
A Survey of Barrier Algorithms for Coarse
Grained Supercomputers

Technical University of Chemnitz

Torsten Hoefler, Torsten Mehlan, Frank Mietke, Wolfgang Rehm
fhtor, tome, mief, rehmg@informatik.tu-chemnitz.de

Abstract

There are several different algorithms available to perform a synchronization of multiple processors.
Some of them support only shared memory architectures or very fine grained supercomputers. This
work gives an overview about all currently known algorithms which are suitable for distributed
shared memory architectures and message passing based computer systems (loosely coupled or
coarse grained supercomputers). No absolute decision can be made for choosing a barrier algorithm
for a machine. Several architectural aspects have to be taken into account. The overview about
known barrier algorithms given in this work is mostly targeted to implementors of libraries
supporting collective communication (such as MPI).

Contents

1 Introduction 2
1.1 Related Work . 2
1.2 Document Organization . 2

2 Algorithms 2
2.1 Algorithms Performing Phase 3 . 2

2.1.1 Central Counter . 3
2.1.2 Combining Tree . 4
2.1.3 Tournament . 7
2.1.4 f-way Tournament . 8
2.1.5 MCS . 9
2.1.6 BST . 10

2.2 Algorithms Omitting Phase 3 . 13
2.2.1 Butterfly . 13
2.2.2 Pairwise Exchange With Recursive Doubling 14
2.2.3 Dissemination . 16

A Appendix 18
A.1 Pseudocode Semantics . 18

A.1.1 General Constructs . 18
A.1.2 Conditional Constructs . 19
A.1.3 Loops . 20

Algorithms for Barrier Synchronization

1 Introduction

Several barrier algorithms are currently available. To make a proper decision which to take or to
improve for reaching the best performance with InfiniBandTMall of them have to be investigated.
This short paper is intended to give an overview about all published algorithms. All Algorithms
are listed in Chapter 2. Each description is devided into two parts, first the description and second
the conclusion. The description gives a slight idea about the working principle for better clarity
and proposes a reference to the original papers for further information.

The best way to understand each algorithm is to read the description in combination with the
given graphical representation. To gain further knowledge about the algorithms especially on
message passing based systems, the reader is encouraged to retrace the proposed pseudo-code.

1.1 Related Work

After careful research only one paper which compares more than two different barrier algorithms
for their suitability for a special system was found. This paper [1] is for the thread based shared
memory model in Java. Thus it analyzes the behavior of the different algorithms only for the
shared memory approach. However, this work expands the comparison regarding to the inves-
tigated algorithms and to the more general message passing model. There are also some papers
about general barrier techniques for special machine architectures [2].

1.2 Document Organization

This document follows the usual rules for scientific articles. The self-defined pseudo-language
which is used to describe the algorithms in detail is explained in the appendix (A.1).

2 Algorithms

This chapter introduces all currently known barrier algorithms. Each algorithm can be split up
logically into three phases. The algorithm is initializated in phase 1 (e.g. reserving shared ob-
jects or calculating ranks). So it has to be done only once during initialization or reconfiguration
(processors enter or leave) of each communicator. Phase 2, also called ”Check-in-Phase” has to be
done on each node every time when it calls MPI Barrier. All nodes communicate with each other
until one or all nodes know that every node reached it’s MPI Barrier call. A barrier-identifier is
often used to distinct between different MPI Barrier calls to avoid race conditions when one pro-
cessor enters the next barrier before all other processors left the last barrier - this is called x in the
following chapter. Each barrier number is used once per communicator and incremented for each
barrier starting initially with 1. The third and last phase can be referred as ”Notification-Phase”
and is only needed when not all processors know that the barrier is reached by all other proces-
sors. The typical case is that one processor knows the barrier is reached by all and it has to notify
all remaining processors. The difference in phase 3 leads to a distinction between two types of
algorithms. The first type performs phase 3 as described above (see Section 2.1 on page 2) and the
second type omittes it completely (see Section 2.2 on page 13).

