
Optimizing a Conjugate Gradient Solver with

Non-Blocking Collective Operations

Torsten Hoefler a,b,∗ Peter Gottschling a Andrew Lumsdaine a

Wolfgang Rehm b

aIndiana University, Open Systems Lab, Bloomington, IN 47404 USA

bTechnical University of Chemnitz, Department of Computer Science, 09107
Chemnitz, Germany

Abstract

This paper presents a case study that analyzes the suitability and usage of non-
blocking collective operations in parallel applications. As with their point-to-point
counterparts, non-blocking collective operations provide the ability to overlap com-
munication with computation and to avoid unnecessary synchronization. These op-
erations are provided for MPI programs with LibNBC, a portable low-overhead
implementation of non-blocking collective operations built on MPI-1. The straight-
forward applicability of the LibNBC is demonstrated by incorporating non-blocking
collective operations into a parallel conjugate gradient solver. Although only minor
changes are required to use them, non-blocking collective operations allow most of
the communication costs to be hidden and provide performance improvements of
up to 34%. We also show that, because of overlap, there is no significant perfor-
mance difference between Gigabit Ethernet and InfiniBandTM for special cases of
our calculation.

Key words: MPI, non-blocking collective communication, LibNBC, parallel
conjugate gradient solver, communication computation overlap, nearest neighbor
communication

∗ Corresponding author.
Email addresses: htor@cs.indiana.edu (Torsten Hoefler),

pgottsch@cs.indiana.edu (Peter Gottschling), lums@cs.indiana.edu (Andrew
Lumsdaine), rehm@cs.tu-chemnitz.de (Wolfgang Rehm).

Preprint submitted to Elsevier 19 June 2007

1 Introduction

Historically, overlapping communication and computation is a common ap-
proach for scientists to leverage parallelism between processing and communi-
cation units [16]. Applications with overlapped computation and communica-
tion are less latency sensitive and can, up to a certain extent, still achieve good
parallel performance and scalability on high-latency networks. Non-blocking
operations (by which overlap is typically effected) can also help to isolate
applications from process skew or network jitter—effects which often have
a substantial negative impact on the scalability of parallel applications [22].
The ability to ignore process skew and hide message transmission latencies
can be especially beneficial on cluster computers (also known as Networks of
Workstations, NOW) and on Grid-based systems.

The Message Passing Interface (MPI) standard [18,19] is currently the de-
facto standard for parallel computing and many scientific programs use MPI
as their communication layer. MPI-1 is able to overlap communication and
computation for point-to-point messages (e.g., with MPI ISEND, MPI IRECV).
Many applications also benefit from using MPI collective operations, because
they are often optimized for the underlying hardware (e.g., [10,17]) and de-
liver much better performance than equivalent point-to-point communication
schemes. Another advantage of collective communication is the programming
abstraction it provides and the resulting ease of use for parallel programs. A
survey by Gorlatch about reasons to use collective communication recently
appeared in [6].

Scientific computing applications are particularly well-suited to benefit from
the more abstract expression of parallel communication afforded by collective
operations. Moreover, many algorithms in scientific computing, e.g., linear
solvers, provide a high potential for overlapping communication and com-
putation. In order to combine the advantages of this overlapping with the
advantages of collective communication, we introduce non-blocking collective
operations as a natural addition to the MPI-1 standard and demonstrate the
performance benefits with a parallel conjugate gradient solver. A theoretical
discussion of possible benefits is presented in [12] and shows very high opti-
mization potential.

1.1 Related Work

Although, the conventional wisdom has been that non-blocking collective op-
erations could be emulated or implemented by using threads and blocking op-
erations, this approach has not been proven to be useful in practice. Emulating

2

non-blocking operations in this way is contrary to the basic philosophy of MPI
because of the programming burden it imposes on the user (the functionality
is better provided by a functional interface). Implementing non-blocking col-
lectives in this way (where the threading machinery is hidden from the user
by the library) also has disadvantages, which we discuss in Section 2.

