑨 that reverses the order of the rows in 𝑩. Then, 𝑨𝑩 results in the

same permutation of 𝑩 as in the proof of Lemma 3.1, which takes

at least
𝑛3

9
energy. □

4.1 Schedules for Cubic Matrix Multiply
The naive algorithm of decomposing the matrix-matrix multiplica-

tion into matrix-vector products is energy-inefficient: It involves

broadcasting 𝑨 and the columns of 𝑩 to separate parts of the grid,

which takes Ω(𝑛9/2) energy for sending 𝑨. The reason is that the

algorithm uses a large subgrid (see Figure 5a), which increases the

distances needed to communicate.

Cannon’s algorithm. A 2-D matrix multiplication scheme by Can-

non [12] is energy-optimal in our model, but has Θ(𝑛) depth. It
gradually shifts the rows and columns of the matrices 𝑨 and 𝑩 and

accumulates local products into the result matrix 𝑪 , as follows.
Initially, the matrices 𝐴 and 𝐵 are distributed in row-major on

the 𝑛×𝑛 subgrid, such that processor (𝑖, 𝑗) stores𝐴[𝑖, 𝑗] and 𝐵 [𝑖, 𝑗].
Shift the 𝑖-th row of𝐴 in a circular way by 𝑖 to the left. Shift the 𝑗-th

column of 𝐵 it in a circular way by 𝑗 towards the top. In particular,

the elements that were on the diagonals of 𝐴 and 𝐵 end up in the

first column or row, respectively. Each processor (𝑖, 𝑗) initializes
𝐶 [𝑖, 𝑗] to zero. Then, for 𝑛 iterations: Each processor (𝑖, 𝑗) adds the
product of the currently colocated elements of 𝐴 and 𝐵 to 𝐶 [𝑖, 𝑗].
Circularly shift the rows of 𝐴 towards the left and columns of 𝐵

towards the top by one. See Figure 5b for an illustration.

Lemma 4.2. Cannon’s algorithm takes 𝑂 (𝑛3) energy, Θ(𝑛) depth,
and Θ(𝑛) wire-depth to multiply two 𝑛 × 𝑛 matrices.
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Proof. The initial permutation costs 𝑂 (𝑛3) energy. Then, each
of the 𝑛 − 1 iterations costs 𝑂 (𝑛2) energy. □

One of the reasons that Cannon’s algorithm is space-efficient is

that it reuses its𝑂 (𝑛2) sized computation subgrid, avoiding energy-

intensive communication over long distances.

4.2 Schedules for Strassen’s Algorithm
To avoid the problem of requiring very large compute grids for

accumulating partial results, we turn to fast matrix multiplica-

tion algorithms based on Strassen’s block-recursive algorithm [48].

When unrolling its recursion multiple times, an opportunity for a

sublinear-depth algorithm arises that uses less extra space. Hence,

the compute grid stays smaller compared to classic matrix multipli-

cation, which in turn reduces the energy compared to the classic

2.5D algorithm.

Sublinear Depth Matrix Multiply. Next, we present an algorithm

that is almost energy-optimal, while achieving a sublinear depth. It

is a schedule for Strassen’s algorithm [48] and is a factor𝑂 (
√︁
log𝑛)

away from energy optimal. The suboptimality is from needing

Θ(log𝑛) memory per matrix entry to hold intermediate results.

The Space-Sharing Strassen’s Matrix Multiply (S3MM), works as
follows. In the original Strassen’s algorithm, each recursive step

produces 7 calls to block matrix multiplications of matrices with

side-lengths 𝑛/2. By unrolling the recursion twice, this gives us

4
3 = 64 submatrices with side-lengths 𝑛/8 and 7

3 = 343 recur-

sive calls. We map the recursive calls in chunks of 64 calls evenly

onto the compute grid and execute those 64 calls in parallel. The 6

chunks run sequentially one after the other (the last one has only

23 recursive calls). After the last chunk finishes, we accumulate the

results. Saving the intermediate results (of each chunk) requires

𝑂 (1) memory per processor per depth in the recursion. We can get

this amount of memory on an 𝑛
√︁
log𝑛 × 𝑛

√︁
log𝑛 subgrid.

Lemma 4.3. The S3MM algorithm takes 𝑂
(
𝑛3
√︁
log𝑛

)
energy,

𝑂

(
𝑛log8 (6)

)
) depth, and𝑂 (𝑛

√︁
log𝑛) wire-depth to multiply two 𝑛×𝑛

matrices.