2.1 Algorithms Performing Phase 3

Phase 3, as described in Section 2 on page 2 can efficiently be implemented as a broadcast (e.g.
MPI Bcast). This operation could especially benefit from hardware broad- or multicast capabil-
ities which perform (ideally) in O(1). If this is not capable with the underlying architecture1,

1regardless if it’s provided by hardware or software

2

Algorithms for Barrier Synchronization

standard bcast algorithms could be used, which usually scale with O(log2(n)) for 1 byte mes-
sages. The time which is necessary to perform a broadcast from one to n nodes is modelled as
tbc(n) regardless of the implementation and architectural details mentioned above.

2.1.1 Central Counter

2.1.1.1 Description
This algorithm is quite simple and straightforward. But because of it’s obvious simplicity and
the naive prove for correctness it is implemented quite often. Especially the atomic ”fetch-and-
�”2 Operation is frequently mentioned related to this barrier. This approach is investigated for
the fetch-and-increment3operation in [4] and [5]. One node holds an integer value which is used
as central barrier counter. This integer starts with 0 and is increased by each node once (after it
entered the barrier) until the node count p is reached. The last node sends a message to all other
nodes to wake them up.

This barrier consists of the two parts counting and notification. Both parts can be optimized in-
dependently. Optimized algorithms for counting and broadcasting a message are evaluated later.
We assume the easiest case in the following pseudo-code (see listing 1) and graphical representa-
tion (see figure 1).

Figure 1: a central counter barrier between 6 nodes

2.1.1.2 Conclusion
As the algorithm splits up into two phases for each MPI Barrier call, each phase is analyzed apart.
Phase one is critical, because the shared counter is altered by each node. This memory location
is called a hot-spot (see [3]). O(p � 1) competing network transfers are needed to implement
the counter. These operations have to be atomic on the target to prevent lost-update problems,
resulting in deadlocks. Phase two is also critical, because one node has to inform all other nodes.
Regarding to 2.1, the possibilities to perform this broadcast are not mentioned here. Thus, the
overall amount of competing network operations can be seen as (O(p � 1 + tbc(n � 1)). The
memory usage per node is constant with O(1) byte per node.

2”fetch-and-�” is a conceptional term for a collection of atomic operations which change and return a single value in
memory - e.g. fetch-and-add, fetch-and-swap, fetch-and-inc, ...

3the fetch-and-increment operation takes a value to increment from it’s caller, increments it’s memory value and returns
the new value to the caller (some implementations may return the value before incrementing)

3

Algorithms for Barrier Synchronization

Listing 1: Central Counter in Pseudo-Code

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id

5 / / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
s e t x = 0 / / t h e b a r r i e r c o u n t e r
i f rank == 0 then

/ / i t ’ s my c o u n t e r
reserve c t r with 1 e n t r i e s as shared

10 s e t c t r = 1
e lse

reserve f l a g with 1 e n t r i e s as shared
s e t f l a g = 0

ifend
15

/ / p h a s e 2 / 3 � c e n t r a l b a r r i e r
s e t x = x + 1 ;
i f rank == 0 then

wait u n t i l c t r == p
20 e lse

s e t l o c a l c t r = fe tch and increment c t r on node 0
i f l o c a l c t r == p then

s e t f l a g in a l l nodes to x
ifend

25

wait u n t i l f l a g >= x
ifend

2.1.2 Combining Tree

2.1.2.1 Description
The combining tree barrier was introduced by Yew, Tzeng and Lawrie in [7]. It uses a tree to
speed up the central counter barrier. It divides the nodes into subgroups with n members, which
synchronize among each other with a simple shared counter. Every first node of each group
spins4 its local counter which is shared to all others until all nodes reach the barrier (counter ==
n). When all nodes in the subgroup reached the barrier, all first nodes form a new group and
synchronize among each other. This is repeated until only one group is left and has finished the
synchronization. The first node informs all other nodes about the barrier end. Yew reported a
group-count (n) of 4 to achieve the best results. A graphical example as well as pseudocode for
this algorithm can be found in figure 2 and listing 2.