The original idea to provide non-blocking collective operations grew out of
discussions for the MPI-2 standard. The MPI Forum defined split collectives,
which were not standardized in MPI-2, but were added to the MPI-2 Journal of
Development (JoD [20]). However, these operations are too limited to be use-
ful for scientists. IBM extended the interface and implemented non-blocking
collectives as part of their Parallel Environment, but they dropped the support
for them in the latest version because they were not part of the MPI stan-
dard and were only rarely used by scientists who preferred portability. The
MPI/RT standard [15] defines all operations, including collective operations,
in a non-blocking manner. Kale et al. implemented a non-blocking all-to-all
communication as part of the CHARM++ framework [14]. To the best of the
authors’ knowledge, there are neither explicit studies on performance gain nor
optimized implementations of non-blocking collective operations available.

We discuss our high-performance and low-overhead implementation and show
its advantages for a parallel three-dimensional conjugate gradient solver. The
following section discusses implementation issues of LibNBC and presents nec-
essary details about its working principles. Section 3 describes the general
applicability of non-blocking collective communication to applications in sci-
entific computing, presents a specific example code and discusses performance
benefits. The work is concluded in Section 4 and directions of future work are
discussed.

2 Implementing Non-Blocking Collective Operations

Our implementation aims mainly at portability, low overhead, and ease of use.
We built the first prototype library on top of non-blocking point-to-point oper-
ations defined in the MPI-1 standard. Therefore, although we cannot leverage
special hardware features, the protoype library is portable to all MPI-1 ca-
pable parallel computers. Furthermore, because we implemented optimized
algorithms for all collective operations, we deliver approximately the same
performance as the hardware independent blocking collective operations in
MPICH2 1.0.2 [21] and Open MPI 1.0 [5] if we use the non-blocking collec-
tives in a blocking manner.

A second way to implement non-blocking collective operations would be to
use blocking collective operations in a separate thread. However, we decided

3

1 MPI_Request req;

2 int sbuf1[SIZE], rbuf1[SIZE], buf2[SIZE];

3
4 /* compute sbuf1 */

5 compute(sbuf1, SIZE);

6 /* start non-blocking allreduce of sbuf1 */

7 MPI_Iallreduce(sbuf1, rbuf1, SIZE, MPI_INT, MPI_SUM,

8 MPI_COMM_WORLD, &req);

9 /* compute buf2 (independent of buf1) */

10 compute(buf2, SIZE);

11 MPI_Wait(&req, &stat);

12 /* use data in rbuf1 */

13 evaluate(rbuf1, buf2, SIZE);

Listing 1. Pseudo-code for a non-blocking reduction

to base our implementation on non-blocking point-to-point messages because
using the threaded version would require an MPI-2 compliant library with
full MPI THREAD MULTIPLE support and thus lower the portability. Further-
more, a separate thread would keep the processing units busy and incur addi-
tional overhead. A detailed analysis and comparison of those two techniques
is subject of future work and preliminary results show significant advantages
in using non-blocking point-to-point messages.

The interface to the calls is very similar to the blocking MPI collective op-
erations. However, to ensure non-blocking operations, a handler is returned
which is comparable to an MPI REQUEST. A pseudo-code in Listing 1 shows
a non-blocking reduction call as an example. The communication of the data
in sbuf1 is started in the background (line 7) and independent data is com-
puted concurrently in buf2 (line 10). The result of the communication can
only be used after MPI WAIT (line 11) returns success. In the ideal case if the
computation of buf2 (line 10) takes at least as long as the communication
in the background, most of the communication latency can be ignored. The
detailed behavior of all non-blocking collective operations and the application
programming interface (API) is defined in [11].

The following subsections provide an overview of the implementation of our
non-blocking collectives (NBC) library, which offers asynchronous collective
support on top of MPI-1. The only difference between the definition in List-
ing 1 and our earlier publication [11] is that all calls and constants are prefixed
with NBC instead of MPI to avoid confusion with MPI standardized opera-
tions.

