

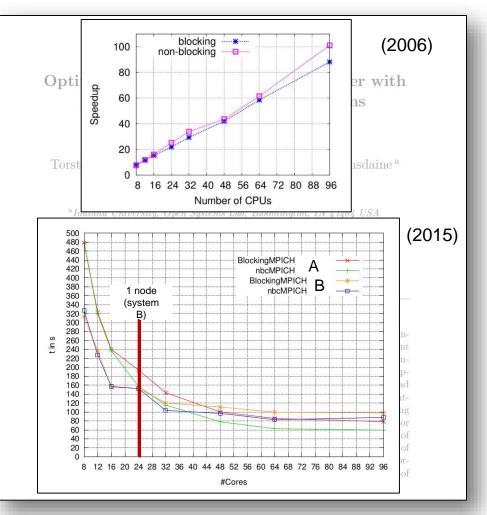
TORSTEN HOEFLER

An Overview of Static & Dynamic Techniques for Automatic Performance Modeling

in collaboration with Alexandru Calotoiu and Felix Wolf @ RWTH Aachen with students Arnamoy Bhattacharyya and Grzegorz Kwasniewski @ SPCL presented at ISC 2016, Frankfurt, July 2016

All images belong to their creator!

My sinful youth



- Original findings:
 - If carefully tuned, NBC speeds up a 3D solver

Full code published

- 800³ domain 4 GB array
 1 process per node, 8-96 nodes
 Opteron 246 (old even in 2006, retired now)
- Super-linear speedup for 96 nodes
 ~5% better than linear

9 years later: attempt to reproduce ©!

System A: 28 quad-core nodes, Xeon E5520

System B: 4 nodes, dual Opteron 6274

"Neither the experiment in A nor the one in B could reproduce the results presented in the original paper, where the usage of the NBC library resulted in a performance gain for practically all node counts, reaching a superlinear speedup for 96 cores (explained as being due to cache effects in the inner part of the matrix vector product)."

@SC'15

How to report a performance result?

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

Torsten Hoefler Dept. of Computer Science ETH Zurich Zurich, Switzerland htor@inf.ethz.ch

ABSTRACT

Measuring and reporting performance of parallel computers constitutes the basis for scientific advancement of high-performance computing (HPC). Most scientific reports show performance improvements of new techniques and are thus obliged to ensure reproducibility or at least interpretability. Our investigation of a stratified sample of 120 papers across three top conferences in the field shows that the state of the practice is lacking. For example, it is often unclear if reported improvements are deterministic or observed by chance. In addition to distilling best practices from existing work, we propose statistically sound analysis and reporting techniques and simple guidelines for experimental design in parallel computing and codify them in a portable benchmarking library. We aim to improve the standards of reporting research results and initiate a discussion in the HPC field. A wide adoption of our minimal set of rules will lead to better interpretability of performance results and improve the scientific culture in HPC.

Roberto Belli Dept. of Computer Science ETH Zurich Zurich, Switzerland bellir@inf.ethz.ch

Reproducing experiments is one of the main principles of the scientific method. It is well known that the performance of a computer program depends on the application, the input, the compiler, the runtime environment, the machine, and the measurement methodology [20, 43]. If a single one of these aspects of *experimental design* is not appropriately motivated and described, presented results can hardly be reproduced and may even be misleading or incorrect.

The complexity and uniqueness of many supercomputers makes reproducibility a hard task. For example, it is practically impossible to recreate most hero-runs that utilize the world's largest machines because these machines are often unique and their software configurations changes regularly. We introduce the notion of *interpretability*, which is weaker than reproducibility. We call an experiment interpretable if it provides enough information to allow scientists to understand the experiment, draw own conclusions, assess their certainty, and possibly generalize results. In other words, interpretable experiments support sound conclusions and convey precise information among scientists. Obviously, every scientific

Scalability bug prediction

Find latent scalability bugs early on (before machine deployment)
 SC13: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes

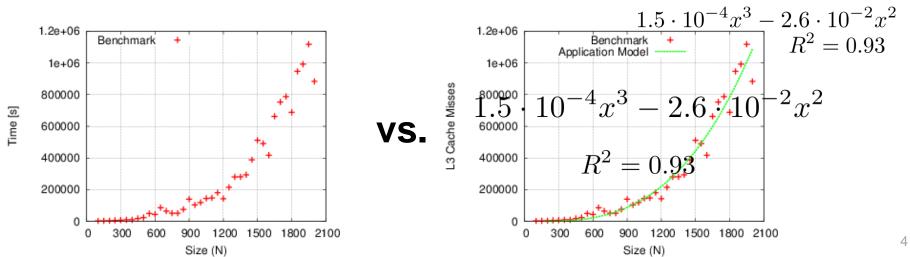
Automated performance testing

Performance modeling as part of a software engineering discipline in HPC ICS'15: S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your Implementation Meet Your Expectations?

