
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

An Overview of Static & Dynamic Techniques 

for Automatic Performance Modeling

All images belong to their creator!

in collaboration with Alexandru Calotoiu and Felix Wolf @ RWTH Aachen

with students Arnamoy Bhattacharyya and Grzegorz Kwasniewski @ SPCL

presented at ISC 2016, Frankfurt, July 2016



spcl.inf.ethz.ch

@spcl_eth

Á Original findings:

Á If carefully tuned, NBC speeds up 

a 3D solver

Full code published

Á8003 domain ï4 GB array

1 process per node, 8-96 nodes

Opteron 246 (old even in 2006, 

retired now)

ÁSuper-linear speedup for 96 nodes

~5% better than linear

Á 9 years later: attempt to 

reproduce J!

System A: 28 quad-core nodes, 

Xeon E5520

System B: 4 nodes, dual 

Opteron 6274
ñNeither the experiment in A nor the one in B could 

reproduce the results presented in the original paper, 

where the usage of the NBC library resulted in a 

performance gain for practically all node counts, reaching 

a superlinear speedup for 96 cores (explained as being 

due to cache effects in the inner part of the matrix vector 

product).ò 2

(2006)

(2015)

A

B1 node 

(system 

B)

My sinful youth



spcl.inf.ethz.ch

@spcl_eth

Á Assume you want to get into the top500

ÁRun HPL until you get what you hope for ï77 Tflop/s

3

How to report a performance result?

@SCô15



spcl.inf.ethz.ch

@spcl_eth

Á Scalability bug prediction

ÁFind latent scalability bugs early on (before machine deployment)
SC13: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes

Á Automated performance testing 

ÁPerformance modeling as part of a software engineering discipline in HPC
ICSô15: S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your Implementation Meet Your Expectations?

Á Hardware/Software co-design

ÁDecide how to architect systems

Á Making performance development intuitive

4

Analytical application performance modeling

vs.



spcl.inf.ethz.ch

@spcl_eth

Á Disadvantages

ÅTime consuming

ÅError-prone, may overlook unscalable code

5

Manual analytical performance modeling

Identify 
kernels

ÅParts of the program that dominate its 
performance at larger scales

ÅIdentified via small-scale tests and intuition

Create 
models

ÅLaborious process 

ÅStill confined to a small community of skilled 
experts

TH, W. Gropp, M. Snir, and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11



spcl.inf.ethz.ch

@spcl_eth

p4 = 1,024

p5 = 2,048

p6 = 4,096

6

Our first step: scalability bug detector

main() { 

foo()

bar()

compute()

}

Instrumentation 

Performance measurements (profiles)

Input

Output

1. foo

2. compute

3. main

4. bar

[é]

Ranking:

1. Asymptotic

2. Target scale pt

p1 = 128

p2 = 256

p3 = 512

Automated 

modeling

Å All functions

W
e
a
k
 s

c
a
lin

g



spcl.inf.ethz.ch

@spcl_eth

7

Primary focus on scaling trend

Our ranking

1. F1

2. F3

3. F2

Common performance 

analysis chart in a 

not-so-great paper



spcl.inf.ethz.ch

@spcl_eth

8

Primary focus on scaling trend

Our ranking

Actual measurement in 

laboratory conditions 1. F1

2. F3

3. F2