2.1.2.2 Conclusion
The combining tree barrier reduces hot spots in memory and network contention. The number of
required steps is naively seen lowered to O(logn(p) + tbc(n))

5 (the more correct equation will be
given after modelling the target InfiniBandTMnetwork). O(2) byte memory is used per node.

4check the counter frequently
5this equation is only valid for a fan-out of n - e.g. in a mesh topology, it has to be seen as a naive approximation for

all other cases

4

Algorithms for Barrier Synchronization

Figure 2: a combining tree barrier between 6 nodes

5

Algorithms for Barrier Synchronization

Listing 2: Pseudo Code for Combining Tree Algorithm

s e t p = number of p a r t i c i p a t i n g processors
s e t n = nodes per group / / p a r a m e t e r
s e t rank = my l o c a l id

5 / / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
s e t x = 0 / / t h e b a r r i e r c o u n t e r

reserve c t r with 1 e n t r i e s as shared
s e t c t r = 1

10 reserve f l a g with 1 e n t r i e s as shared
s e t f l a g = 0

s e t round = 0 / / a c t u a l round
s e t re lnodeid = 0 / / r e l a t i v e n o d e i d (on ly a c t i v e nodes)

15

/ / p h a s e 2 � b a r r i e r
s e t x = x + 1 ;
repeat

s e t round = round + 1
20 s e t re lnodeid = rank / (n ˆ (round�1))

s e t grpnum = relnodeid div n / / group number?
s e t grprank = relnodeid mod n / / my rank in group

/ / I am out o f t h e game , when I have no n a t u r a l number as r e l n o d e i d
25 i f round (re lnodeid) != relnodeid then

wait u n t i l f l a g >= x
ifend

i f grprank == 0 then
30 wait u n t i l c t r == n

e lse
s e t c t r = fe tch and increment c t r on node rank�grprank�n ˆ (round�1)
wait u n t i l f l a g >= x

ifend
35 u n t i l round == log (n) (p) or f l a g >= x

/ / p h a s e 3
i f rank == 0 then

s e t f l a g in a l l other nodes to x
40 ifend

6

Algorithms for Barrier Synchronization

2.1.3 Tournament

2.1.3.1 Description
The Tournament Barrier, proposed by Hengsen et al. in [9] is mostly suitable for shared memory
multiprocessors because it benefits from several caching mechanisms. Nevertheless, the algo-
rithm is analyzed here. As in the Butterfly (see chapter 2.2.1) and the Dissemination Barrier (see
chapter 2.2.3), different rounds (s) are used. The algorithm is similar to a tournament game. Two
nodes play in each round against each other. The winner is known in advance and waits until the
looser arrives. The winners play against each other in the next round. The overall winner (the
champion) notifies all others about the end of the barrier. A graphical and pseudo-code represen-
tation can be found in figure 3 and listing 3.

Figure 3: example for the tournament barrier with 6 nodes

2.1.3.2 Conclusion
The algorithm is also subdivided into two parts. Part one (the game) scales with log2(p) and uses
O(1) byte of memory. Part two scales as mentioned in chapter 2.1 with tbc(n� 1). Thus the entire
complexity can be estimated with O(log2(p) + tbc(n� 1)).

7

Algorithms for Barrier Synchronization

Listing 3: Pseudo Code for Tournament Barrier

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id

5 / / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
reserve f l a g with 1 e n t r i e s as shared
s e t f l a g = 0

/ / p h a s e 2 � done f o r e v e r y b a r r i e r
10 s e t t rue = 1

s e t f a l s e = 0
s e t round = �1
/ / r e p e a t l o g (p) t i m e s
repeat

15 s e t round = round + 1
s e t peer = rank xor 2ˆ round

/ / I have no p a r t n e r �> nex t round . . .
i f peer > p then

20 continue
ifend

/ / I am t h e winner
i f rank > peer then

25 wait u n t i l f l a g == true
s e t f l a g = f a l s e

e lse
s e t f l a g on peer = true
wait u n t i l f l a g == true

30 ifend
u n t i l round > ld (p)

/ / p h a s e 3 � node 0 e v e r wins
i f rank == 0 then

35 s e t f l a g in a l l other nodes to t rue
ifend

2.1.4 f-way Tournament

2.1.4.1 Description
The f-way Tournament Barrier bases on the same principle as the tournament barrier (Section
2.1.3). It was proposed by Grunwald et al. in 1993 [13]. The most important difference is that
more than two processors are competing in one game. A graphical representation can be found
in figure 4. The pseudo-code is nearly identical to the tournament barrier (see listing 3), only with
more than two nodes.

