
LogGOPSim ïSimulating Large-Scale

Applications in the LogGOPS Model

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

Presented at the Workshop on Large-Scale System and

Application Performance (LSAPô10) on June 21st 2010

Motivation ïWhy Simulation?

ÅAnalytic methods can quickly become too

complex and infeasible

ÅWhite-box analysis of application

performance (count events, trace backwards)

ÅUnderstand complex phenomena in parallel

programs (e.g., chained collectives)

ÅSave on expensive experiments or predict

future systems (e.g., Blue Waters)

Why LogP, LogGP, LogGPS?
ÅThe LogGPS model is well established

ÅñSò introduces eager/rendezvous protocols

And now LogGOPS?
ÅCPU overhead ñoò is constant in the LogGPS model

(independent of message size)

ÅNetgauge ñloggpò benchmark results:

ÅO = time per byte!

ÅSystems:

ïOdin @ IU (InfiniBand)

ïBig Red @ IU (Myrinet)

ïBlueGene/P @ ANL

ïJaguar @ ORNL (Sea Star)

Overhead = o+s*O
6.2ns

2.5 ns

1.4 ns

0.6 ns

O

How to model message passing?
ÅMust support MPI but should be independent

ÅUsed Global Operation Assembly Language
rank 0 {

l1: calc 100 cpu 0

l2: send 10b to 1 tag 0 cpu 0 nic 0

l3: recv 10b from 1 tag 0 cpu 0 nic 0

l2 requires l1

}

ÅCan easily be generated manually, by scripts, or from

any MPI trace

Å Is compiled into an efficient binary format for simulation

Design for Speed and Scalability
ÅSupport MPI message semantics

ïMatching: source, tag + any_source, any_tag

ïNonblocking send/recv (keyword irequires)

ÅSimulate eager/rendezvous protocols

ïeager: recv depends on send only

ï rndvz: send depends on recv and vice versa

ÅSemantics require two queues per process:

ïUnexpected queue (UQ): received eager msgs

ïReceive queue (RQ): posted receives

ÅEach proc has virtual time for o and g

ïSupports multiple CPUs and multiple NICs per process

Simulator Core Control Flow
ÅSingle queue design

ïFast priority queue

1. Find executable ops

ïsend, recv, msg, or loclop

2. Insert with current time

3. Fetch (globally) next op

ï check if it can be executed

ï match send/recv

ï re-insert if o, g not available

4. Lather, rinse, repeat

Limitations and Assumptions
ÅLogGOPSim ignores congestion

ïassumed full bisection bandwidth by definition

ïHigh effective bisection topologies (e.g., Fat Tree,

Clos, Kautz) are accurately simulated

ÅOften have >70% effective bisection bandwidth

ïCongestion simulation is implemented

Åcomes at the cost of speed

ÅMessages are delayed until o, g are available

at receiver (this is undefined in LogGPS)

ÅI/O is not considered

Verification ïLinear Scatter

ÅLogGOPS makes verification simple

Verification - Gather

Verification ïBinomial Tree

Verification - Dissemination

Experimental Evaluation
ÅOdin:

ÅBig Red:

1 B Messages 128 kiB Messages

<1% avg. error

<16% error (congestion)

Application Simulation Accuracy
ÅSweep3D and MILC weak scaling on Odin

Å<2% average error

6.4% comm.

13.4% comm.

14.5% comm.

18.3% comm.

Simulation Speed

ÅTested on 1.15 GHz Opteron (slow!)
ï1024 ï8 million processes

ïBinomial (msgs)

ïDissemination (msgs)

Å> 1 million events per

second

ïCan demo it on my laptop

later J

Application Trace Extrapolation

ÅSupports simple extrapolation scheme:

Application Simulation Performance

Å37.7 s Sweep3D extrapolated from 40-28k CPUs

ï0.4 Mio msgs Ÿ 313 Mio msgs

40 CPUs ï2.43 s

4k CPUs ï10 min

28k CPUs ï9.7h (swap)

Main memory is an issue!
hits swap at 8k CPUs

Some More Use-Cases

1. Estimating an applicationôs potential for

overlapping communication/computation

2. Estimating the effect of a faster/slower

network on application performance

3. Demonstrating the effects of pipelining in

current benchmarks for collectives

4. Estimating the effect of Operating System

Noise at very large scale

Application Overlap Potential

ÅChoose overhead appropriately:

ïfull overlap:

Åo=0

ÅO=0

ïno overlap:

Åo=g

ÅO=G

