Non-Blocking Collectives for MPI-2

— overlap at the highest level —

Torsten HO er

Department of Computer Science
Indiana University / Technical University of Chemnitz

Dresden University of Technology
Center for Information Services and High Performance Computing (ZIH)

Dresden, Germany
17th October 2007



Outline

e Some Considerations about Interconnects
9 Why Non blocking Collectives?

© LibnBC

e And Applications?

e Ongoing Efforts



Some Considerations about Interconnects

Outline

e Some Considerations about Interconnects



Some Considerations about Interconnects

The LogGP Model

level

Sender Receiver
Og o,
CPU — —e
] ]
1 1
] ]
1 1
1 1
] ]
Network » 4,
Y LA
’r 7
o R
g+ m*G g+ m*G

time



Some Considerations about Interconnects

Interconnect Trends

Technology Change

@ modern interconnects of oad communication to
co-processors (Quadrics, In niBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even Ethernet supports protocol of oad
@L+g+m G>> o

) we prove our expectations with benchmarks of the user CPU
overhead



Some Considerations about Interconnects

LogGP Model Examples - TCP

Time in microseconds

600

500

400

300

200

100

; T

L MPICHZ - G*S+g A
MPICH2 - 0

TCP- G*S+g * x*xx

L TCPoO =© L
o
XX
x**(
¥
«*
*4 -~
%**
%***
x**%
x**
*****
¥
w*
’ L REEEEY
K R EEE
**X* HrREEEEEEE PrEpEEEEEds
- DDDDDDDDDDDDDDDD[

_*é\D_DDDDDD]DD

0

10000 20000 30000 40000 50000 60000

Datasize in bytes (s)



Some Considerations about Interconnects

LogGP Model Examples - Myrinet/GM

350 ‘ ‘ :
Open MPI - G*s+g +
300 - ~ Open MPI -0
Myrinet/GM - G*s+g = o
) Myrinet/GM - o - L
s 250 e Tgx%
(8] + +*++
[} ++ o
g 200 ek
S
E Lt sxkH
E 150 ++ ****)2(%%%
(O] P **x***@(
E 100 o PRET
= + w%*%***
o x%****)(
50 ++ *%x*’(***
++x%x**x -

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)



Some Considerations about Interconnects

LogGP Model Examples - In niBand/OpeniB

Time in microseconds

90 ‘ ‘ .
Open MPI - G*s+g +
80 | Open MPI -0 ot
OpeniB - G*s+g *
70 | OpeniB-o =
60 Lt I
50 .
40 et
30 : e
20 T
10 +++;‘§<+;+*
0 éDDD]DDDDDDDDDDDDDDDDDDDDDDDDDD
0 10000 20000 30000 40000 50000 60000

Datasize in bytes (s)



Some Considerations about Interconnects

Literature

[1] T. HOEFLER, A. LICHEI, AND W. REHM: Low-Overhead LogGP
Parameter Assessment for Modern Interconnection Networks. In
Proceedings of the 21st IEEE International Parallel & Distributed
Processing Symposium

[2] T. HOEFLER, J. SQUYRES, G. FAGG, G. BosiLcA, W. REHM AND
A. LUMSDAINE: A New Approach to MPI Collective Communication
Implementations. In proceedings of the 6th Austrian-Hungarian
Workshop on Distributed and Parallel Systems

[8] T. HOEFLER, M. REINHARDT, F. MIETKE, T. MEHLAN, AND W.
REHM: Low Overhead Ethernet Communication for Open MPI on
Linux Clusters. In Chemnitzer Informatik Berichte CSR-06, Nr. 06



Why Non blocking Collectives?

Outline

9 Why Non blocking Collectives?



Why Non blocking Collectives?

Modelling the Bene ts

LogGP Models for Collective Operations

e (20+ L) dog,Pe
tarea = 2 (20+ L+ m G) dog,Pe+ m dlog,Pe
thecast = (20+ L+ m G) dog,Pe

Split into CPU and Network parts

toPY = 20 dog,Pe  thtT = L dog,Pe
tShY = (40+ m ) dogyPe thEl, =2 (L+m G) dog,Pe
tCPY = 20 dog,Pe tNEL =(L+ m G) dog,Pe

bcast — bcast




Why Non blocking Collectives?

CPU Overhead Benchmarks

LAM/MPI1 7.1.2/TCP over GigE

CPU Usage (share)

0.03
0.025
0.02
0.015
0.01
0.005

10 00 Data Size



Why Non blocking Collectives?

CPU Overhead Benchmarks

MPICH2 1.0.3/TCP over GigE

00000000
[=lelelalelolote)
ORPNORGSI®
LU N N B B B B B |

10 00 Data Size



Why Non blocking Collectives?

