Towards coordinated optimization of
computation and communication in parallel
applications

Torsten HO er

Open Systems Lab
Indiana University
Bloomington, IN, USA

Technische Universitat Minster
Fakultét fur Informatik

Minster, Germany
05th June 2008

Outline

Q Computer Architecture Past, Present & Future
e Why Non blocking Collectives?

© LibnBC

@ And Applications?

e Ongoing Efforts

Computer Architecture Past, Present & Future

Outline

Q Computer Architecture Past, Present & Future

Computer Architecture Past, Present & Future

Fundamental Assumptions (1)

We need more powerful machines!

@ Solving real-world scienti ¢ problems needs huge
processing power (more than available)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore's law is still valid (humber of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

4

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits

Computer Architecture Past, Present & Future

Fundamental Assumptions (II)

Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PES)

Communication latency is limited

@ It's widely accepted that the speed of light limits
data-transmission

@ Example: minimal O-byte latency for Im 3:3ns 13
cycles on a 4GHz PE

4

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)

Computer Architecture Past, Present & Future

Assumptions about Parallel Program Optimization

Collective Operations
@ Collective Operations (COs) are an optimization tool
@ CO performance in uences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance

Computer Architecture Past, Present & Future

The LogGP Model

level 4
Sender Receiver
OS 0r
CPU p—ovo- —

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Network ! L !
» 4

rn LAY

‘I Y . v

g+b g+ G

>
time

) sending message ofsizes: L+ 2 o+(s 1) G

Computer Architecture Past, Present & Future

Resulting Interconnect Trends

Ongoing Technology Change

@ modern interconnects of oad communication to
co-processors (Quadrics, In niBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even legacy Ethernet supports protocol of oad
@L+g+m G>> o

) we prove our expectations with benchmarks of the user CPU
overhead

Computer Architecture Past, Present & Future

LogGP Model Examples - Gige/TCP

00 | GIGE/CP -L+G*stg |
GigE/TCP 0

500 *FFP&

400 thPtFH

300 FM

200 ﬁ
ﬁﬁ i

100 MW

0

0 10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Time in microseconds

Computer Architecture Past, Present & Future

LogGP Model Examples - Myrinet/GM

160 — \ \ \
Myrinet/GM - L+G*s+g ~ + T
140 - Myrinet/GM - o s .

120
mﬁﬁ
100

80 Al

60 ﬁfﬁ
40 ﬁﬁ
20 M a
ol

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Time in microseconds

Computer Architecture Past, Present & Future

LogGP Model Examples - In niBand/OpeniB

70

OpeniB - L+G*s+g

60 OpeniB -0 ++

50 1

40 =

30
e
+
20 o

Time in microseconds

10 e
+
<t

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Why Non blocking Collectives?

Outline

9 Why Non blocking Collectives?

Why Non blocking Collectives?

Isend/lIrecv is there - Why Collectives?

@ Gorlach, '04: “Send-Receive Considered Harmful”
@ , Dijkstra, '68: “Go To Statement Considered Harmful”

point to point

if (rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops

Why Non blocking Collectives?

Sparse Collectives

But my algorithm only needs nearest neighbor communication!?
) this is a collective too, just sparse (cf. sparse BLAS)

sparse communication with neighbors on process
topologies
graph topology makes it generic

many optimization possibilities (process placing, overlap,
message scheduling/forwarding)

easy to implement

not part of MPI but fully implemented in LibNBC and
proposed to the MPI Forum

Why Non blocking Collectives?

Performance Bene ts

overlap

@ leverage hardware parallelism (e.g. In niBand ™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the in uence of OS noise

Why Non blocking Collectives?

Quantifying the Bene ts

@ scale typically with O(log,P) or O(P) sends
@ wasted CPU time: log,P (L+(s 1) G)
Fast Ethernet: L =50-60 s

Gigabit Ethernet: L =15-20 s

InniBand: L=2-7 s

1 s 6000 FLOP on a 3GHz Machine

@ ... synchronization overhead not easy to assess

¢ © ¢ ¢

Why Non blocking Collectives?

Modelling the Overlap

LogGP Model for Allreduce:
talred = 2 (20+ L+ m G) dlog,Pe+ m dog,P

1000 : —
CPU overhead (1kiB) ——
Network time (1KiB) «-semsees
100 15us non-block|ngf-\-/.(-e-l.r.rf_ziq": ------------
- 10 T T T T T T e P T T L L O e EEEECT CE PP EEC R R RPN AT
=
(]
£
[1 //—
0.1 /
0.01

10 100 1000 10000

Why Non blocking Collectives?

CPU Overhead Benchmarks

Allreduce, LAM/MPI1 7.1.2/TCP over GigE

CPU Usage (share)

0.03
0.025
0.02
0.015
0.01
0.005

10 00 Data Size

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Why Non blocking Collectives?

MPI_Bcast with PO delayed - Jumpshot

[%2]
)
(%]
(%]
[)
(&)
(@)
S
o

time—»

Why Non blocking Collectives?