4

2.1 The Scheduling Engine

To ease implementation, we propose a general framework to support all op-
erations in a non-blocking manner. This framework, our scheduling engine,
builds and executes a so called “schedule” to perform collective operations.
Each collective operation, defined in the MPI standard, can be expressed as a
row of sends or receives between ranks of a specific communicator and rank-
local operations. These steps can be arranged into r communication rounds to
build a communicator-specific schedule for each rank. Each round may consist
of one or more operations which have to be independent and are executed
simultaneously. Operations in different rounds depend on each other, in a way
that operations on round n can only be started after all operations in round
n − 1 have been finished ∀ 1 ≤ n ≤ r.

2.2 Building a Schedule

The schedule defines all actions that are necessary to perform the collective
operation for a specific rank and a specific communicator. A rank’s schedule
is specific to each communicator and MPI argument set. It is designed to be
reusable if it is saved in association to the communicator and the arguments.

A schedule consists of actions (e.g., send, receive) and rounds. It is laid out
as a contiguous array in memory to be cache friendly. The memory layout of
the simplified example schedule for rank 0, for an MPI BARRIER implemented
with the 2-way dissemination principle on a 9-node communicator, is shown
in Fig. 1.

The two-way dissemination barrier (a special case of the n-way dissemination
barrier, described in [13]) on P nodes uses log3P rounds to complete. Every
node sends and receives two synchronizing messages each round. Rank p’s two
peers to send to (speeri) and to receive from (rpeeri) ∀ 1 ≤ i ≤ 2 in round r
(0 ≤ r < log3 P) are determined as follows:

speeri =(p + i · (n + 1)r) mod P

rpeeri =(p − i · (n + 1)r) mod P

This schedule has two send operations to rank 1 and 2 and two receive oper-
ations from rank 7 and 8 in the first round. The round is ended by the end

flag. The second round issues two sends to rank 3 and 6 and two receives
from rank 6 and 3. The dissemination barrier is finished after those opera-
tions. User-calls to NBC TEST or NBC WAIT do now return NBC OK instead

5

of NBC CONTINUE.

recv from 6endsend to 1 send to 2 recv from 7 recv from 8 send to 3 send to 6 recv from 3

Fig. 1. Memory Layout of a schedule at rank 0, implementing a 2-way Dissemination
Barrier between 9 nodes

This design benefits from several network properties. Having four outstanding
requests in each round enables efficient overlap of communication with com-
munication (cf. LogGP [1], [3]) and maximum asynchronous progress. All state
transitions (proceeding from one round to the next) are fully local operations,
i.e., there is no additional communication necessary to execute a schedule.

2.3 Schedule Execution

The schedule array in Fig. 1 consists of eight operations in two rounds. The
schedule represents all necessary operations to perform an MPI BARRIER on
rank 0 out of 9. The non-blocking execution of the schedule begins when
the user calls NBC IBARRIER(comm, handle). The first call to NBC IBARRIER
builds the schedule (if not already done), starts all operations of the first round
in a non-blocking manner, initializes the handle, and returns immediately to
the user. The user can perform any computation while the operations are
processed in the background. The amount of progress made in the background
depends on the actual MPI implementation. The current implementation of
the NBC library is runnable in environments which offer no thread support.
This means that the user should progress the operation manually by calling
NBC TEST(handle). NBC TEST checks all pending operations for completion
and proceeds to the next round if the current round is completed. It returns
NBC OK if the operation (all rounds) is finished, otherwise NBC CONTINUE
to indicate that the operation is still running.

The following section explains the applicability of the new interface to the
application class of iterative linear solvers.

3 Optimization of Linear Solvers

Accelerating parallel applications in scientific computing is a main topic of
many research projects. Non-blocking collective communication can be an im-
portant contribution to it and we will demonstrate this on a selected case
study.