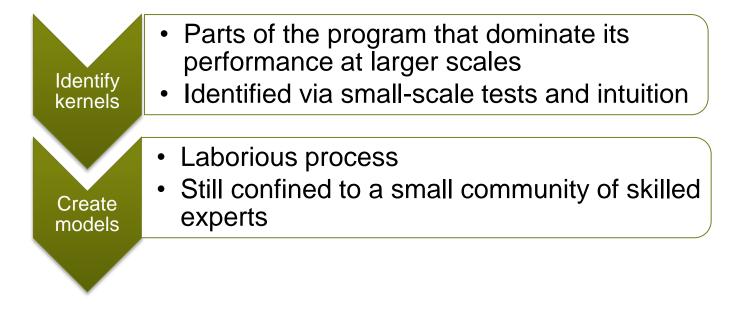
spcl.inf.ethz.ch

Hardware/Software co-design

- Decide how to architect systems
- Making performance development intuitive



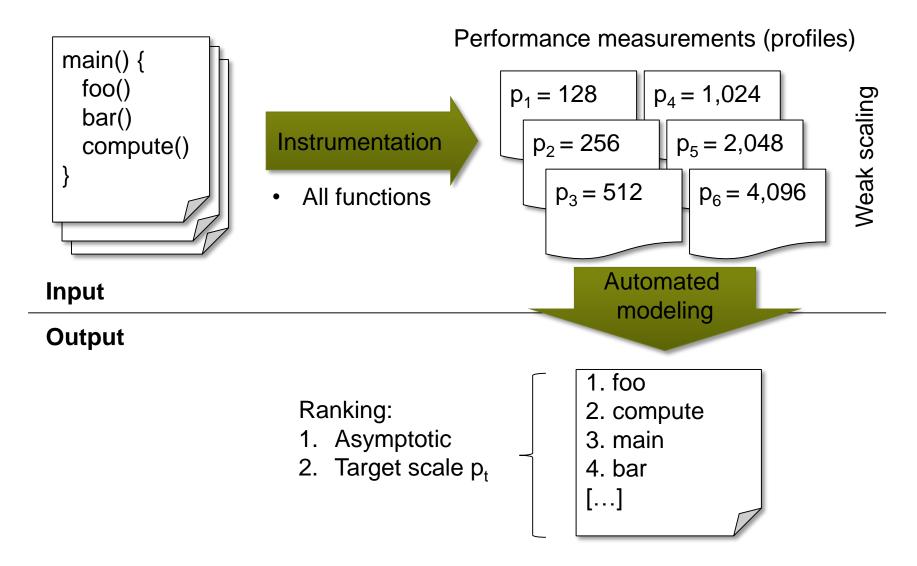
Manual analytical performance modeling



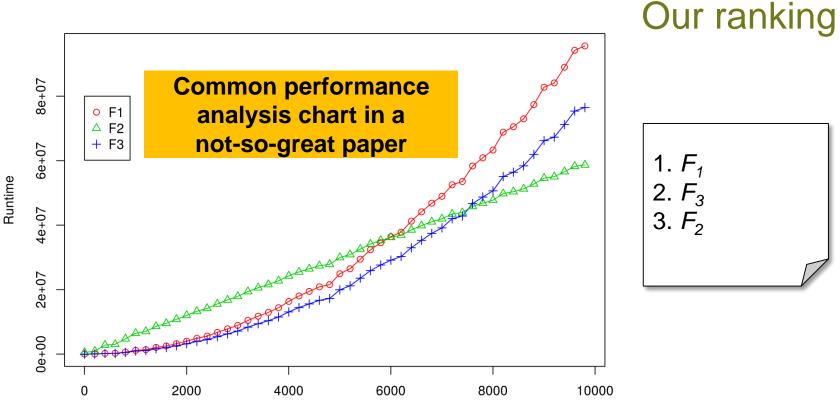
Disadvantages

- Time consuming
- Error-prone, may overlook unscalable code

Our first step: scalability bug detector

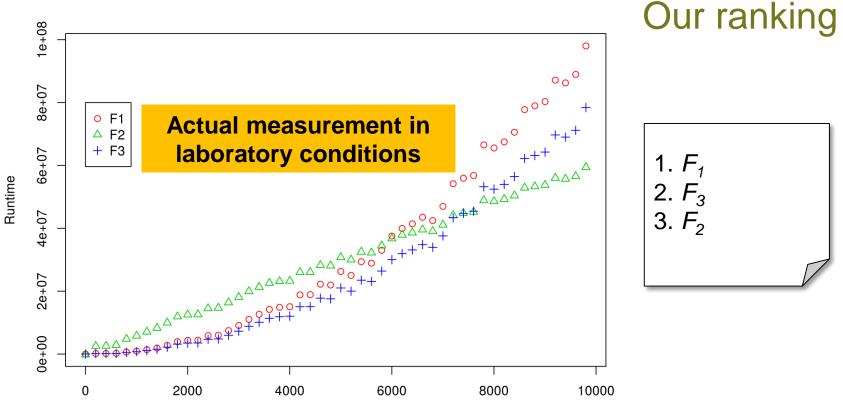


Primary focus on scaling trend



Number of Processes

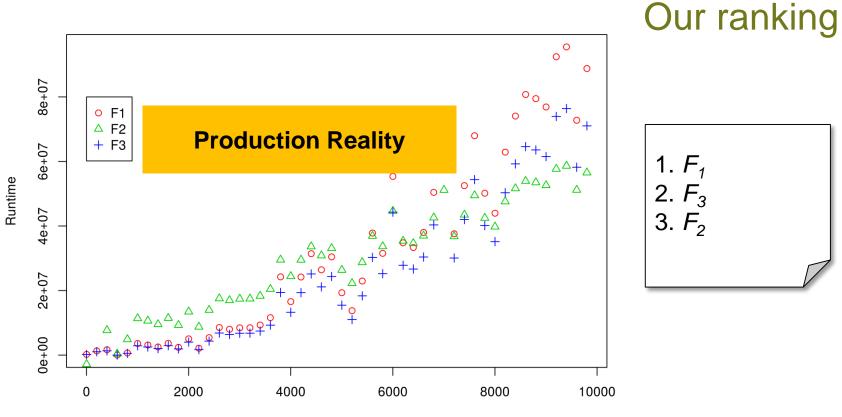
Primary focus on scaling trend



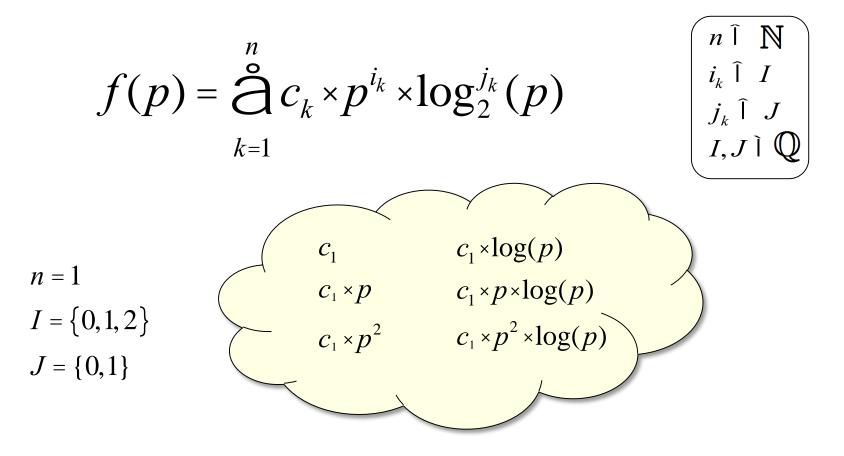
Number of Processes

spcl.inf.ethz.ch Ƴ @s<u>pcl_eth</u>

Primary focus on scaling trend



Survey result: performance model normal form



Survey result: performance model normal form

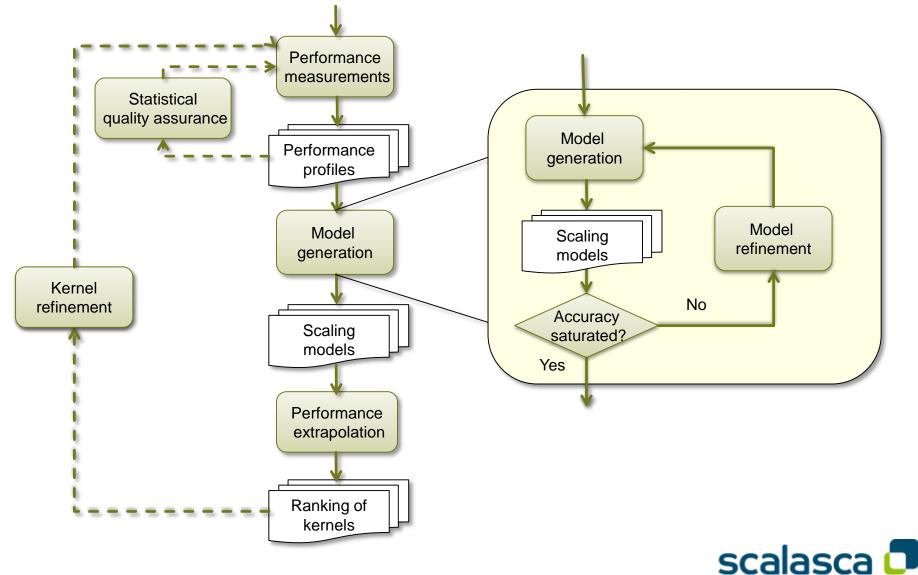
$$f(p) = \bigotimes_{k=1}^{n} c_{k} \times p^{i_{k}} \times \log_{2}^{j_{k}}(p)$$

