Communication-Centric Optimizations |
Dynamically Detecting Collective Operat|

Timo Schneider and Torsten Hoefler
University of lllinois at Urbana-Champaign

ibuf(l:n) = 11(1: n) implementations in CAF * Runtime of the optimization is linear - building the

call sync all .. : :
ol se y O * The optimized version, where allreduce is global graph requires a Gatherv operation

call sync all() detecteo! and replaced by an MPI call is an order * The optimization overhead is amortized after few
Users express collectives with p2p-messages : 11(1:n) = 1buf(l:n)[1image] of magnitude faster calls of the optimized collective

* Collective not supported by the language e“ﬂ'f 110
 Slower than hand-tuned on some machine ca >yne_d

—>— Optimized (Cray MPI) —q— Optimized Iterations until benefit
CAF linear —A—  Unoptimized —»— Optimization overhead
—&—  CAF Tutorial

Tuned collectives cannot be leveraged!
—+— CAF NPB

call GOAL_Create(g)
if (thisimage() .eqg. 11mage) then
ibuf(l:n) = 11 (1:n)
: . do dst=0, num_procs-1
Compiler transforms this into GOAL code: if (dst .ne. iimage) then

* Pattern expressed as dependency graph GOAL_Send(g,ibuf,n*8,dst) 1000 2000 3000
* Vertices: Send- / Recv operations endif
* Edges: Dependencies between operations end do

C . . : else
g Optimization applied in GOAL _Compile() call GOAL_Recv(g,ii,n*8,1image)

endif | A collective operation can be described by the set
call GOAL_Compile() Detecting Collectives by Pattern Matching of SST tuples it consists of

* Can be used to match tuples to collectives
‘ Build Local Graphs * Collectives have to be matched in the order of

their expressiveness

Allreduce Runtime [s]
Bcast Runtime [ms]
Number of lterations

Number of Processes

Process 0O —

GOAL_Compile() creates a local send 8b at 0x08 recv 8b to Ox14

communication graph for each process D [plee X from proc O Global graph is used solve the dataflow

* Atruntime, buffer addresses are available e Process 2 Detect * Dataflow is expressed in SST Tuples (cf. Single

* Note that there are no dependencies in 0 proc 2 ey b 1o O . Collectives Static Assighment)

this example from proc 0 SST is created by visiting the graph top to bottom

send 8b at 0x18 Process 3 Dataflow Solver: Single Static Transfer Tuples Tuples can be split or merged
to proc 3

SST-Tuple := (dest, destbuf, size, src, srcbuf)

0: send 8b at 0x08 @ 0: send 8b at 0x18 B O: send 8b at 0x10 Split Example with Bruck’s Algorithm

to proc 1 to proc 3 to proc 2

Most optimizations require knowledge process 0 process 1 process 2

of the global communication graph: T E | ... : ...

* Local graphs are gathered Global Communication Graph . 1: recv 8b to Ox14 M 3:recv 8b to Ox42 [l 2: recv 8b to Oxc2 Zend 1b at Ox1
* Dependencies stay intact as they are ==ln from proc 0 from proc 0 from proc 0 to proc 0

rocess local 0: send 8b at Ox08 0: send 8b at 0x18 0: send 8b at 0x10
p to proc 1 ‘o proc 3 to proc 2 (1,0x14,8b,0,0x08)  (2,0xc2,8b,0,0x10)  (2,0xc2,8b,0,0x10) !I.. ..

* Send and receive operations are

linked t ther ( ) i The two elements
INKe ogetner (green arrows) INn 4 i L
5 5 Dataflow <end 2b at 0x0 have different after split:

' |
matching step 1: recv 8b to 0x14 3: recv 8b to 0x42 2: recv 8b to Oxc2 Analysis to proc 2 i (2,0,1,0,0),
from proc O from proc O from proc O (2,1,1,1,1)

1]2[3]4

U.S. DEPARTMENT OF OffICe Of

' EN ERGY Science

| I L L I N O I S Timo Schneider <timos@illinois.edu> “unded by DOE ASCR X-Stack,
j[ Torsten Hoefler <htor@illinois.edu> orogram manager Sonja Sachs

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