2.1.4.2 Conclusion
This Barrier is suitable for special network topologies with a fan-out of more than one (e.g. torus
networks). But should not scale better on standard central switching-based networks. The al-
gorithm scales theoretically (with a fan-out of f in each node) with logf (p) network transactions
and O(1) bytes memory per node, but should be practically limited by the network infrastructure
which serializes and enqueues concurrent requests.

8

Algorithms for Barrier Synchronization

Figure 4: example for the f-way tournament algorithm between 6 nodes

2.1.5 MCS

2.1.5.1 Description
The MCS Tree Barrier was proposed by Mellor-Crummey and Scott in 1991 ([10], [11] and [12]). It
uses also a tree structure and is quite similar to the Combining Tree barrier (Chapter 2.1.2). Each
node is assigned to a tree node. The resulting n-ary tree consists of all nodes, each node has an
array of n flags. All, but the top node write to their parent’s node flag when all child nodes wrote
the flag to them. All nodes, which have no children start with the array initialized with true.
When the last node’s flag array is completely filled, the last node notifies the others.

Figure 5: example of the MCS Tree algorithm between 6 nodes

9

Algorithms for Barrier Synchronization

Listing 4: Pseudo Code for the MCS Barrier

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id
s e t n = number of chi ldnodes

5

/ / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
s e t x = 0 / / t h e b a r r i e r c o u n t e r
reserve array with n+1 e n t r i e s as shared

/ / �> a r r a y [n] a c t s a s b a r r i e r r e a c h e d f l a g
10

/ / p h a s e 2 � done f o r e v e r y b a r r i e r
s e t x = x + 1

/ / i n i t i a l i z e my f l a g s (f l a g == 1 i f no c h i l d i s p r e s e n t)
15 for j in 0 . . n�1 do

i f p >= (rank � n) + 1 + j then
s e t array [j] = 0

e lse
s e t array [j] = 1

20 ifend
forend

s e t array [n] = 0
repeat

25 s e t parent = (rank�1) div n
s e t s l o t = (rank�1) mod n

i f sum(array [0 . . n�1]) == 4 then
i f rank == 0 then

30 s e t array [n] = 1
e lse

s e t array [s l o t] in parent to 1
endi f

endi f
35 u n t i l array [n] == 1

/ / p h a s e 3
i f rank == 0 then

s e t array [n] in a l l nodes to 1
40 ifend

2.1.5.2 Conclusion
The MCS-Barrier uses a tree structure with a fan-out of n to improve the barrier performance
to O(logn(p)) concurrent network transactions (only if the network offers a fan-out of n) and
O(p) bytes of shared memory per node in the first part. The second notification part depends
as usual on the underlying network architecture and scales with tbc(p � 1) competing network
transactions.

2.1.6 BST

2.1.6.1 Description
The Binomial Spanning Tree (BST) Barrier was proposed by Tzeng et al. in 1997 - [14]. It uses

10

Algorithms for Barrier Synchronization

a binomial tree structure which reduces the network contention by its principle. The working
principle is quite similar to the MCS Barrier (2.1.5) - every processor is assigned to one tree-node
and waits until all children reached their barrier (they notify their parent) and then notifies its
own parent. A binomial tree is built up recursively, the whole tree of step j� 1 is appended to the
root node in step j. The principle is shown in figure 6.

This special characteristic is used to avoid contention on single nodes.6 To manage the processor-
to-tree-node assignment, the following numbering scheme is used:

� each node is numbered in binary digits (from 0 to p� 1)

� each node calculates it’s parent by resetting the leftmost ”1” in it’s own id to ”0”

� each node calculates it’s children by adding 2i to it’s own id where i = fi 2 N ^ log2(id) <
i < dlog2(p)e ^ id+ 2i < pg

A numbered binomial tree with 6 nodes is shown in figure 7. Pseudo code for the algorithm can
be found in listing 5.