Iterative linear solvers are important components of most applications in SC.

6

They consume, with very few exceptions, a significant part of the overall run-
time of typical applications. In many cases, they even dominate the overall
execution time of parallel code. Reducing the computational needs of linear
solvers will thus be a huge benefit for the whole scientific community.

Despite the very different algorithms and varying implementations of many
of them, one common operation is the multiplication of very large and sparse
matrices with vectors. Assuming an appropriate distribution of the matrix,
large parts of the computation can be realized on local data and the commu-
nication of required remote data — also referred to as inner boundaries or
halo — can be overlapped with the local part of the matrix vector product.

3.1 Case Study: 3-Dimensional Poisson Equation

For the sake of simplicity, we use the well-known Poisson equation with Dirich-
let boundary conditions, e.g., [8]

−∆u = 0 in Ω = (0, 1) × (0, 1) × (0, 1), (1)

u = 1 on Γ. (2)

The domain Ω is equidistantly discretized. Each dimension is split into N + 1
intervals of size h = 1/(N + 1). Within Ω one defines n = N3 grid points

G = {(x1, x2, x3)|∀i, j, k ∈ N, 0 < i, j, k ≤ N : x1 = ih, x2 = jh, x3 = kh}.

Thus, each point in G can be represented by a triple of indices (i, j, k) and we
denote u(ih, jh, kh) as ui,j,k. Lexicographical order allows for storing the values
of the three-dimensional domain into a one-dimensional array. For distinction
we use a typewriter font for the memory representation and start indexing
from zero as in C/C++

ui,j,k ≡ u[(i− 1) + (j− 1) ∗ N + (k− 1) ∗ N2] ∀0 < i, j, k ≤ N. (3)

The differential operator −∆ is discretized for each x ∈ G with the standard
7-point stencil

−∆hui,j,k =
6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1

h2
.

Setting this equation equal to zero for all x ∈ G provides an approximation of
(1) on Ω. Considering that the function u is given on the boundary, the cor-
responding terms can be transferred to the right hand side, e.g., for −∆hu1,3,1

7

the equation reads

6u1,3,1 − u2,3,1 − u1,2,1 − u1,4,1 − u1,3,2

h2
=

u0,3,1 + u1,3,0

h2
=

2

h2
.

The linear operator −∆h can be represented as a sparse matrix in R
n×n using

the memory layout from (3), confer e.g. [8] for the 2D case.

3.2 Domain Decomposition

The grid G is partitioned into p sub-grids G1, . . . , Gp where p is the number
of processors. The processors are arranged in a non-periodic Cartesian grid
p1 × p2 × p3 with p = p1 · p2 · p3, provided by MPI DIMS CREATE. In case that
N is divisible by pi∀i the local grids on each processor have size N/p1×N/p2×
N/p3, otherwise the local grids are such that the whole grid is partitioned and
the sizes along each dimension vary at most by one.

Each sub-grid has 3 to 6 adjoint sub-grids if all pi > 1. Two processors P and
P ′ storing adjoint sub-grids are neighbors, written as the relation Nb(P, P ′).
This neighborhood can be characterized by the processors’ Cartesian coordi-
nates P ≡ (P1, P2, P3) and P ′ ≡ (P ′

1, P
′

2, P
′

3)

Nb(P, P ′) iff |P1 − P ′

1| + |P2 − P ′

2| + |P3 − P ′

3| = 1. (4)

Fig. 2 shows the partition of G into sub-grids and necessary communication.