Proof. The depth 𝐷 (𝑛) satisfies

𝐷 (𝑛) ≤
{
𝑂 (1) if 𝑛 ≤ 1

𝑂 (1) + 6 𝐷 (𝑛/8) else,

which solves to 𝑂 (𝑛log8 (6) ). The wire-depth𝑊 (𝑛) is given by

𝑊 (𝑛) ≤
{
𝑂 (1) if 𝑛 ≤ 1

𝑂 (𝑛
√︁
log𝑛) + 6 𝐷 (𝑛/8) else,

which solves to 𝑂 (𝑛
√︁
log𝑛). In each recursive step, the algorithm

moves a constant number of 𝑂 (𝑛2) sized submatrices inside a sub-

grid of size 𝑛
√︁
log𝑛 × 𝑛

√︁
log𝑛. Hence, the energy 𝐸 (𝑛) satisfies

𝐸 (𝑛) ≤
{
𝑂 (1) if 𝑛 = 1

𝑂

(
𝑛3
√︁
log𝑛

)
+ 343 𝐸 (𝑛/64) else,

which solves to 𝑂

(
𝑛3
√︁
log𝑛

)
□

Note that the depth is approximately in 𝑂 (𝑛0.861). If we un-

rolled the recursion less than twice, the depth would be Ω(𝑛) and
there would be no improvement over Cannon’s algorithm. By un-

rolling the recursion 3 times, we could get a slightly better depth

of 𝑛log16 (10) at the cost of worse constant factors in the energy.

Energy-Depth Tradeoff. Instead of traversing the recursion tree

in a depth first manner, we can traverse it in a breadth-first manner.

This requires a significantly larger subgrid, which increases the

energy costs. To obtain an energy-depth tradeoff, we stop traversing

the recursion in a breadth-first manner and switch to S3MM once

the matrix side-lengths are at most 𝑘 . It is worth noting that this

also constitutes a memory-depth tradeoff: The larger a subgrid

we use for the computation, the lower the depth but the higher

the energy. This approach is related to the DFS/BFS paradigm for

communication efficient matrix multiplication [19].

The S3MM BFS/DFS algorithm needs𝑂 (𝑛log2 7𝑘2−log2 7 log𝑘) pro-
cessors for multiplying two 𝑛 × 𝑛 matrices. The subgrid has side-

lengths 𝑂 (𝑛log4 7𝑘1−log4 7
√︁
log𝑘). Each call of Strassen’s algorithm

creates 7 recursive calls to matrices of size 𝑛/2 × 𝑛/2. By unrolling

them once, we get 49 calls to multiply two matrices of size 𝑛/4×𝑛/4.
Arrange these block products in a regular 7 × 7 subdivision of the

current subgrid. Then, send the submatrices to the correct subgrid

and recurse on each of of the subgrids. Finally, accumulate the

resulting submatrices in the top left corner of the subgrid.

Theorem 4.4. S3MM BFS/DFS takes 𝑂
(
𝑛3 ( 𝑛

𝑘
)log4 (7)−1

√︁
log𝑘

)
energy,𝑂 (𝑘 log8 (6) + log𝑛) depth, and𝑂 (𝑛( 𝑛

𝑘
)log4 (7)−1

√︁
log𝑘) wire-

depth to multiply two 𝑛 × 𝑛 matrices, for any choice of 1 ≤ 𝑘 ≤ 𝑛.

Proof. In one step, each of the 𝑂 (1) matrices of 𝑛2 elements

have to travel a distance of 𝑛( 𝑛
𝑘
)log4 (7)−1

√︁
log𝑘 . Hence, the energy

𝐸 (𝑛) is bounded by

𝐸 (𝑛) ≤
{

𝑂 (𝑛3
√︁
log𝑛) if 𝑛 ≤ 𝑘

𝑂

(
𝑛3 ( 𝑛

𝑘
)log4 (7)−1

√︁
log𝑘

)
+ 49 𝐸 (𝑛/4) else,

which solves to 𝑂

(
𝑛3 ( 𝑛

𝑘
)log4 (7)−1

√︁
log𝑘

)
for the given range of 𝑘 .

□

The algorithmneeds approximately𝑂 (𝑛3.41/𝑘0.80) energy, depth
𝑂 (𝑘0.861+ log𝑛), and wire-depth𝑂 (𝑛1.41/𝑘0.80). It remains an open

question to get an energy-optimal algorithm with sublinear depth.

5 PRAM SIMULATION
To quickly obtain (sub-optimal) upper bounds for a problem, it can

be convenient to simulate an existing PRAM algorithm [44] in our

model. For exclusive reads and writes, this can be done directly by

dedicating a subgrid of processors to simulate the shared memory.

The PRAM processors are simulated by another subgrid, whose

processors load and store data into the simulated shared memory.

For concurrent reads and writes, we can use our energy-optimal

sorting algorithm and parallel scans to manage the concurrency.