$$i_{k} \uparrow I$$

$$i_{k}$$

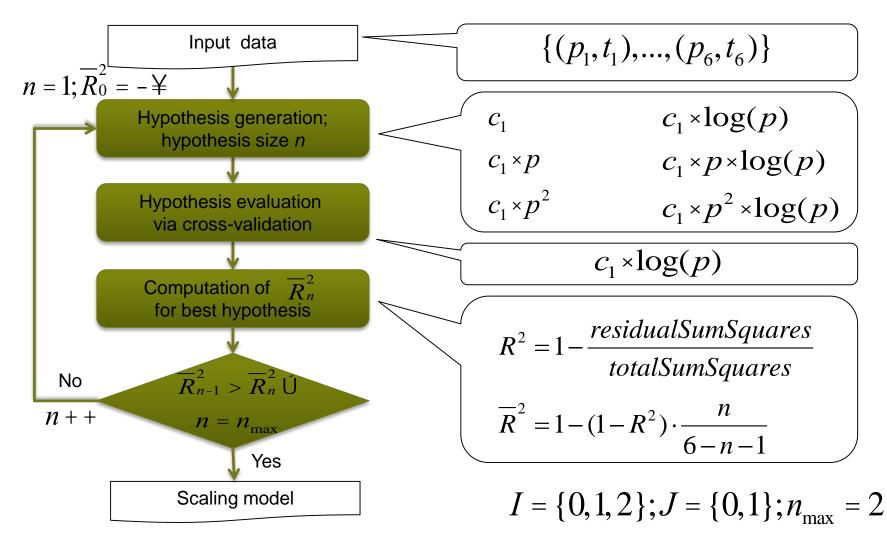
A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling

Our automated generation workflow



A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, SC13

Model refinement



and the

Is this all? No, it's just the beginning ...

We face several problems:

- Multiparameter modeling search space explosion Interesting instance of the curse of dimensionality
- Modeling overheads

Cross validation (leave-one-out) is slow and Our current profiling requires a lot of storage (>TBs)

Conditional code

Static analysis of explicitly parallel programs

Structures that determine program scalability

Example:

Affine loops

$x=x_0;$	11	Initi	al	assignment
while($c^T x < g$)	11	Loop	gua	ard
x = Ax + b;	11	Loop	upo	late

Perfectly nested affine loops

while
$$(c_1^T x < g_1)$$
 {
 $x = A_1 x + b_1$;
while $(c_2^T x < g_2)$ {
 \dots
 $x = A_{k-1} x + b_{k-1}$;
while $(c_k^T x < g_k)$ {
 $x = A_k x + b_k$;
while $(c_{k+1}^T x < g_{k+1})$ {... }
 $x = U_k x + v_k$; }
 $x = U_k x + v_k$; }
 $x = U_{k-1} x + v_{k-1}$;
 \dots }
 $x = U_1 x + v_1$;}

$$A_k, U_k \in \mathbb{R}^{m \times m}, b_k, v_k, c_k \in \mathbb{R}^m, g_k \in \mathbb{R} \text{ and } k = 1 \dots r.$$

Example

```
for (j=1; j < n/p + 1; j= j*2)
    for (k=j; k < m; k = k + j )
        veryComplicatedOperation(j,k);</pre>
```


Example

```
for (j=1; j < n/p + 1; j= j*2)
    for (k=j; k < m; k = k + j )
        veryComplicatedOperation(j,k);</pre>
```

```
while (c_1^T x < g_1) {

x = A_1 x + b_1;

while (c_2^T x < g_2) {

\dots

x = A_{k-1} x + b_{k-1};

while (c_k^T x < g_k) {

x = A_k x + b_k;

while (c_{k+1}^T x < g_{k+1}) {... }

x = U_k x + v_k; }

x = U_k x + v_k; }

x = U_{k-1} x + v_{k-1};

\dots }

x = U_1 x + v_1;
```


Example

```
for (j=1; j < n/p + 1; j= j*2)
                             for (k=j; k < m; k = k + j)
                                          veryComplicatedOperation(j,k);
                                                                      \binom{j}{k} = \binom{0}{0} \binom{j}{1} \binom{j}{k} + \binom{1}{0};
while (c_1^T x < g_1) {
  x = A_1 x + b_1;
  while (c_2^T x < g_2) {
      . . .
       x = A_{k-1}x + b_{k-1};
       while (c_k^T x < q_k) {
           x = A_k x + b_k;
           while (c_{k+1}^T x < g_{k+1}) \{ \dots \}
           x = U_k x + v_k; }
       x = U_{k-1}x + v_{k-1};
      ...}
  x = U_1 x + v_1;
```


Example

for (j=1; j < n/p + 1; j= j*2)for (k=j; k < m; k = k + j)veryComplicatedOperation(j,k); $\binom{j}{k} = \binom{0 \quad 0}{0 \quad 1} \binom{j}{k} + \binom{1}{0};$ while $\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} j \\ k \end{pmatrix} < \frac{n}{p} + 1$ while $(c_1^T x < g_1)$ { $x = A_1 x + b_1;$ while $(c_2^T x < q_2)$ { $x = A_{k-1}x + b_{k-1};$ while $(c_k^T x < g_k)$ { $x = A_k x + b_k;$ while $(c_{k+1}^T x < g_{k+1}) \{ \dots \}$ $x = U_k x + v_k; \}$ $x = U_{k-1}x + v_{k-1};$...} $x = U_1 x + v_1;$ }

Example

for (j=1; j < n/p + 1; j= j*2)for (k=j; k < m; k = k + j)veryComplicatedOperation(j,k); $\binom{j}{k} = \binom{0 \quad 0}{0 \quad 1} \binom{j}{k} + \binom{1}{0};$ while $\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} j \\ k \end{pmatrix} < \frac{n}{p} + 1$ while ($c_1^T x < g_1$) { $x = A_1 x + b_1$: while $(c_2^T x < q_2)$ { $\binom{j}{k} = \binom{1}{1} \binom{j}{0} \binom{j}{k} + \binom{0}{0};$ $x = A_{k-1}x + b_{k-1};$ while $(\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} j \\ k \end{pmatrix} < m)$ while $(c_k^T x < q_k)$ { $x = A_k x + b_k;$ while $(c_{k+1}^T x < g_{k+1}) \{ \dots \}$ $x = U_k x + v_k; \}$ $x = U_{k-1}x + v_{k-1};$...} $x = U_1 x + v_1;$