Figure 6: example for building a binomial tree

Figure 7: a numbered binomial tree with 6 nodes (each processor is assigned to one tree node)

2.1.6.2 Conclusion
The binomial spanning tree barrier minimizes the concurrency at the root node. One child of the
root node finishes each round. The root node has typically dlog2(p)e children, so that the root
node knows after dlog2(p)e steps that all nodes reached the barrier. So the time for check in scales
with O(dlog2(p)e) The notification of all nodes scales with tbc(p� 1). The memory required scales
with O(log2(p)) bytes.

6due to the distribution of nodes in a binomial spanning tree, each network link is utilized at most once per round if p
is a power of two - for all other node-counts, each link is utilized at most twice

11

Algorithms for Barrier Synchronization

Listing 5: Pseudo Code for BST Barrier

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id

5 / / p h a s e 1 : i n i t i a l i s a t i o n
s e t x = 0 / / t h e b a r r i e r c o u n t e r
reserve array with p e n t r i e s as shared / / c o u l d be s h o r t e n e d t o l d (p)

/ / s e t a l l a r r a y e n t r i e s t o ’1 ’
10 for j in 0 . . p�1 do

s e t array [j] = 1
forend

/ / d e t e r m i n e p a r e n t (r e s e t l e f t m o s t ’ 1 ’)
15 s e t j = 1

while j <= rank do
s e t j = j � 2

whileend

20 s e t parent = rank � j /2

/ / d e t e r m i n e c h i l d r e n � u n s e t t h e i r a r r a y e n t r i e s
for j = 0 . . c e i l (ld (p))�1 do

/ / l d (0) i s not d e f i n e d . . . t a k e a l l e n t r i e s f o r r o o t node
25 i f rank == 0 or j > ld (rank) then

s e t k = rank + 2ˆ j
/ / on ly f o r rank + 2ˆ j < p
i f k < p then

array [k] = 0
30 ifend

ifend
forend

/ / p h a s e 2 : c h e c k in p h a s e
35 / / wa i t u n t i l a l l c h i l d r e n r e a c h e d t h e i r b a r r i e r

for j in 0 . . p�1 do
wait u n t i l array [rank] == 1

forend

40 i f rank != 0 then
s e t array [rank] in node parent to 1

ifend

/ / p h a s e 3 : r e l e a s e p h a s e
45 / / use a r r a y [0] a s f i n i s h e d i n d i c a t o r , b e c a u s e node 0 i s t h e r o o t �

/ / nobody has i t a s c h i l d node
i f rank == 0 then

s e t array [0] in a l l nodes 0 ;
e lse

50 wait u n t i l array [0] == 0
ifend

12

Algorithms for Barrier Synchronization

2.2 Algorithms Omitting Phase 3

2.2.1 Butterfly

2.2.1.1 Description
The Butterfly Barrier was proposed by Brooks in 1986 [8]. The original algorithm uses a single
shared array of flags (shared memory) and performs several stages of pairwise synchronization.
The used algorithm can be described easily in the following way:

1. wait until previous stages finished (until my flag is false)

2. set my flag to true (I am currently synchronizing)

3. wait for the partner’s flag to become true (the partner is ready)

4. set the partners flag to false (done)

After the initial synchronization finished the whole process is repeated w = log2(p) times, each
time is called a stage. The stages (s) are numbered ascending, the very first stage starts with
0. Each node pi synchronizes in each stage with node pj where j = i XOR 2s (see figure 8).
This method only works for p = 2x; x 2 N (p = power of two). For all other number of nodes,
the necessary pairs are represented virtually by the other nodes (e.g. to synchronize 6 nodes, 2
additional virtual nodes are necessary). Thus this algorithm performing worst with any number
of nodes, slightly bigger than a power of two.

The array mentioned above has to have the dimensions p� log2(p). One column per processor and
one row for each round.