Fig. 2. Processor Grid

3.3 Design and Optimization of the CG Solver

The conjugate gradient method (CG) by Hestenes and Stiefel [9] is a widely
used iterative solver for systems of linear equations when the matrix is sym-
metric and positive definite. To provide a simple base of comparison, we refrain
from preconditioning [8] and from aggressive performance tuning [7]. However,
the local part of the dot product is unrolled using multiple temporaries, the

8

1 while (sqrt(gamma) > epsilon * error_0) {

2 if (iteration > 1)

3 q = r + gamma / gamma_old * q;

4 v = A * q;

5 delta = dot(v, q);

6 alpha = delta / gamma;

7 x = x + alpha * q;

8 r = r - alpha * v;

9 gamma_old = gamma;

10 gamma = dot(r, r);

11 iteration = iteration + 1;

12 }

Listing 2. Pseudo-code for CG method

two vector updates are fused in one loop, and the number of branches is min-
imized in order to provide a high-performance base case. The parallelization
of CG in the form of Listing 2 is straight-forward by distributing the matrix
and vectors and computing the vector operations and the contained matrix
vector product in parallel.

Neglecting the operations outside the iteration, the scalar operations in List-
ing 2 — line 1, 2, 6, 9, and 11 — and part of the vector operations — line 3,
7, and 8 — are completely local. The dot products in line 5 and 10 require
communication in order to combine local results with MPI ALLREDUCE to
the global value. Unfortunately, computational dependencies avoid overlap-
ping these reductions. Therefore, the whole potential to save communication
time in a CG method lies in the matrix vector product — line 4 of Listing 2.

3.4 Parallel Matrix Vector Product

Due to the regular shape of the matrix, it is not necessary to store the matrix
explicitly. Instead the projection u 7→ −∆u is computed. In the distributed
case p > 1, values on remote grid points need to be communicated in order to
complete the multiplication. In our case study, the data exchange is limited to
values on outside planes of the sub-grids in Fig. 2 unless the plane is adjoint
to the boundary Γ. Therefore, processors must send and receive up to six
messages to their neighbors according to (4) where the size of the message is
given by the elements in the corresponding outer plane.

However, most operations can be already executed with locally available data
during communication as shown in Listing 3. The first command copies the
values of v in needed by other processors into the send buffers. Then an all-
to-all communication is launched, which can be a blocking operation using

9

1 void matrix_vector_mult(struct array_3d *v_in,

2 struct array_3d *v_out,

3 struct comm_data_t *comm_data)

4 {

5 fill_buffers(v_in, &comm_data->send_buffers);

6 start_send_boundaries(comm_data);

7 volume_mult(v_in, v_out, comm_data);

8
9 finish_send_boundaries(comm_data);

10 mult_boundaries(v_out, &comm_data->recv_buffers);

11 }

Listing 3. Implementation of parallel matrix vector product

1 void start_send_boundaries(struct comm_data_t *comm_data)

2 {

3 /* Compute displacements */

4 if (comm_data->non_blocking)

5 NBC_Ialltoallv(sbuf.start, scounts, sdispls, MPI_DOUBLE,

6 rbuf.start, rcounts, rdispls, MPI_DOUBLE,

7 processor_grid, comm_data->handle);

8 else {

9 MPI_Alltoallv(sbuf.start, scounts, sdispls, MPI_DOUBLE,

10 rbuf.start, rcounts, rdispls, MPI_DOUBLE, processor_grid);

11 }

Listing 4. Code for starting communication

1 void finish_send_boundaries(struct comm_data_t *comm_data)

2 {

3 if (comm_data->non_blocking)

4 NBC_Wait(comm_data->handle);

5 gt2 = MPI_Wtime();

6 }

Listing 5. Code for finishing communication

MPI ALLTOALLV or a non-blocking operation using NBC IALLTOALLV, List-
ing 4. The last function has the same arguments as the first one with an addi-
tional NBC HANDLE that is used to identify the operation later. The command
volume mult computes the local part of the matrix-vector product and in case
of non-blocking communication, NBC TEST is called periodically with the
handle returned by NBC IALLTOALLV in order to progress the non-blocking
operations, cf. Section 2.1. Before using remote data in mult boundaries, the
completion of NBC IALLTOALLV is checked in finish send boundaries with
an NBC WAIT on the NBC HANDLE, Listing 5.