Example

for (j=1; j < n/p + 1; j = j*2)for (k=j; k < m; k = k + j)veryComplicatedOperation(j,k); $\binom{j}{k} = \binom{0 \quad 0}{0 \quad 1} \binom{j}{k} + \binom{1}{0};$ while $\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} j \\ k \end{pmatrix} < \frac{n}{p} + 1$ while ($c_1^T x < g_1$) { $x = A_1 x + b_1;$ while $(c_2^T x < q_2)$ { $\binom{j}{k} = \binom{1}{1} \binom{0}{0} \binom{j}{k} + \binom{0}{0};$ $x = A_{k-1}x + b_{k-1};$ while $(\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} j \\ k \end{pmatrix} < m)$ while $(c_k^T x < q_k)$ { $x = A_k x + b_k;$ while $(c_{k+1}^T x < g_{k+1}) \{ \dots \}$ $\binom{j}{k} = \binom{1}{1} \binom{j}{k} + \binom{0}{0};$ $x = U_k x + v_k;$ } $x = U_{k-1}x + v_{k-1};$...} $\binom{j}{k} = \binom{2}{0} \binom{j}{k} + \binom{0}{0};$ $x = U_1 x + v_1;$

}

Counting arbitrary affine loop nests

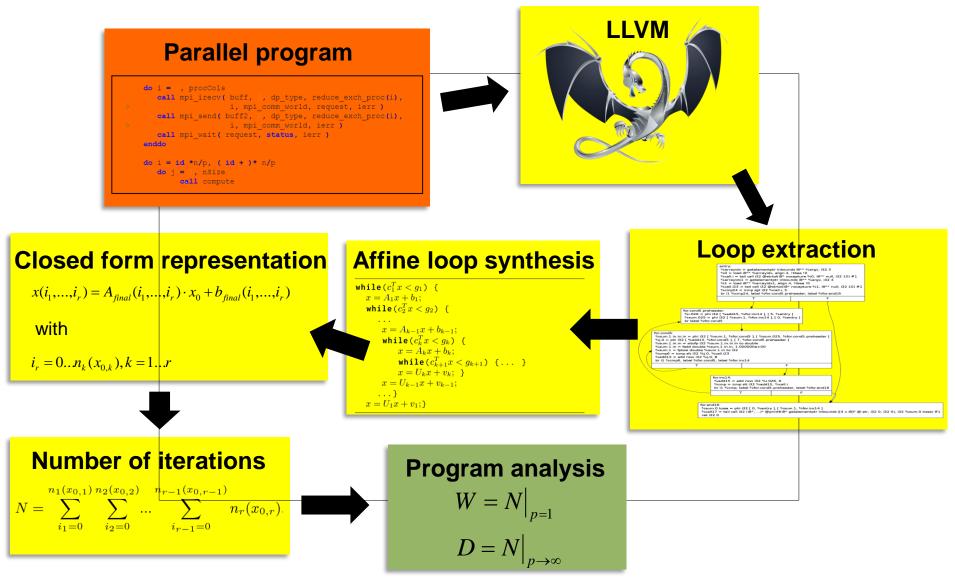
Example

for (j=1; j < n/p + 1; j= j*2)for (k=j; k < m; k = k + j)veryComplicatedOperation(j,k); $x = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix};$ while $(c_1^T x < q_1)$ { while $(\begin{pmatrix} 1 & 0 \end{pmatrix} x < \frac{n}{p} + 1)$ { $x = A_1 x + b_1;$ $x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$ while $(c_2^T x < q_2)$ { $x = A_{k-1}x + b_{k-1};$ *while* $((0 \ 1)x < m)$ { while $(c_k^T x < q_k)$ { $x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $x = A_k x + b_k;$ while $(c_{k+1}^T x < g_{k+1}) \{ \dots \}$ $x = U_k x + v_k;$ } $x = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$ $x = U_{k-1}x + v_{k-1};$...} $x = U_1 x + v_1;$

where $x = \begin{pmatrix} j \\ k \end{pmatrix}$

T. Hoefler, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, SPAA'14

Overview of the whole system



 $\mathbf{na} \cdot u$

nprows

What problems are remaining?

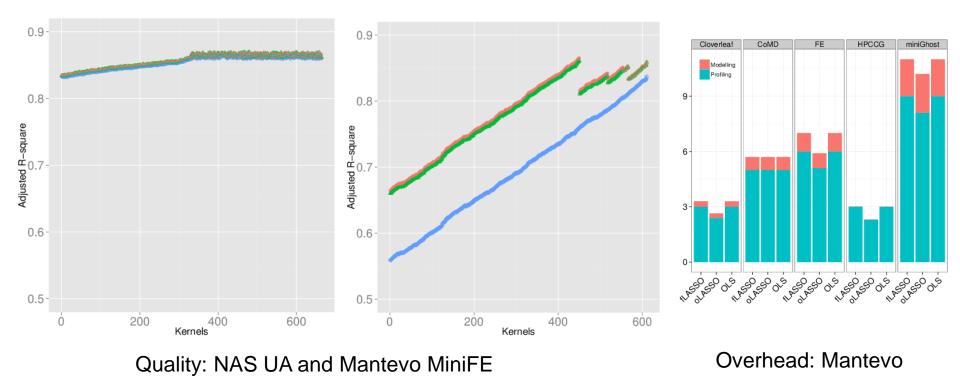
- Well, what about non-affine loops?
 - More general abstract interpretation (next step)
 - Not solvable \rightarrow will always have undefined terms

Back to PMNF?

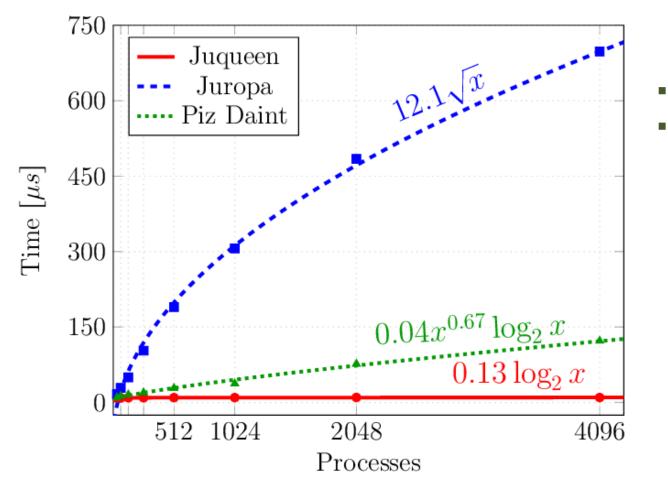
- Generalize to multiple input parameters
 a) Bigger search-space
 b) Bigger trace files
- Ad-hoc (partial) solution: online machine learning PEMOGEN
 - Replace cross-validation with LASSO (regression with L₁ regularizer) Much cheaper!
 - Replace LASSO with online LASSO [1] No traces!