This implementation does not scale very well on a message passing based system (because of the
shared array). After applying all modifications to ensure scalable operation on message passing
based systems, the algorithm looks very similar to the Pairwise Exchange 2.2.2. Thus, this work
does not propose a pseude code.

Figure 8: the butterfly algorithm - the shared array was left out due to the clearness

2.2.1.2 Conclusion
The barrier’s competing network operations scale best with processor numbers which are a power
of two with O(log2(p)). The worst case is when the processor number is slightly higher than a
power of two with O(2� log2(p)) because half of the processors must synchronize twice. The used
shared array of flags memory scales with O(p� log2(p)) in size. Due to the above mentioned prob-
lems, the Pairwise Exchange Barrier (Chapter 2.2.2) should be implemented in message passing
based systems.

13

Algorithms for Barrier Synchronization

2.2.2 Pairwise Exchange With Recursive Doubling

2.2.2.1 Description
This algorithm was proposed in [6] and will be discussed in the following section.

The first part of the pairwise exchange algorithm is, that all nodes group theirselfs in pairs (node
0 and node 1 for each pair). The barrier-identifier, described in chapter 2 is used to avoid several
race conditions.

In the first part, all nodes write their value of x to the corresponding peer. When a node 0 and
node 1 of each pair received the correct barrier value7 from the peer they continue and enter
the next stage. Each group peers with another group of two processors and each member of the
group writes the barrier number to it’s corresponding peer in the other group. This procedure is
recursively repeated until all nodes form one big group. So this algorithm uses blog2pc network
write operations per node.

Thus this works only for power of two nodes. For all other node counts p, the biggest power of
two y = 2z is calculated which is smaller than p. This creates two groups, the group with y nodes
(group a) and the remaining nodes (group b). Every single node in group b pairs with another
node in group a. When a node of group b reaches the barrier it writes the barrier number to it’s
peer node in the group a. Each of this nodes in group a waits until it receives the barrier number
from the second’s group partner before it starts the normal pairwise exchange algorithm. When
the barrier is finished, each peer node in group a notifies its partner that the barrier is finished.
This extension for non power of two node counts increases the latency to blog2pc + 2 network
write operations.

Figure 9 gives a graphical explanation for a barrier with 6 nodes. After step 4, node 0 has all
necessary information (that all nodes entered the barrier already) - node 1,2 and 4 communicated
directly with node 0 and the other nodes finished before node 1,2 or 4.

Figure 9: example for the pairwise exchange algorithm between 6 nodes

7the currently active barrier number or each number higher than this

14

Algorithms for Barrier Synchronization

Listing 6: Pseudocode for the pairwise exchange barrier

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id

5 / / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
reserve array with p e n t r i e s as shared
for i in 0 . . p�1 do

s e t array [i] = 0
forend

10 s e t x = 0 / / t h e b a r r i e r c o u n t e r
y = 2ˆ f l o o r (ld (p)) / / t h e 2 ˆ z count

/ / b a r r i e r � done f o r e v e r y b a r r i e r
s e t x = x + 1

15 i f rank >= y then
/ / I am in group b , my p a r t n e r i s node i�y in group a
s e t array [rank] in node rank�y to x
/ / wa i t f o r n o t i f i c a t i n from p a r t n e r
wait u n t i l array [rank] >= x

20 e lse
/ / I am in group a
i f p�y > rank then

/ / I have a p a r t n e r in group b
/ / wa i t f o r p a r t n e r

25 wait u n t i l array [rank+y] >= x
ifend

/ / t h e p a i r w i s e exchange a l g o r i t h m
s e t round = �1

30

/ / r e p e a t l o g (p) t i m e s
repeat

s e t round = round + 1

35 s e t peer = rank XOR 2ˆ round

s e t array [rank] in node peer to x
wait u n t i l array [peer] >= x

u n t i l round == log (y)
40

i f p�y > rank then
/ / I have a p a r t n e r in group a
/ / n o t i f y p a r t n e r
s e t a r r [rank+y] in node rank+y to x

45 ifend
ifend

15

Algorithms for Barrier Synchronization

2.2.2.2 Conclusion
The algorithms uses O(blog2pc + 2) network writes and O(p) bytes memory per node. It can be
used to exploit the advantages of an RDMA architecture efficiently.

