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Some Considerations about Interconnects

The LogGP Model
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Some Considerations about Interconnects

Interconnect Trends

Technology Change

@ modern interconnects of oad communication to
co-processors (Quadrics, In niBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even Ethernet supports protocol of oad
@L+g+m G>> o

) we prove our expectations with benchmarks of the user CPU
overhead
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LogGP Model Examples - TCP
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LogGP Model Examples - Myrinet/GM
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LogGP Model Examples - In niBand/OpeniB
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Why Non blocking Collectives?

Modelling the Bene ts

LogGP Models for Collective Operations

e (20+ L) dog,Pe
tarea = 2 (20+ L+ m G) dog,Pe+ m dlog,Pe
thecast = (20+ L+ m G) dog,Pe

Split into CPU and Network parts

toPY = 20 dog,Pe  thtT = L dog,Pe
tShY = (40+ m ) dogyPe thEl, =2 (L+m G) dog,Pe
tCPY = 20 dog,Pe tNEL =(L+ m G) dog,Pe

bcast — bcast
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CPU Overhead Benchmarks

LAM/MPI1 7.1.2/TCP over GigE
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Why Non blocking Collectives?

CPU Overhead Benchmarks

MPICH2 1.0.3/TCP over GigE
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Why non blocking Collectives

@ many collectives synchronize unneccessarily

@ scale typically with O(log,P) sends

@ wasted CPU time: log,P (L+ Gg)

Fast Ethernet: L = 50-60

Gigabit Ethernet: L = 15-20

In niBand: L =2-7

1 s 4000 FLOPs on a 2GHz Machine

® ¢ ¢ ¢
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Isend/lIrecv is there - Why Collectives?

@ Gorlach, '04: "Send-Receive Considered Harmful”
@ , Dijkstra, '68: "Go To Statement Considered Harmful”

point to point

if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops
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Putting Everything Together

non blocking collectives?
JoD mentions "split collectives”
example:

@ MPI_Bcast_begin(...)
@ MPI_Bcast_end(...)

no nesting with other colls
very limited

not in the MPI-2 standard
votes: 11 yes, 12 no, 2 abstain



Why Non blocking Collectives?

Performance Bene ts

overlap

@ leverage hardware parallelism (e.g. In niBand ™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the in uence of OS noise

) we analyze Barrier, Allreduce and Bcast
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”
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MPI_Bcast with PO delayed - Jumpshot
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Why Non blocking Collectives?

MPI_Ibcast with PO delayed + overlap - Jumpshot
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LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Ibcast(bufl, p, MPIL_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait(&req);



LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Ibcast(bufl, p, MPIL_INT, 0, MPI_COMM_WORLD, &req);
MPI1_Wait(&req);

Proposal

Hoe er et. al. (2006): "Non-Blocking Collective Operations for
MPI-2"




LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

sendtol recv from# enb send toz* recv fror+|2 %

LibNBC download: http://www.unixer.de/NBC
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Overhead Benchmarks - Gather with
In niBand/MVVAPICH on 64 nodes
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Overhead Benchmarks - Scatter with
In niBand/MVVAPICH on 64 nodes
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Overhead Benchmarks - Alltoall with
In niBand/MVVAPICH on 64 nodes
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Overhead Benchmarks - Allreduce with
In niBand/MVVAPICH on 64 nodes
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And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - 3D Poisson Solver

@ iterative linear solvers are used in many scienti ¢ kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped



And Applications?

Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv

PO P1 P2 P3
P4 P5 P6 b7
P8 P9 P10 P11

[ Process-local datal-} 2D Domain
[0 Halo-data
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Parallel Speedup (Best Case)
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@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 800x800x800 (1 node 5300s)
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Parallel Gain with Non-Blocking Communication
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Parallel Data Compression

Second Example
Data Parallel Loops - Parallel Compression

—

automatic transformations (C++ templates), typical loop
structure:

for (i=0; i < N/P; i++) {
compute(i);

}

comm(N/P);
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Parallel Speedup (Best Case)
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@ Cluster: 64 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 64*50 MB
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Communication Overhead

MVAPICH 0.9.4
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And Applications?

Parallel 3d Fast Fourier Transform

—

Third Example
Specialized Algorithms - A parallel 3d-FFT with overlap

Specialized design to achieve the highest overlap. Less
cache-friendly!
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Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical




And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

N\




And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as rst xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...
@ collect multiple xz-planes (tile factor)
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Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)
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Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction
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Transformation z Direction

start MPI_lalltoall of rst xz plane and transform second pl ane

y X

cyan color means that data is communicated in the background
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Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication
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Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to go on ...
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Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed )
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Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation
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Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication
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102423 3d-FFT over In niBand
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10243 3d-FFT on the XT4
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And Applications?

MPI/BL ===

NBC/NB

32 procs

64 procs

128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron
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10243 3d-FFT on the XT4 (Communication Overhead)

MPI/BL ===
4 = NBC/NB

Communication Overhead (s)

32 procs 64 procs 128 procs
@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron



And Applications?

Literature

[9] T. HOEFLER P. GOTTSCHLING, W. REHM AND A. LUMSDAINE:
Optimizing a Conjugate Gradient Solver with Non-Blocking Collective
Operations. Elsevier Journal of Parallel Computing (PARCO). Vol 33,
Nr. 9, pages 624-633

[10] T. HOEFLER, P. GOTTSCHLING AND A. LUMSDAINE:
Transformations for enabling non-blocking collective communication in
high-performance applications. Under submission (ask me for a copy)



Ongoing Efforts

Outline

e Ongoing Efforts



Ongoing Efforts

Ongoing Work

@ distribute as part of Open MPI 1.3
@ optimized collectives

&

Collective Communication

@ optimized collectives for In niBand ™
@ using special hardware support

\

Network Modelling

@ re ned LogGP model parametrization

@ modelling of collective algorithms




Ongoing Efforts

Discussion

THE END

Questions?

Thank you for your attention!
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