PEMOGEN – static analysis

- Also integrated into LLVM compiler
 - Automatic kernel detection and instrumentation (Loop Call Graph)
 - Static dataflow analysis reduces parameter space for each kernel



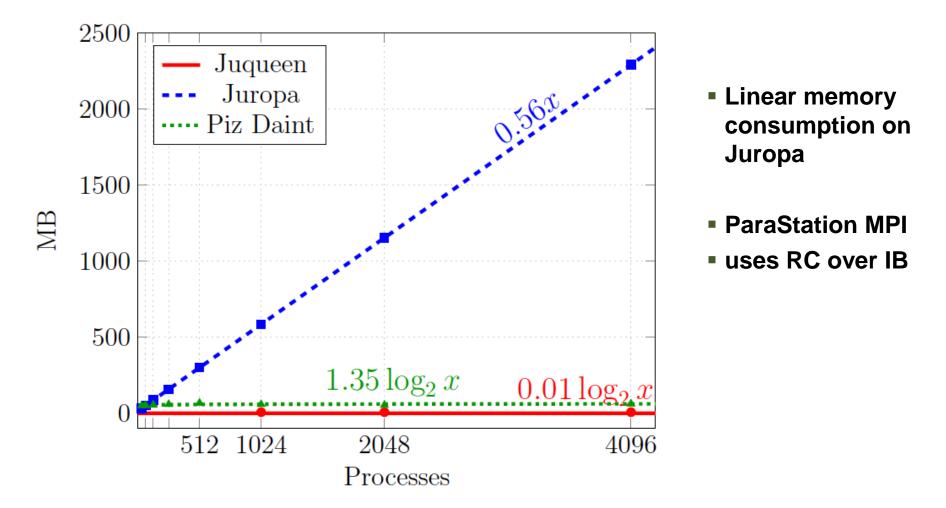
Use-case A: automatic testing (Allreduce time)



- Divergence on Piz
- Daint is *O*(*p*^{0.67}), the highest of all three

S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your Implementation Meet Your Expectations?, ICS'15

Use-case B: automatic testing (MPI memory size)



Performance Analysis 2.0 – Automatic Models

DFG

- Is feasible
 Still a long way to go ...
- Offers insight
- Requires low effort
- Improves code coverage

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SPPEXA

A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes. *Supercomputing (SC13).*

T. Hoefler, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs. *SPAA 2014.*

A. Bhattacharyya, T. Hoefler: PEMOGEN: Automatic Adaptive Performance Modeling during Program Runtime, *PACT 2014*

S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your Implementation Meet Your Expectations? *ICS 2015*

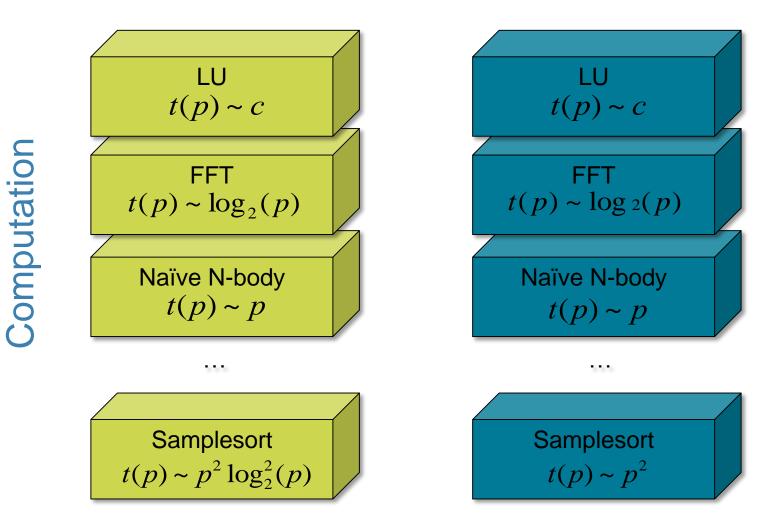
CO 201

Contraction of

spcl.inf.ethz.ch

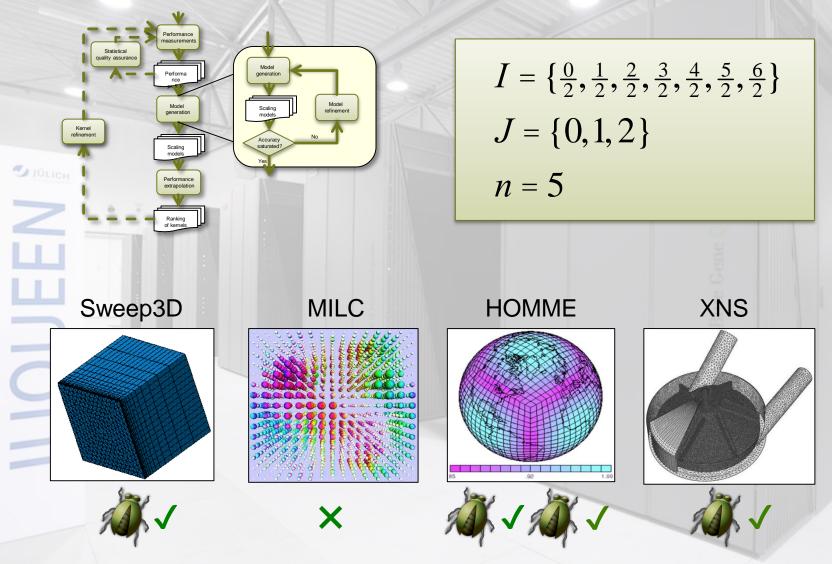
Backup

How to mechanize the expert? \rightarrow Survey!



Communication

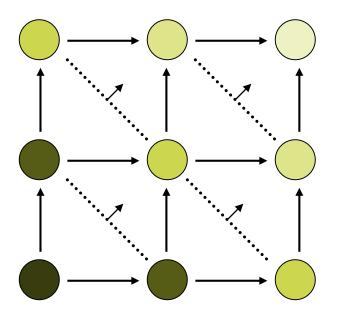
Evaluation overview



Sweep3D communication performance

- Solves neutron transport problem
- 3D domain mapped onto 2D process grid
- Parallelism achieved through pipelined wave-front process

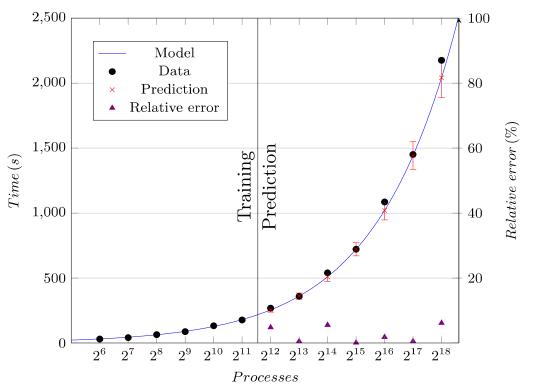
$$t^{comm} = c \cdot \sqrt{p}$$

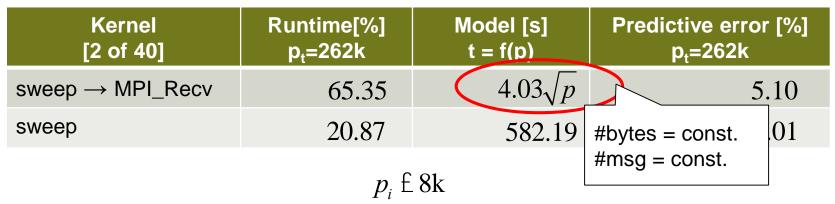


- LogGP model for communication developed by Hoisie et al.
 - We assume $p=p_x^*p_y \rightarrow Equation$ (6) in [1]

[1] A. Hoisie, O. M. Lubeck, and H. J. Wasserman. Performance analysis of wavefront algorithms on very-large scale distributed systems. In Workshop on Wide Area Networks and High Performance Computing, pages 171–187. Springer-Verlag, 1999.