Why non blocking Collectives

@ many collectives synchronize unneccessarily

@ scale typically with O(log,P) sends

@ wasted CPU time: log,P (L+ Gg)

Fast Ethernet: L = 50-60

Gigabit Ethernet: L = 15-20

In niBand: L =2-7

1 s 4000 FLOPs on a 2GHz Machine

® ¢ ¢ ¢



Why Non blocking Collectives?

Isend/lIrecv is there - Why Collectives?

@ Gorlach, '04: "Send-Receive Considered Harmful”
@ , Dijkstra, '68: "Go To Statement Considered Harmful”

point to point

if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops



Why Non blocking Collectives?

Putting Everything Together

non blocking collectives?
JoD mentions "split collectives”
example:

@ MPI_Bcast_begin(...)
@ MPI_Bcast_end(...)

no nesting with other colls
very limited

not in the MPI-2 standard
votes: 11 yes, 12 no, 2 abstain



Why Non blocking Collectives?

Performance Bene ts

overlap

@ leverage hardware parallelism (e.g. In niBand ™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the in uence of OS noise

) we analyze Barrier, Allreduce and Bcast



Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last



Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”




Why Non blocking Collectives?

MPI_Bcast with PO delayed - Jumpshot

[%2]
(5]
N
(%]
(5]
O
(@)
S
o

time—s»



Why Non blocking Collectives?

MPI_Ibcast with PO delayed + overlap - Jumpshot

[%2]
(5]
N
(%]
(5]
O
(@)
S
o

time—s»



Why Non blocking Collectives?

Literature

[4] T. HOEFLER, J. SQUYRES, W. REHM, AND A. LUMSDAINE: A
Case for Non-Blocking Collective Operations. In Frontiers of High
Performance Computing and Networking, pages 155-164, Springer
Berlin / Heidelberg, ISBN: 978-3-540-49860-5 Dec. 2006

[5] T. HOEFLER, J. SQUYRES, G. BosiILcA, G. FAGG, A.
LUMSDAINE, AND W. REHM: Non-Blocking Collective Operations for
MPI-2. Open Systems Lab, Indiana University. presented in
Bloomington, IN, USA, School of Informatics, Aug. 2006



LibNBC

Outline

© LibnBC



LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Ibcast(bufl, p, MPIL_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait(&req);



LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Ibcast(bufl, p, MPIL_INT, 0, MPI_COMM_WORLD, &req);
MPI1_Wait(&req);

Proposal

Hoe er et. al. (2006): "Non-Blocking Collective Operations for
MPI-2"




LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

sendtol recv from# enb send toz* recv fror+|2 %

LibNBC download: http://www.unixer.de/NBC



LibNBC

Overhead Benchmarks - Gather with
In niBand/MVVAPICH on 64 nodes

30000 | | |
MPI_Gather ——
NBC lgather -
25000 ‘
20000
15000

Runtime (s)

10000 / /
5000 | e o

SV

0 50000 100000 150000 200000 250000 300000
Datasize (bytes)




LibNBC

Overhead Benchmarks - Scatter with
In niBand/MVVAPICH on 64 nodes

Runtime (s)

30000

25000

20000

15000

10000

5000

MPI_Scatfer
NBC Iscatter -

0
0

I

50000 100000 150000 200000 250000 300000
Datasize (bytes)



LibNBC

Overhead Benchmarks - Alltoall with
In niBand/MVVAPICH on 64 nodes

50000

MPI_Alltoall — //
45000 r NBC_lalltoall -------- /
40000 >
35000 d

30000 ////
25000 e

20000
15000
10000
5000 |

Runtime (s)

0 50000 100000 150000 200000 250000 300000
Datasize (bytes)



LibNBC

Overhead Benchmarks - Allreduce with
In niBand/MVVAPICH on 64 nodes

60000

50000

40000 /
30000 [\/
20000

10000 I

Runtime (s)

O e TP ST S S s
H=empe””

0 50000 100000 150000 200000 250000 300000
Datasize (bytes)




LibNBC

Literature

[6] T. HOEFLER, A. LUMSDAINE AND W. REHM: Implementation and
Performance Analysis of Non-Blocking Collective Operations for MPI.
Accepted for publication at the Supercomputing 2007 (SCO07)

[7] T. HOEFLER, P. KAMBADUR, R. L. GRAHAM, G. SHIPMAN AND A.
LUMSDAINE: A Case for Standard Non-Blocking Collective
Operations. In Proceedings of the 14th European PVM/MPI User's
Group Meeting 2007

[8] T. HOEFLER AND A. LUMSDAINE: Design, Implementation, and
Usage of LibNBC. Open Systems Lab, Indiana University. presented
in Bloomington, IN, USA, School of Informatics, Aug. 2006



And Applications?