10

3.5 Benchmark Results

We performed a CG calculation on a grid of 800 × 800 × 800 points until the
residual was reduced by a factor of 100, which took 218 iterations for each
run. This weak termination criterion was chosen for practical reasons in order
to allow more tests on the cluster. We verified on selected tests with much
stronger termination criteria that longer executions have the same relative
behavior. The studies were conducted on the odin cluster available at the
Indiana University which consists of 128 dual 2 GHz Opteron 246 nodes con-
nected with flat InfiniBandTM and Gigabit Ethernet networks. Fig. 3 shows
the benchmark results using Gigabit Ethernet and InfiniBandTM up to 96
nodes. The presented speedups are relative single-processor run without any
communication. We see that the usage of our NBC library resulted in a rea-

 0

 20

 40

 60

 80

 100

 8 16 24 32 40 48 56 64 72 80 88 96

S
p

e
e

d
u

p

Number of CPUs

blocking
non-blocking

(a) Gigabit Ethernet

 0

 20

 40

 60

 80

 100

 8 16 24 32 40 48 56 64 72 80 88 96

S
p

e
e

d
u

p

Number of CPUs

blocking
non-blocking

(b) InfiniBand

Fig. 3. Parallel speedup for different network interconnects.

sonable performance gain for nearly all node counts. The explicit performance
advantage is shown in Fig. 4. The performance loss at 8 processors is caused
by relatively high effort to test the progress of communication. Finding sim-
ple rules to adapt the testing overhead to communication needs is subject to
ongoing research.

The overall results show that for both networks, InfiniBandTM and Gigabit
Ethernet, nearly all communication can be overlapped and the parallel execu-
tion times are similar. The factor of 10 in bandwidth and the big difference in
the latency of both interconnects does not impact the run-time significantly,
even if the application has high communication needs. The partially super-
linear speedup is due to cache effects in the inner part of the matrix vector
product.

11

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 8 16 24 32 40 48 56 64 72 80 88 96

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Number of CPUs

InfiniBand
Gigabit Ethernet

Fig. 4. Speedup of the non-blocking compared to the blocking implementation

3.6 Comparison to non-blocking Point-to-Point Messaging

Due to the our design, non-blocking point-to-point communication would per-
form almost equally while requiring the user to program the management for
multiple communication handlers including the progress enforcement. The im-
plementation of NBC ALLTOALLV in LibNBC is not optimized yet and uses a
linear set of non-blocking point-to-point operations (like the “manual” imple-
mentation would do). However, using collective communication simplifies pro-
gramming, increases maintainability and enables portable performance tun-
ing. Possible optimizations for ALLTOALLV calls include the exploitation of
network concurrency (cf. [25]), optimization for special parallel systems like
BlueGene/L (cf. [2]) or automatically tuning the communication plans (cf. [4]).

We are aware that the (slow but steady) linear growing of the displacement and
count arrays with the communicator size can introduce scalability problems on
very large machines (e.g. BlueGene/L). However, the better programmability,
high optimization potential, and clearer code-structure (cf. [6]) outweigh those
concerns.

Although the arguments in the previous paragraphs favor ALLTOALLV over
point-to-point communication, we find that neither of them is suitable at a
large scale for the application at hand. MPI provides a creation of Carte-
sian grid communicators with MPI CART CREATE and the topology of these
communicators matches perfectly with the regular n-dimensional domain de-
composition of cuboidal spaces like the one considered in our application. We
believe that an operation like MPI CART NEIGHBOR ALLTOALL could facil-
itate the programming of nearest-neighbor communication considerably over
both ALLTOALLV and point-to-point implementations.

