. S P . spcl.inf.ethz.ch
ETH:zurich ‘ Aﬂz W @spcl_eth

TORSTEN HOEFLER

An Overview of Static & Dynamic Techniques
for Automatic Performance Modeling 7

B0 ’f.z
In collaboratlon W|th Alexandru Calot0|u and Fellx Wolf @ RWTH Aachen
with students Arnamoy Bhattacharyya and Grzegorz Kwasniewski @ SPCL

presented at ISC 2016, Frankfurt, July 2016

5 = e B % = %
All images belong to their creator!

o RPN S , spcl.inf.ethz.ch
ETH ziirich TN Y

_ A Original finding:
My sinful yOUth A If carefully tuned, NBC speeds up

a 3D solver
W el S 1| (2006) Full code published
g o IpZdl A 8003 domain i 4 GB array
g sl R | 1 process per node, 8-96 nodes
IR | Opteron 246 (old even in 2006,
T ey T s retired now)
Sl A Super-linear speedup for 96 nodes
\\ g | A i 2019 ~5% better than linear
| e el B o A 9 years later: attempt to
w \ o= reproduce J !
f \e\ System A: 28 quad-core nodes,
FIER s &) Xeon E5520
EE = 1 System B: 4 nodes, dual
e Opteron 6274
PRI mmmmnhuBmaaanREOunRe MNeither the experiment in A nor the one in B could
reproduce the results presented in the original paper,

where the usage of the NBC library resulted in a
performance gain for practically all node counts, reaching
a superlinear speedup for 96 cores (explained as being
due to cache effects in the inner part of the matrix vector
product) . O

spcl.inf.ethz.ch
3y @spcl_eth

ETH:zurich

How to report a performance result?

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

Torsten Hoefler
Dept. of Computer Science
ETH Zurich
Zurich, Switzerland
htor@inf.ethz.ch

ABSTRACT

Measuring and reporting performance of parallel computers con-
stitutes the basis for scientific advancement of high-performance
computing (HPC). Most scientific reports show performance im-
provements of new techniques and are thus obliged to ensure repro-
ducibility or at least interpretability. Our investigation of a strati-
fied sample of 120 papers across three top conferences in the field
shows that the state of the practice is lacking. For example, it is of-
ten unclear if reported improvements are deterministic or observed
by chance. In addition to distilling best practices from existing
work, we propose statistically sound analysis and reporting tech-
niques and simple guidelines for experimental design in parallel
computing and codify them in a portable benchmarking library. We
aim to improve the standards of reporting research results and initi-
ate a discussion in the HPC field. A wide adoption of our minimal
set of rules will lead to better interpretability of performance results
and improve the scientific culture in HPC.

Roberto Belli
Dept. of Computer Science
ETH Zurich
Zurich, Switzerland
bellir@inf.ethz.ch

Reproducing experiments is one of the main principles of the sci-
entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler, the
muntime environment, the machine, and the measurement method-
ology [20,43]. If a single one of these aspects of experimental de-
sign is not appropriately motivated and described, presented resulis
can hardly be reproduced and may even be misleading or incorrect.

The complexity and unigueness of many supercomputers makes
reproducibility a hard task. For example, it is practically impossi-
ble to recreate most hero-runs that utilize the world’s largest ma-
chines because these machines are often unique and their software
configurations changes regularly. We introduce the notion of in-
terpretability, which 1s weaker than reproducibility. We call an ex-
periment interpretable if it provides enowgh information to allow
scientists to understand the experiment, draw own conclusions, as-
sess their certainty, and possibly generalize results. In other words,
interpretable experiments support sound conclusions and convey
precise information amone scientists, Obviouslv, everv scientific

@SCO0 15

. . i SRR spcl.inf.ethz.ch
ETH ziirich TN Y

&

Analytical application performance modeling

A Scalability bug prediction

A Find latent scalability bugs early on (before machine deployment)
SC13: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes

A Automated performance testing

A Performance modeling as part of a software engineering discipline in HPC
| CS 06 1ShudleiSA. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your Implementation Meet Your Expectations?

A Hardware/Software co-design
A Decide how to architect systems

A Making performance development intuitive
1.5-10"*2% — 2.6 - 10~

1.2e+06 r r r r 1.2e+06

Benchmark + ' Benchmark + 2 _
! Application Model ———— + R 0 93
1e+06 | + 1e+06 | +
+ +/
+ @ i+
800000 | + 3 fﬂog —4 3 sa A2 2
¥ +
E + + ;E .) 10 - 2.6+:-"+1O x
o 600000 | - x 600000 | -
E +4 VS " g ++
400000 | +* 1 @ 400000 | o 9 *
» “ R*=0.93
200000 +++ 4 200000 i #;:l’
o ot Fapat e o R N T +*
'D 3'DEI 600 900 1200 15'D'D 1&[!'[! 2100 'D 3'DEI 600 900 1200 15'D'D 1&[!'[! 2100

Size (M) Size (M)

ETH:zurich

spcl.inf.ethz.ch
/ / " 9 @spcl_eth

Manual analytical performance modeling

Identify
CINES

Create
models

A Parts of the program that dominate its
performance at larger scales
A 1dentified via small-scale tests and intuition

A Laborious process
A Still confined to a small community of skilled

experts

A Disadvantages

A Time consuming
A Error-prone, may overlook unscalable code

TH, W. Gropp, M. Snir, and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11

. . , G spcl.inf.ethz.ch
ETH:zurich : s / 7 _Ax ¥ @spcl_eth

Our first step: scalability bug detector

1 Performance measurements (profiles)

main() { 3
foo() p,= 1,024 =2
bar() C__G
compute() | Ps= 2,048 S
4
: A All functions Pe = 4,096 o
| 7 | =
| 4
Input
Output
| 1. foo
Ranking: 2. compute
1. Asymptotic | 3. main
2. Target scale p; 4. bar
[€]
4

ETH:zurich

Runtime

spcl.inf.ethz.ch
/ / " 9 @spcl_eth

Primary focus on scaling trend

2e+07 4e+07 6e+07 8e+07

0e+00

Our ranking

o Fi
A F2

Common performance
analysis chart in a
not-so-great paper

wn e
T 71 T
w e

N

2000 4000 6000 8000 10000

Number of Processes

spcl.inf.ethz.ch

ETH:zurich ' (Y 7 A7 ¥ @spcl_eth

Primary focus on scaling trend

Our ranking

Actual measurement in
laboratory conditions

wn e
T 71 T
w e

N