Sweep3D communication performance

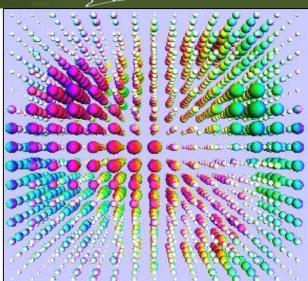




ETHzürich

MILC

- MILC/su3_rmd from MILC suite of QCD codes with performance model manually created
- Time per process should remain constant except for a rather small logarithmic term caused by global convergence checks

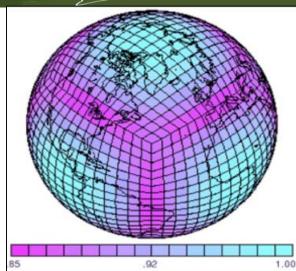


Kernel [3 of 479]	Model [s] t=f(p)	Predictive Error [%] p _t =64k
compute_gen_staple_field	2.40×10^{-2}	0.43
g_vecdoublesum \rightarrow MPI_Allreduce	$6.30 \times 10^{-6} \times \log_2^2(p)$	0.01
mult_adj_su3_fieldlink_lathwec	3.80×10 ⁻³	0.04

 $p_i \pm 16k$

HOMME

- Core of the Community Atmospheric Model (CAM)
- Spectral element dynamical core on a cubed sphere grid

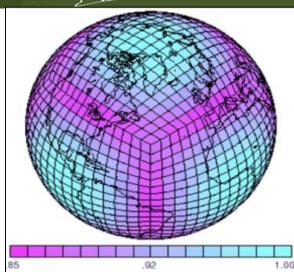


Kernel [3 of 194]	Model [s] t = f(p)	Predictive error [%] p _t = 130k
box_rearrange → MPI_Reduce	$0.026 + 2.53 \times 10^{-6} p \times \sqrt{p} + 1.24 \times 10^{-12} p^{3}$	57.02
vlaplace_sphere_vk	49.53	99.32
compute_and_apply_rhs	48.68	1.65

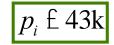
 $p_i \pm 15k$

HOMME (2)

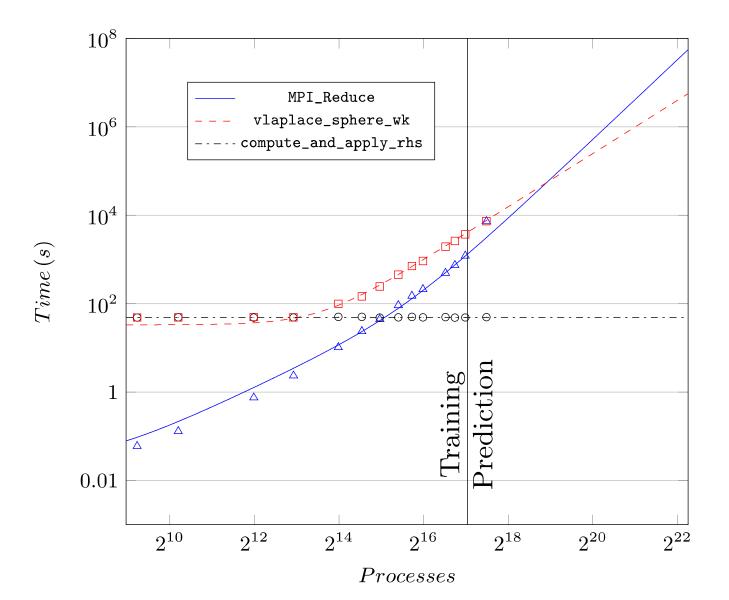
- Core of the Community Atmospheric Model (CAM)
- Spectral element dynamical core on a cubed sphere grid



Kernel [3 of 194]	Model [s] t = f(p)	Predictive error [%] p _t = 130k
box_rearrange → MPI_Reduce	$3.63 \times 10^{-6} p \times \sqrt{p} + 7.21 \times 10^{-13} p^3$	30.34
vlaplace_sphere_vk	$24.44 \pm 2.26 \times 10^{-7} p^2$	4.28
compute_and_apply_rhs	49.09	0.83



HOMME (3)



40

What about strong scaling?

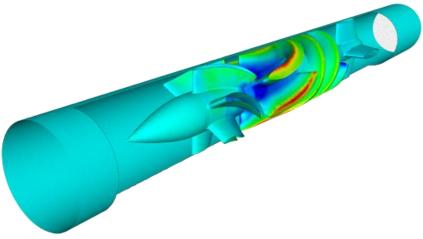
- Wall-clock time not necessarily monotonically increasing harder to capture model automatically
 - Different invariants require different reductions across processes

	Weak scaling	Strong scaling
Invariant	Problem size per process	Overall problem size
Model target	Wall-clock time	Accumulated time
Reduction	Maximum / average	Sum

- Superlinear speedup through cache effects
 - Measure and model re-use distance?

XNS

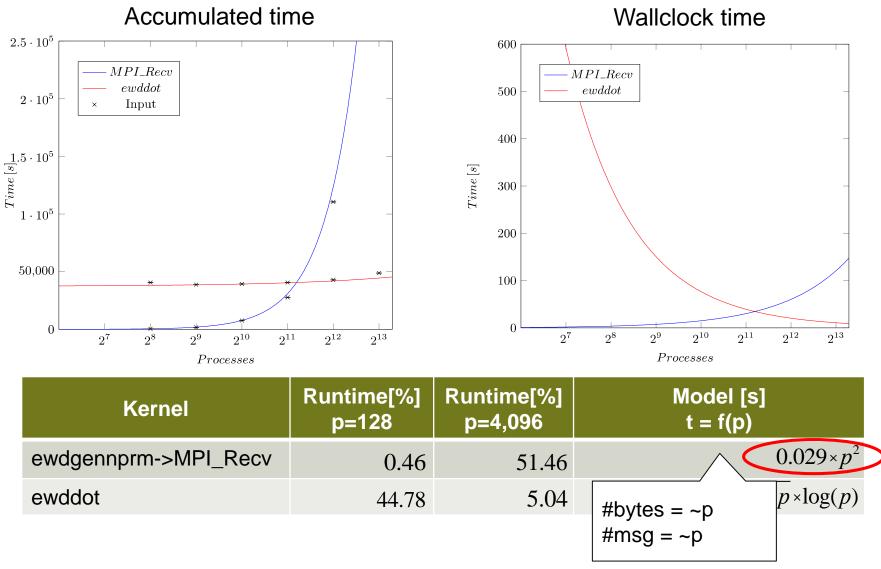
- Finite element flow simulation program with numerous equations represented:
 - Advection diffusion
 - Navier-Stokes
 - Shallow water



Strong scaling analysis

- P = {128; ...; 4,096}
- 5 measurements per p_i
- Using accumulated time across processes as metric

XNS (2)



Step back – what do we really care about?