Let us start with the Exclusive-Read Exclusive Write (EREW)

PRAM simulation. In each synchronous time step, an EREW PRAM

processor can read 𝑂 (1) word-sized memory cells, perform 𝑂 (1)
computation, and write to 𝑂 (1) memory cells. No two processors

can write or read the same memory cell in the same time step. By
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simulating the shared memory as a square subgrid of processors

and placing the PRAM processors into a square subgrid (next to

the memory), we obtain a simulation results for EREW PRAM:

Lemma 5.1. Consider an algorithm𝐴 on an EREW PRAM that uses
𝑚 memory cells and runs in𝑇𝑝 time steps on 𝑝 processors. Simulating
algorithm 𝐴 takes 𝑂 (𝑝 (√𝑝 +

√
𝑚)𝑇𝑝 ) energy and 𝑂 (𝑇𝑝 ) depth.

We can generalize the simulation to handle concurrent reads

and writes, by exploiting our energy-optimal sorting algorithm to

resolve concurrent reads and writes. This comes at the cost of an

increased depth.

Lemma 5.2. Consider an algorithm𝐴 on an CRCW PRAM that uses
𝑚 memory cells and runs in𝑇𝑝 time steps on 𝑝 processors. Simulating
algorithm𝐴 takes𝑂 (𝑝 (√𝑝 +

√
𝑚)𝑇𝑝 ) energy and𝑂 (𝑇𝑝 log3 𝑝) depth.

Proof. Index the PRAM processors and memory cells with one-

dimensional indexes. Organize the PRAM processors on a

√
𝑝 ×√

𝑝 subgrid indexed in Z-order and the PRAM memory cells on a√
𝑚 ×

√
𝑚 subgrid indexed in row major order (next to it). We show

how to simulate a sub-step where each processor reads at most one

value from the simulated global memory and writes at most one

value from the simulated global memory. To simulate a PRAM step,

execute 𝑂 (1) such sub-steps.

Let us begin with the read step. If processor with index 𝑖 wants

to read a value at cell 𝑘 , it creates a tuple (𝑖, 𝑘). Then, these tuples
are sorted according to the last component. Each processor 𝑖 >

0 inspects its tuple (𝑖, 𝑘 ′) and the tuple (𝑖 − 1, 𝑘 ′′) of processor
𝑖 − 1. If 𝑘 ′ ≠ 𝑘 ′′ or 𝑖 = 0, then this processors reads the value at

cell 𝑘 by sending a message there and waiting for the value. The

processors perform a segmented broadcast on the received values

(with segments determined by the processors that read the same

cell). Finally, we need to send the results back to the processors that

initiated the read. A processor 𝑗 that got tuple (𝑖, 𝑘) from the first

sorting step and received 𝑣 from the segmented broadcast creates a

tuple (𝑖, 𝑣). Sort these tuples by first component, interpreted as a

location in the Z-order curve of the processors (convert index 𝑖 to

a 2D location on the grid). Now, each processor has read a value

from global memory.

The write step is similar. If processor with index 𝑖 wants to write

a value 𝑣 to cell 𝑘 , it creates a tuple (𝑣, 𝑖, 𝑘). Then, these tuples

are sorted according to the last component. Each processor 𝑖 > 0

inspects its tuple (𝑣 ′, 𝑖, 𝑘 ′) and the tuple (𝑣 ′′, 𝑖 − 1, 𝑘 ′′) of processor
𝑖 − 1. If 𝑘 ′ ≠ 𝑘 ′′ or 𝑖 = 0, then this processors sends the value 𝑣 ′ to
memory cell 𝑘 ′.

Each read/write step takes𝑂 (𝑝√𝑝) energy to sort the tuples, and
𝑂 (𝑝) energy for the segmented broadcast. Since there are at most 2𝑝

accesses to the simulated shared memory, each taking𝑂 (√𝑝 +
√
𝑚)

energy, the total energy of one step is 𝑂 (𝑝√𝑝 + 𝑝
√
𝑚). Summing

over the 𝑂 (𝑇𝑝 ) steps, gives the results. The depth is bottlenecked

by the depth of the sorting, which is 𝑂 (log3 𝑛) for each of the 𝑇𝑝
sequential steps. □

6 COARSE-GRAINED AND HIERARCHICAL
ARCHITECTURES

We defined our model with constant memory and send/receive

operations per processor. Because our model inherently rewards

locality of computation, bounds in terms of constant memory trans-

late into bounds for larger local memories and even to arbitrarily

nested hierarchical architectures.

6.1 Larger Memories
We define an 𝑆-fat spatial computer as a spatial computer where

each processor has 𝑆 local memory and queue sizes and can send

and receive up to 𝑆 messages per time-step.