2.2.3 Dissemination

2.2.3.1 Description
The Dissemination Barrier, introduced by Hengsen, Finkel and Manber in 1988 [9], is mostly an
improvement of the Butterfly Barrier for non power of two processor counts. It uses the same
pairwise synchronization but with other partners. In each round s each processor pi synchronizes
with pj where j = i + 2s mod p. Each processor is waiting for the cyclically next to set its flag
and for his own flag set by a circular previous processor. The algorithm is the same as used in the
butterfly barrier but with different partners.

The implementation with a central shared array does not scale very well on a message passing
based system. Thus this work proposes a more suitable solution for message passing systems.

Figure 10: Dissemination Barrier with 6 processors

2.2.3.2 Conclusion
The Dissemination Barrier scales better as the butterfly barrier also for non power of two proces-
sor counts with O(dlog2(p)e) competing network transactions. The algorithm uses O(p) bytes of
memory per node.

16

Algorithms for Barrier Synchronization

Listing 7: Pseudocode for the Dissemination Barrier

/ / p a r a m e t e r s (g i v e n by env i ronment)
s e t p = number of p a r t i c i p a t i n g processors
s e t rank = my l o c a l id

5 / / p h a s e 1 � i n i t i a l i z a t i o n (on ly once)
s e t x = 0 / / t h e b a r r i e r c o u n t e r
reserve array with p e n t r i e s as shared
for i in 0 . . p�1 do

s e t array [i] = 0
10 forend

/ / b a r r i e r � done f o r e v e r y b a r r i e r
s e t round = �1
s e t x = x + 1

15 / / r e p e a t l o g (p) t i m e s
repeat

s e t round = round + 1

s e t sendpeer = rank + 2ˆ round mod p
20 s e t recvpeer = rank � 2ˆ round mod p

s e t array [rank] in node sendpeer to x
wait u n t i l array [recvpeer] >= x

u n t i l round >= log (p)�1

References

[1] CARWYN BALL, MARK BULL: Barrier Synchronization in Java

[2] ANJA FELDMANN, THOMAS GROSS, DAVID OH̀ALLARON, THOMAS M. STRICKER: Subset
Barrier Synchronization on a Private-Memory Parallel System

[3] G.F. PFISTER, V.A. NORTON: ”Hot Spot” contention and combining in multistage intercon-
nection networks

[4] ERIC FREUDENTHAL, ALLAN GOTTLIEB: Process Coordination with Fetch-and-Increment

[5] JAMES R. GOODMAN, MARY K. VERNON, PHILIP J. WOEST: Efficient Synchronization Prim-
itives for Large-Scale Cache-Coherent Multiprocessors

[6] RINKA GUPTA, VINOD TIPPARAJU, JARE NIEPLOCHA, DHABALESWAR PANDA: Efficient Bar-
rier using Remote Memory Operations on VIA-Based Clusters.

[7] P.C. YEW, N.F. TZENG, D.H. LAWRIE: Distributing Hot Spot Addressing in Large Scale Mul-
tiprocessors

[8] EUGENE D. BROOKS: The Butterfly Barrier

[9] DEBRA HENGSEN, RAPHAEL FINKEL, UDI MANBER: Two Algorithms for Barrier Synchro-
nization

[10] JOHN MELLOR-CRUMMEY, MICHAEL SCOTT: Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors

[11] JOHN MELLOR-CRUMMEY, MICHAEL SCOTT: Synchronization Without Contention

[12] JOHN MELLOR-CRUMMEY, MICHAEL SCOTT: Fast, Contention-Free Combining Tree Barriers
for Shared Memory Multiprocessors

17

Algorithms for Barrier Synchronization

[13] DIRK GRUNWALD, SUVAS VAJRACHARYA: Efficient Barriers for Distributed Shared Memory
Computers

[14] NIAN-FENG TZENG, ANGKUL KONGMUNVATTANA: Distributed Shared Memory Systems
with Improved Barrier Synchronization and Data Transfer

A Appendix

A.1 Pseudocode Semantics

The semantics for each language construct used in the pseudocode sections is described in the
following. Some operations are specially designed for message passing systems.