Work

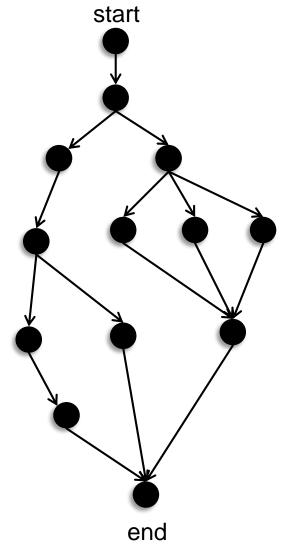
$$W = T_1$$

Depth

$$D = T_{\infty}$$

Parallel efficiency

$$E_p = \frac{T_1}{pT_p}$$

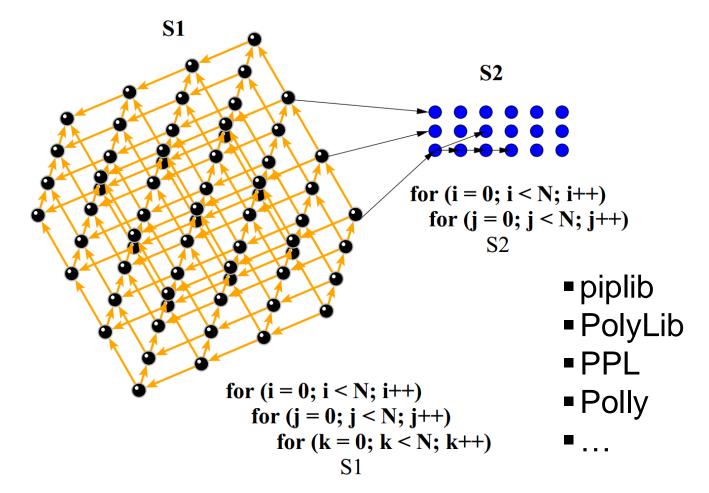


spcl.inf.ethz.ch Ƴ @spcl_eth

45

Related work: counting loop iterations

Polyhedral model

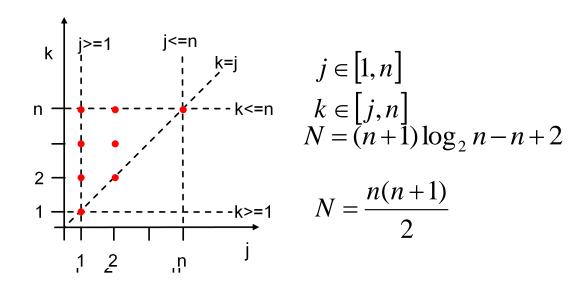


46

Related work: counting loop iterations

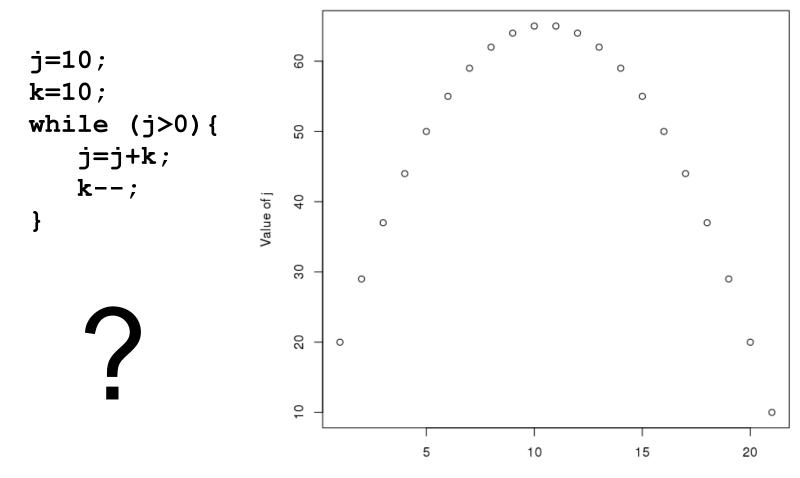
Polyhedral model

for (j = 1; j <= n; j = j*2)
 for (k = j; k <= n; k = k++)
 veryComplicatedOperation(j,k);</pre>



Related work: counting loop iterations

• When the polyhedral model cannot handle it



Algorithm in details

Closed form representation of a loop

Single affine statement

$$x = Lx + p$$

$$x = x_0;$$

$$while(c^T x < g)$$

$$x = Ax + b;$$

i–1

$$x(i, x_{0}) = A^{i}x_{0} + \sum_{j=0} A^{j} \cdot b$$

$$x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$x(i, x_{0}) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{i} x_{0} + \sum_{j=0}^{i-1} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{j} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} x_{0} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

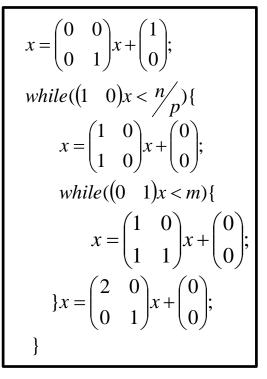
$$n(x_{ij}) h G_{i}(g) = \sum_{j=0}^{i-1} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{j} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} x_{0} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$n(x_{0}) = \left\lceil \frac{m - k_{0}}{j_{0}} \right\rceil$$

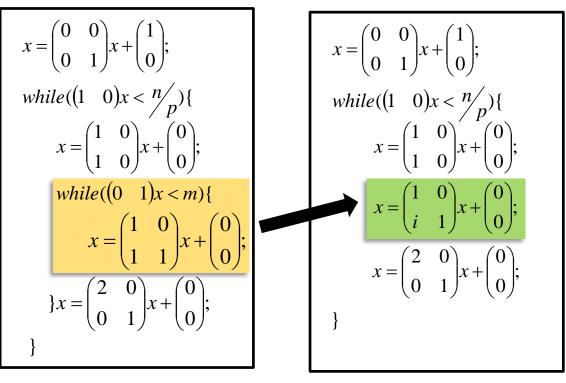
Algorithm in details

Folding the loops



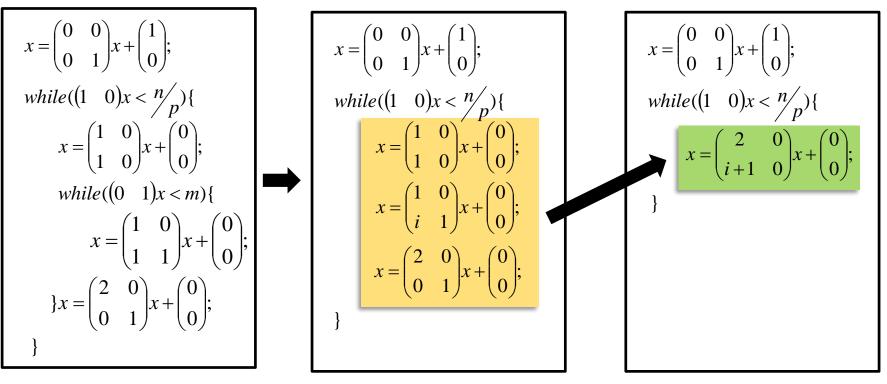
Algorithm in details

Folding the loops



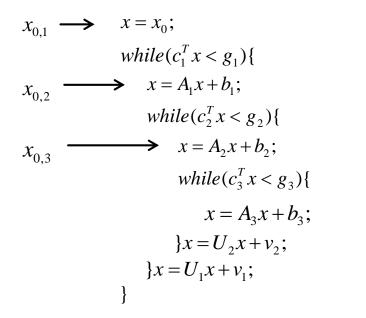
Algorithm in details

Folding the loops



Algorithm in details

Starting conditions



Algorithm in details

Counting the number of iterations

We have:

Algorithm in details

Counting the number of iterations

We have:

- The closed form for each loop:
 - Single affine statement
 - Counting function
- Starting condition for each loop

Algorithm in details

Counting the number of iterations

We have:

- The closed form for each loop:
 - Single affine statement
 - Counting function
- Starting condition for each loop

Number of iterations:

$$N = \sum_{i_1=0}^{n_1(x_{0,1})} \sum_{i_2=0}^{n_2(x_{0,2})} \dots \sum_{i_{r-1}=0}^{n_{r-1}(x_{0,r-1})} n_r(x_{0,r}).$$

Algorithm in details

Counting the number of iterations

The equation computes the precise number of iterations

$$N = \sum_{i_1=0}^{n_1(x_{0,1})} \sum_{i_2=0}^{n_2(x_{0,2})} \dots \sum_{i_{r-1}=0}^{n_{r-1}(x_{0,r-1})} n_r(x_{0,r}).$$

spcl.inf.ethz.ch Ƴ @spcl_eth

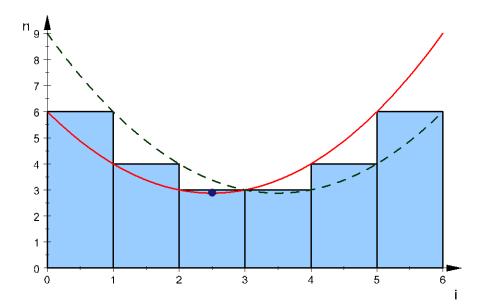
Algorithm in details

Counting the number of iterations

The equation gives precise number of iterations

$$N = \sum_{i_1=0}^{n_1(x_{0,1})} \sum_{i_2=0}^{n_2(x_{0,2})} \dots \sum_{i_{r-1}=0}^{n_{r-1}(x_{0,r-1})} n_r(x_{0,r}).$$

- But simplification may fail \rightarrow Sum approximation
 - Approximate sums by integrals
 - \rightarrow lower and upper bounds



Solving more general problems

Solving more general problems

Multipath loops

Solving more general problems

- Multipath loops
- Conditional statements

Solving more general problems

- Multipath loops
- Conditional statements
- Non-affine loops



$$N = \frac{\texttt{na} \cdot u}{\texttt{nprows}}$$

Case studies

NAS Parallel Benchmarks: EP

$$N(m,p) = \left\lceil \frac{2^{m-16} \cdot (u+2^{16})}{p} \right\rceil$$

u: do i=1,100
 ik =kk/2
 if (ik .eq. 0) goto 130
 kk=ik
 continue

Case studies

1.1

0.9

parallel efficiency F = 2.0 efficiency F = 5.0 ficiency

0.5

0.4

0.3 <mark>b--</mark>0

256

128

512

NAS Parallel Benchmarks: EP

$$N(m,p) = \left\lceil \frac{2^{m-16} \cdot (u+2^{16})}{p} \right\rceil$$

u: do i=1,100
 ik =kk/2
 if (ik .eq. 0) goto 130
 kk=ik
 continue

$$\frac{(u+2^{16})}{p}$$

$$\frac{(u+2^{16})}{p}$$

$$E_{P} = \frac{2^{m}}{p\left[\frac{2^{m}}{p}\right]}$$

$$E_{P} \approx 1 \text{ if } p \leq 2^{m}$$

$$E_{P} \approx 2^{m}/p \text{ if } p > 2^{m}$$

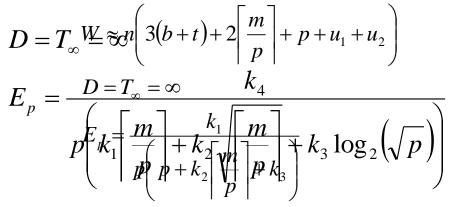
number of processes

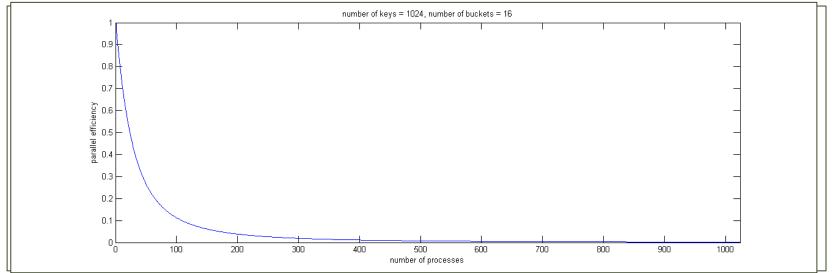
Case studies

CG – conjugate gradient

$$W \approx k_1 \left[\frac{m}{p}\right] + k_2 \sqrt{\left[\frac{m}{p}\right]} + k_3 \log_2\left(\sqrt{p}\right)$$

IS – integer sort





Counting Arbitrary Affline Loop Nests

• Why affine loops?

Closed form representation of the loop

$x=x_0;$	// Initial assignment	
while ($c^T x < g$) x = Ax + b;	// Loop guard // Loop update	

 $x(i, x_0) = L(i) \cdot x_0 + p(i)$ $n(x_0, c, g) = \arg\min_d (c^T \cdot x(d, x_0) \ge g)$

66

Counting Arbitrary Affline Loop Nests

Why affine loops?

Closed form representation of the loop

Initial assignment	
	′Loop guard ′Loop update

 $x(i, x_0) = L(i) \cdot x_0 + p(i)$ $n(x_0, c, g) = \arg\min_{d} (c^T \cdot x(d, x_0) \ge g)$

 $\begin{pmatrix} 0\\ 1 \end{pmatrix} x_0 + \begin{pmatrix} 0\\ 0 \end{pmatrix}$

Example

for (k=j; k < m; k = k + j)
veryComplicatedOperation(j,k);
$$x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$
while((0 1)x < m){
$$x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$
where $x_0 = \begin{pmatrix} m - k_0 \\ j_0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix};$
where $x_0 = \begin{pmatrix} j_0 \\ k_0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Loops

Multipath affine loops

```
x=1;
while(x < n/p + 1) {
  y=x;
  while(y < m) { S1; y=2*y; }
  z=x;
  while(z < m) { S2; z= z + x; }
  x=2*x;
}
```