Furthermore, the information of the Cartesian grid’s periodicity can be used to
block out communications at the grid’s outer boundaries. For instance, in our

12

3D-grid, sub-domains in the center have 6 nearest neighbors and sub-domains
at the corners only 3. Thus, it can be determined from the communicator, with
how many neighbors each processor communicates. In addition, the considera-
tion of the grid topology (opposed to ALLTOALL) enables fixed-size messages
in many cases, for instance exchanging equally sized squared surfaces of cubic
sub-domains. Last but not least, a collective communication based on a regu-
lar grid instead of an ALLTOALL or a point-to-point exchange provides the
potential of optimizing the internal schedule toward the underlying network.

3.7 Optimization Impact on Other Linear Solvers

The approach described above can be used to optimize other linear solvers
in addition to CG. We discuss some ideas for the application of non-blocking
collective operations to different algorithms.

As with CG, other Krylov sub-space methods, such as GMRES [23], CG
Squared [24], or BI-CGStab [27], have dependencies that similarly limit the
potential of overlapping communication and computation for their reduction
operations. On the other hand, the preconditioners that are typically used
in conjunction with Krylov sub-space iterations often consist of operations
that are similar to matrix-vector product, e.g., incomplete LU or Cholesky
factorization, and thus have the potential of overlapping.

Classical iterative solvers — Richardson iteration, Jacobi, and Gauß-Seidel
relaxation — consist only of operations similar to matrix-vector product. Such
iterations therefore offer the potential for significant overlap in contrast to
CG and related Krylov sub-space methods that require reduction operations.
Unfortunately, due to the slow convergence of these methods, their importance
as iterative solvers is limited.

The classical methods are important, however, as “smoothers” in multigrid
methods (MG) [26]. In addition to the smoothing process within each level
of the multigrid, corresponding sub-grids of adjoint levels are related to each
other by interpolation operators. These operators involve communication to
interpolate values close to sub-grid boundaries. The amount of communica-
tion increases for higher orders of interpolation. Grid values inside the sub-
grids can be interpolated with local data — assuming the grids are similarly
decomposed — so that the interpolation operators allow for communication
overlapping. Particulalry on smaller grids, communication becomes a severe
bottleneck and non-blocking communication provides the potential for signifi-
cant improvements. As multigrid methods are solvers with minimal numerical
complexity, they are extremely important in scientific computing and we will
investigate them in detail in future work.

13

4 Conclusions and Future Work

We demonstrated the easy use of the NBC library and the application principle
of non-blocking collectives to a class of application kernels. We were able
to improve the parallel application running time by up to 34% with minor
changes to the application. The CG solver source code and the NBC library
are available at:
http://www.unixer.de/NBC/.

Future work includes an optimized MPI-2 implementation of the NBC library,
hardware optimized non-blocking collective operations, and the analysis of
more applications. The possibility of asynchronous progress, which removes
the need for testing, with a separate thread will also be investigated. However,
this may have other implications because the user can not control when the
library gets called and possibly wipes out the CPU cache.

4.1 Acknowledgments

Pro Siobhan. The authors want to thank Jeff Squyres, George Bosilca and
Edgar Gabriel for helpful discussions. This work was supported by a grant from
the Lilly Endowment and National Science Foundation grant EIA-0202048.

References

[1] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
LogGP: Incorporating Long Messages into the LogP Model. Journal of Parallel
and Distributed Computing, 44(1):71–79, 1995.

[2] George Almasi, Philip Heidelberger, Charles J. Archer, Xavier Martorell,
C. Chris Erway, Jose E. Moreira, B. Steinmacher-Burow, and Yili Zheng.
Optimization of MPI collective communication on BlueGene/L systems. In ICS
’05: Proceedings of the 19th annual international conference on Supercomputing,
pages 253–262, New York, NY, USA, 2005. ACM Press.

[3] Christian Bell, Dan Bonachea, Yannick Cote, Jason Duell, Paul Hargrove,
Parry Husbands, Costin Iancu, Michael Welcome, and Katherine Yelick. An
Evaluation of Current High-Performance Networks. In IPDPS ’03: Proceedings
of the 17th International Symposium on Parallel and Distributed Processing,
page 28.1, Washington, DC, USA, 2003. IEEE Computer Society.