Lemma 6.1. Consider an algorithm𝐴 that takes 𝐸 energy, 𝐷 depth,
and 𝐷𝑤 wire-depth on a 𝑐-fat spatial computer, for some constant 𝑐 .
On an 𝑆-fat spatial computer, it takes 𝑂 (𝐸/

√
𝑆) energy, 𝐷 depth, and

𝑂 (𝐷𝑤/
√
𝑆) wire-depth to run 𝐴.

Proof. Each 𝑆-fat processor simulates the execution of 𝐴 on a

subgrid of

√︁
𝑆/𝑐 ×

√︁
𝑆/𝑐 of the 𝑐-fat processor. In each time-step,

such an 𝑆-fat processor sends and receives up to 𝑆 messages, 𝑐 for

each of its 𝑆/𝑐 simulated 𝑐-fat processors.

Consider some message 𝑚 sent during the execution of 𝐴 on

the 𝑐-fat processor. If its sender and receiver are simulated on the

same 𝑆-fat processor, no energy is spent to send𝑚. Otherwise, the

distance between the sender and receiver is reduced by a factor at

least

√︁
𝑆/𝑐 . Hence, the overall energy andwire-depth is reduced by a

factor Θ(
√
𝑆). The depth does not increase from the simulation. □

The permutation lower bound and by extension the sorting and

matrix multiplication lower bounds hold analogously:

Lemma 6.2. On an 𝑆-fat processor, permuting ℎ ×𝑤 elements on

an ℎ ×𝑤 subgrid takes Ω
(
max(𝑤,ℎ)2 min(𝑤,ℎ)√

𝑆

)
energy.

Lemma 6.1 and Lemma 6.2 mean that for 𝑆-fat processors, we can

derive matching energy upper and lower bounds for scan, sorting,

rank selection, and Cannon’s algorithm.

6.2 Hierarchical Spatial Computer
Next, we consider the setting of a hierarchical many-core. We show

that our bounds imply congestion bounds in the hierarchical setting,

regardless of the number of levels in the hierarchy. The idea is to

hierarchically group processors into larger tiles. Formally, in a

hierarchical spatial computer with 𝑘 levels, the subgrid is mapped

onto an infinite tree, as follows. The root node at level 0 of the

hierarchy consists of the entire subgrid. Every node in level 𝑖 > 0

(𝑖 < 𝑘) contains a 𝑆𝑖 × 𝑆𝑖 subgrid𝐺 ′
and is connected to the unique

node in level 𝑖 − 1 whose subgrid 𝐺 ′′
contains 𝐺 ′

.

The cost at level 𝑖 is therefore the cost of an 𝑆𝑖 -fat spatial pro-

cessor, i.e., the communication at higher levels in the hierarchy are

treated as local. Then, we get the bounds for each level:

Corollary 6.1. Consider an algorithm 𝐴 that takes 𝐸 energy, 𝐷
depth, and𝐷𝑤 wire-depth. In level 𝑖 of a hierarchical spatial computer,
the algorithm 𝐴 takes 𝑂 (𝐸/

√
𝑆𝑖 ) energy, 𝐷 depth, and 𝑂 (𝐷𝑤/

√
𝑆𝑖 )

wire-depth.

Proof. The proof of Lemma 6.1 applies to all levels in the hier-

archy simultaneously. □

We can bound the number of messages that need to travel large

distances at all levels in the hierarchy, simultaneously:
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Corollary 6.2. Consider an algorithm 𝐴 that takes 𝐸 energy. In
level 𝑖 of a hierarchical spatial computer, algorithm 𝐴 sends at most
𝐸

𝑘
√
𝑆𝑖

messages to processors that have distance 𝑘 .

Proof. Follows from Corollary 6.1 and the observation that at

most a 1/𝑘 fraction of messages can travel 𝑘 times farther than the

average. □

7 CONCLUSION
Cutting-edge parallel architectures require us to reason about the

spatial aspects of communication to obtain the best performance.

We present a novel model of computation suitable for such archi-

tectures, where communication costs are spatially dependent. As

our model abstracts unimportant details of the architecture, we

were able to design energy-optimal and low-depth algorithms for a

wide range of problems. For some algorithms, polynomial energy

improvements are possible compared to a PRAM simulation ap-

proach. The algorithms for sorting and rank-selection are relatively

practical and could enable more efficient statistical evaluations and

sparse computations. We conclude with a list of open problems, in

increasing order of estimated difficulty:

• Sorting with optimal energy and 𝑂 (log2 𝑛) depth.
• Energy-optimal rectangularmatrixmultiplywith depth𝑂 (𝑛).
• Energy-optimal 𝑛 × 𝑛 matrix-matrix multiply with depth

𝑜 (𝑛).
• Energy-optimal rectangular matrix multiply with depth 𝑜 (𝑛).
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