MPI_Ibcast with PO delayed + overlap - Jumpshot

[%2]
)
(%]
(%]
[)
(&)
(@)
S
o

time—»

LibNBC

Outline

© LibnBC

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or MPI)

MPI_Ibcast(buf, count, MPI_INT, 0, comm, &req);
MPI_Wait(&req);

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or MPI)

Interface

MPI_Ibcast(buf, count, MPI_INT, 0, comm, &req);
MPI_Wait(&req);

| A\

Proposal

Hoe er et. al. (2006): "Non-Blocking Collective Operations for
MPI-2"

LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

sendtol recv from# enb send toz* recv fror+|2 %

LibNBC download: http://www.unixer.de/NBC

LibNBC

Overhead Benchmarks - Gather with In niBand on 64
nodes

30000 : : —
Open MPI/blocking —+—
LibNBC/Open MPI ----¢---- A+
25000 LibNBC/LIbOF -
2 20000
(2]
2
® 15000
(O]
£ /
2 10000
o)
5000
----------------------------- X
e *

100 150 200 250 300
Message Size (kilobytes)

LibNBC

Overhead Benchmarks - Alltoall with In niBand on 64
nodes

60000 ‘ —
Open MPI/blocking —+— n
LibNBC/Open MPI ----3¢--- /
50000 | LibNBC/LIDOF - /
2 40000 e
(2]
2 yd
T 30000 e
) /
<
g e
g 20000 /
10000 i
Oéx U P R X

0 50 100 150 200 250 300
Message Size (kilobytes)

And Applications?

Outline

@ And Applications?

And Applications?

Independent Computation Exists in Algorithm

1) Linear Solvers - Domain Decomposition

@ iterative linear solvers are used in many scienti ¢ kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped

2) Medical Image Reconstruction - Loop Iteration Pipelining

@ loops have independent parts

@ communication of loop i can be overlapped with parts of
loopi+ 1

And Applications?

1) Linear Solver - Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv or sparse

collectives
PO P1 P2 P3
P4 P5 P6 p7
P8 P9 P10 P11

[Process-local datal-} 2D Domain
[0 Halo-data

And Applications?

1) Linear Solver - Parallel Speedup (Best Case)

IB blocking —+—

L Eth blocking - L
100 Eth non-blocking & o 100 IB non-blocking -3¢
80 e 80 ot -
= A * =]
B 60 % S R T 60
3 L e g
© 40 e © 40
QEE """" e d
20 20
" /
FE) (x)
0 : 0
8 16 24 32 40 48 56 64 72 80 88 96 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs Number of CPUs

@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 800x800x800 (1 node 5300s)

And Applications?

2) Medical Image Reconstruction (32 Nodes)

25
MPI_Allreduce() ===
NBC_lallreduce() ==
NBC_lallreduce() (thread) s
20 [
) -
: ,,,,, —
FERLYE B N e e —
>
°
n
=]
o 10
E
|_
5
0

1 thread 2 threads 3 threads 4 threads

Data-parallel Computations

And Applications?

Automated Pipelining with C++ Templates

@ loop tiling

@ automated overlap with window of outstanding
communications

@ optimizing tiling factor and window size

Computation

reads

- input_reference

+ operator() (int, Buffer

Communication

- output_reference

writes
OutData

+ operator() (Buffer)
+ wait(int, Buffer)
+ test(Buffer)

writes

sends

Buffer

+ handle

+ tile_size()

1

BufferVector

- . Buffer

> + size()
+ operator()

And Applications?

Data-parallel Examples

1) Parallel Data Transformation (e.g., Compression)

@ scatter from source, transformation, gather to destination
@ scatter/gather step pipelined
@ example uses bzip2 algorithm

2) 3d Fast Fourier Transformation

@ 1d-distribution identical to “normal” 3D-FFT

start communication as early as possible

start MPI_lalltoall as soon as rst xz-plane is ready
calculate next xz-plane

start next communication accordingly ...

collect multiple xz-planes (tile factor)

6 ¢ ¢ ¢ ¢

And Applications?

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

And Applications?

Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction

And Applications?

Transformation z Direction

start MPI_lalltoall of rst xz plane and transform second pl ane

y X

cyan color means that data is communicated in the background

And Applications?

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication

And Applications?

Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to go on ...

And Applications?

Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed)

And Applications?

Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation

And Applications?

Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication

And Applications?

1) Parallel Compression Communication Overhead

0.5
MPI/BL ===

MPI/NBC
5 OF/NBC mmmm
L 04} L L
e}
© -
()
-E N
¢ 03]
o 1
C
S ;
S o2 B -
S 1
>
E] 1 |
& o1 | P -
N

0 i

And Applications?

2) 10243 3d-FFT over In niBand

MPI/BL ==
MPI/NB == 3
6 "NBC/NB
5
@
© 4
£
|_
— 3
LL
L
2
1

1 ppn 2 ppn
@ P=128, “Coyote”@LANL - 128/64 dual socket 2.6GHz Opteron node:

2) 10243 3d-FFT on XT4

18
16
14
12
10

FFT Time (s)

o N A O

And Applications?

MPI/BL ===

NBC/NB

32 procs

64 procs

128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

2) 10243 3d-FFT on XT4 (Communication Overhead)

MPI/BL ===
4 = NBC/NB

Communication Overhead (s)

32 procs 64 procs 128 procs
@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

2) 6402 3d-FFT In niBand (Communication Overhead)

0.7 MPI/BL mmmm |
' MPI/NBC ==
a m OF/NBC mmm
< 06 _
e |
E N
c |
i -
8 0.4 —
c o
> | |
E 0.3 s
O 0.2 B T ,
T | | o
H b | b b
LL o | | 1
01 J I I b b | I
0= ' B0 B
64 32 16 8 4 2

@ “Odin"@IU - dual socket dual core 2.0GHz Opteron In niBand

Ongoing Efforts

Outline

e Ongoing Efforts

Ongoing Efforts

Ongoing Work

@ optimized collectives and modeling

@ more low-level transports (e.g., MX)
@ analyze of oading/onloading collectives

4

MPI-Forum (MPI-3) Efforts

@ proposed non-blocking collectives
@ proposed sparse collective

Applications

@ work on more applications (apply C++ templates)
@) interested in collaborations (ask me!)

Ongoing Efforts

Discussion

THE END

Questions?

Thank you for your attention!

	Computer Architecture Past, Present & Future
	Why Non blocking Collectives?
	LibNBC
	And Applications?