Outline

e And Applications?



And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - 3D Poisson Solver

@ iterative linear solvers are used in many scienti ¢ kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped



And Applications?

Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv

PO P1 P2 P3
P4 P5 P6 b7
P8 P9 P10 P11

[ Process-local datal-} 2D Domain
[0 Halo-data



And Applications?

Parallel Speedup (Best Case)

IB blocking —+—

L Eth blocking - L
100 Eth non-blocking & o 100 IB non-blocking -3
80 e 80 ot -
S e % g 5
% 60 % S R T 60
3 L e g
n 40 e T n 40
QEE """" e d
20 20
" /
FE ) (x)
0 : 0
8 16 24 32 40 48 56 64 72 80 88 96 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs Number of CPUs

@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 800x800x800 (1 node 5300s)



And Applications?

Parallel Gain with Non-Blocking Communication

gain = typ =ty
O-4 T T
IB —— ;
0.3 Eth - — i
o
>
2 02
o X
“ 01 S =l
g f/ \0—————‘*//
g 0 I
g /
0.1 fof
¢
-0.2

0O 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs



And Applications?

Parallel Data Compression

Second Example
Data Parallel Loops - Parallel Compression

—

automatic transformations (C++ templates), typical loop
structure:

for (i=0; i < N/P; i++) {
compute(i);

}

comm(N/P);



And Applications?

Parallel Speedup (Best Case)

T 90

90

MPl/blocking MPI/blocking P
80 - NBC/pipe 80 NBC/pipe ]
NBCltile . NBCltile m - A
70 NBC/wintile e 70 NBC/wintile e
60 - 60 :
o @ o
3 50 3 50 /
2 40 L 4 S
30 — 30 g
20 A 20
10 b Hnia 10 b
L -
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 10C
# Processors # Processors

@ Cluster: 64 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 64*50 MB



And Applications?

Communication Overhead

MVAPICH 0.9.4

g5 | MPlblocking ——
NBC/pipe

s NBC/tile g
S 30y NBCMINtle -ma-m ‘
= R A WM D S - R R
g 25 L ——
§ 20 //
2 i
3 z
= 15 |
g “
=P 1 VA N N N U N N NN J P
S u

5 &

0

0 10 20 30 40 50 60 70 80 90 100
# Processors



And Applications?

Parallel 3d Fast Fourier Transform

—

Third Example
Specialized Algorithms - A parallel 3d-FFT with overlap

Specialized design to achieve the highest overlap. Less
cache-friendly!



And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical




And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

N\




And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as rst xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...
@ collect multiple xz-planes (tile factor)




And Applications?

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)



And Applications?

Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction



And Applications?

Transformation z Direction

start MPI_lalltoall of rst xz plane and transform second pl ane

y X

cyan color means that data is communicated in the background



And Applications?

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication



And Applications?

Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to go on ...



And Applications?

Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed )



And Applications?

Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation



And Applications?

Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication



And Applications?

102423 3d-FFT over In niBand

MPI/BL ==
MPI/NB == 3
6 "NBC/NB
5
@
© 4
£
|_
— 3
LL
L
2
1

1 ppn 2 ppn
@ P=128, “Coyote”@LANL - 128/64 dual socket 2.6GHz Opteron node:



10243 3d-FFT on the XT4

18
16
14
12
10

FFT Time (s)

o N A O

And Applications?

MPI/BL ===

NBC/NB

32 procs

64 procs

128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron



And Applications?

10243 3d-FFT on the XT4 (Communication Overhead)

MPI/BL ===
4 = NBC/NB

Communication Overhead (s)

32 procs 64 procs 128 procs
@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron



And Applications?

Literature

[9] T. HOEFLER P. GOTTSCHLING, W. REHM AND A. LUMSDAINE:
Optimizing a Conjugate Gradient Solver with Non-Blocking Collective
Operations. Elsevier Journal of Parallel Computing (PARCO). Vol 33,
Nr. 9, pages 624-633

[10] T. HOEFLER, P. GOTTSCHLING AND A. LUMSDAINE:
Transformations for enabling non-blocking collective communication in
high-performance applications. Under submission (ask me for a copy)



Ongoing Efforts

Outline

e Ongoing Efforts



Ongoing Efforts

Ongoing Work

@ distribute as part of Open MPI 1.3
@ optimized collectives

&

Collective Communication

@ optimized collectives for In niBand ™
@ using special hardware support

\

Network Modelling

@ re ned LogGP model parametrization

@ modelling of collective algorithms




Ongoing Efforts

Discussion

THE END

Questions?

Thank you for your attention!



	Some Considerations about Interconnects
	Why Non blocking Collectives?
	LibNBC
	And Applications?