[4] Ahmad Faraj and Xin Yuan. Automatic generation and tuning of MPI
collective communication routines. In ICS ’05: Proceedings of the 19th annual

14

international conference on Supercomputing, pages 393–402, New York, NY,
USA, 2005. ACM Press.

[5] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.

[6] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of
message passing. ACM Trans. Program. Lang. Syst., 26(1):47–56, 2004.

[7] Peter Gottschling and Wolfgang E. Nagel. An efficient parallel linear solver
with a cascadic conjugate gradient method. In EuroPar 2000, number 1900 in
LNCS, 2000.

[8] Wolfgang Hackbusch. Iterative solultion of large sparse systems of equations.
Springer, 1994.

[9] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Natl. Bur. Stand., 49:409–436, 1952.

[10] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Adding Low-Cost Hardware
Barrier Support to Small Commodity Clusters. In Proceedings of 19th
International Conference on Architecture and Computing Systems - ARCS’06,
pages 343–250, 3 2006.

[11] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine, and W. Rehm. Non-
Blocking Collective Operations for MPI-2. Technical report, Open Systems Lab,
Indiana University, 08 2006.

[12] T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine. A Case for Non-
Blocking Collective Operations. In Frontiers of High Performance Computing
and Networking - ISPA 2006 Workshops, volume 4331/2006, pages 155–164.
Springer Berlin / Heidelberg, 12 2006.

[13] Torsten Hoefler, Torsten Mehlan, Frank Mietke, and Wolfgang Rehm. Fast
Barrier Synchronization for InfiniBand. In Proceedings, 20th International
Parallel and Distributed Processing Symposium IPDPS 2006 (CAC 06), April
2006.

[14] L. V. Kale, Sameer Kumar, and Krishnan Vardarajan. A Framework for
Collective Personalized Communication. In Proceedings of IPDPS’03, Nice,
France, April 2003.

[15] Arkady Kanevsky, Anthony Skjellum, and Anna Rounbehler. MPI/RT - an
emerging standard for high-performance real-time systems. In HICSS (3), pages
157–166, 1998.

[16] G. Liu and T.S. Abdelrahman. Computation-communication overlap on
network-of-workstation multiprocessors. In Proc. of the Int’l Conference on

15

Parallel and Distributed Processing Techniques and Applications, pages 1635–
1642, July 1998.

[17] J. Liu, A. Mamidala, and D. Panda. Fast and Scalable MPI-Level Broadcast
using InfiniBand’s Hardware Multicast Support. Technical report, OSU-CISRC-
10/03-TR57, 2003.

[18] Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
1995.

[19] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. Technical Report, University of Tennessee, Knoxville, 1997.

[20] Message Passing Interface Forum. MPI-2 Journal of Development, July 1997.

[21] MPICH2 Developers. http://www-unix.mcs.anl.gov/mpi/mpich2/, 2006.

[22] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the 8, 192
Processors of ASCI Q. In Proceedings of the ACM/IEEE SC2003 Conference on
High Performance Networking and Computing, 15-21 November 2003, Phoenix,
AZ, USA, CD-Rom, page 55. ACM, 2003.

[23] Y. Saad and M.H. Schultz. GMRES: A generalized minimum residual algorithm
for solving nonsymmetric linear systems. 7(3):856–869, July 1986.

[24] Peter Sonnefeld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM Journal of Scientific and Statistical Computing, 10:36–52, 1989.

[25] Vinod Tipparaju and Jarek Nieplocha. Optimizing all-to-all collective
communication by exploiting concurrency in modern networks. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 46,
Washington, DC, USA, 2005. IEEE Computer Society.

[26] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid.
Academic Press, 2000.

[27] Henk van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for for the solution of nonsymmetric linear systems. 13:631–644, 1992.

16