A.1.1 General Constructs

A.1.1.1 Instruction Blocks
Syntax:

<i n s t r u c t i o n s>

An instruction block consists of one or more instructions, each instruction can be one of the suc-
cessional described commands.

A.1.1.2 Comparative Instructions
Syntax:

<var1> == <var2>
<var1> >= <var2>
<var1> <= <var2>
<var1> != <var2>

A comparative instruction compares two or more (logical combined) variables. The used com-
parison signs (==, >=, <=, ! =) have the same meaning as the according sign the well known
programming language Pascal. Each condition returns true or false.

A.1.1.3 The Floor Function
Syntax:

f l o o r (var)

Rounds var down to the nearest integer.

A.1.1.4 The Ceil Function
Syntax:

c e i l (var)

Rounds var up to the nearest integer.

A.1.1.5 Set Constructs
Syntax:

s e t <var1> = <var2>

Registers variable var1 (if this is not already done) and sets it to var2. Var2 can also be an equation.

18

Algorithms for Barrier Synchronization

A.1.1.6 Set Remote Constructs
Syntax:

s e t <var1> in node <nodeid> to <value>

Sets variable var1 in the given node to a new value.

A.1.1.7 Broadcast Set Constructs
Syntax:

s e t <var1> in a l l nodes to <value>

Sets variable var1 all node to the given value. The most suitable implementation would be a
broadcast.

A.1.1.8 Register Shared Variables
Syntax:

reserve <var> with <amount> e n t r i e s as shared

To access a local variable from another node, this has to be registered as shared. The reserve
command shares the named array with the given count of entries to all other nodes.

A.1.1.9 Fetch And Add
Syntax:

s e t <lvar> = fe tch and increment <rvar> on node <nodeid>

Returns the result of a fetch-and-add operation on variable rvar in the given node into the local
variable lvar. The operation is system-wide atomic - no other node can interrupt it. It is assumed
that the target node returns the value of its local variable after modifying it.

A.1.1.10 Logarithmic Expressions
Syntax:

log (n) (x)
ld (x)

The first expression means logn(x), the second log2(x).

A.1.2 Conditional Constructs

A.1.2.1 If
Syntax:

i f <condit ion> then
<i n s t r u c t i o n s>

e lse
<i n s t r u c t i o n s>

ifend

The if clause is used to test the condition for its boolean result. It executes the first instruction
block if the condition returns true and the second instruction block in the other case.

19

Algorithms for Barrier Synchronization

A.1.2.2 Wait
Syntax:

wait u n t i l <condit ion>

The wait clause is not passed by the instruction pointer until the condition returns true.

A.1.3 Loops

A.1.3.1 For
Syntax:

for <var> in <range> do
<i n s t r u c t i o n s>

forend

The for loop counts the variable in the given range (e.g. 0..10 means 0 up to 10) and executes the
instructions for each single value of the variable. The variable is accessible inside the for loop
with its current value.

A.1.3.2 Repeat
Syntax:

repeat
<i n s t r u c t i o n s>

u n t i l <condit ion>

Repeat keeps executing all instructions until the condition returns true.

A.1.3.3 While
Syntax:

while <condit ion> do
<i n s t r u c t i o n s>

whileend

The instructions are executed until the condition returns false.

20

	1 Introduction
	1.1 Related Work
	1.2 Document Organization

	2 Algorithms
	2.1 Algorithms Performing Phase 3
	2.1.1 Central Counter
	2.1.2 Combining Tree
	2.1.3 Tournament
	2.1.4 f-way Tournament
	2.1.5 MCS
	2.1.6 BST

	2.2 Algorithms Omitting Phase 3
	2.2.1 Butterfly
	2.2.2 Pairwise Exchange With Recursive Doubling
	2.2.3 Dissemination

	A Appendix
	A.1 Pseudocode Semantics
	A.1.1 General Constructs
	A.1.2 Conditional Constructs
	A.1.3 Loops

