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Computer Architecture Past, Present & Future

Fundamental Assumptions (1)

We need more powerful machines!

@ Solving real-world scienti ¢ problems needs huge
processing power (more than available)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore's law is still valid (humber of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

4

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits
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Fundamental Assumptions (II)

Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PES)

Communication latency is limited

@ It's widely accepted that the speed of light limits
data-transmission

@ Example: minimal O-byte latency for Im  3:3ns 13
cycles on a 4GHz PE

4

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)




Computer Architecture Past, Present & Future

Assumptions about Parallel Program Optimization

Collective Operations
@ Collective Operations (COs) are an optimization tool
@ CO performance in uences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance
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The LogGP Model
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Resulting Interconnect Trends

Ongoing Technology Change

@ modern interconnects of oad communication to
co-processors (Quadrics, In niBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even legacy Ethernet supports protocol of oad
@L+g+m G>> o

) we prove our expectations with benchmarks of the user CPU
overhead
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LogGP Model Examples - Gige/TCP
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LogGP Model Examples - Myrinet/GM
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LogGP Model Examples - In niBand/OpeniB
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Why Non blocking Collectives?

Isend/lIrecv is there - Why Collectives?

@ Gorlach, '04: “Send-Receive Considered Harmful”
@ , Dijkstra, '68: “Go To Statement Considered Harmful”

point to point

if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops
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Sparse Collectives

But my algorithm only needs nearest neighbor communication!?
) this is a collective too, just sparse (cf. sparse BLAS)

sparse communication with neighbors on process
topologies
graph topology makes it generic

many optimization possibilities (process placing, overlap,
message scheduling/forwarding)

easy to implement

not part of MPI but fully implemented in LibNBC and
proposed to the MPI Forum
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Performance Bene ts

overlap

@ leverage hardware parallelism (e.g. In niBand ™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the in uence of OS noise
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Quantifying the Bene ts

@ scale typically with O(log,P) or O(P) sends
@ wasted CPU time: log,P (L+(s 1) G)
Fast Ethernet: L =50-60 s

Gigabit Ethernet: L =15-20 s

InniBand: L=2-7 s

1 s 6000 FLOP on a 3GHz Machine

@ ... synchronization overhead not easy to assess

¢ © ¢ ¢
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Modelling the Overlap

LogGP Model for Allreduce:
talred = 2 (20+ L+ m G) dlog,Pe+ m dog,P
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CPU Overhead Benchmarks

Allreduce, LAM/MPI1 7.1.2/TCP over GigE

CPU Usage (share)
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”
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MPI_Bcast with PO delayed - Jumpshot
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MPI_Ibcast with PO delayed + overlap - Jumpshot
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LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or MPI)

MPI_Ibcast(buf, count, MPI_INT, 0, comm, &req);
MPI_Wait(&req);




LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or MPI)

Interface

MPI_Ibcast(buf, count, MPI_INT, 0, comm, &req);
MPI_Wait(&req);

| A\

Proposal

Hoe er et. al. (2006): "Non-Blocking Collective Operations for
MPI-2"
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Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

sendtol recv from# enb send toz* recv fror+|2 %

LibNBC download: http://www.unixer.de/NBC
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Overhead Benchmarks - Gather with In niBand on 64
nodes
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Overhead Benchmarks - Alltoall with In niBand on 64
nodes
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And Applications?

Independent Computation Exists in Algorithm

1) Linear Solvers - Domain Decomposition

@ iterative linear solvers are used in many scienti ¢ kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped

2) Medical Image Reconstruction - Loop Iteration Pipelining

@ loops have independent parts

@ communication of loop i can be overlapped with parts of
loopi+ 1




And Applications?

1) Linear Solver - Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv or sparse

collectives
PO P1 P2 P3
P4 P5 P6 p7
P8 P9 P10 P11

[ Process-local datal-} 2D Domain
[0 Halo-data
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1) Linear Solver - Parallel Speedup (Best Case)

IB blocking —+—
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@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 800x800x800 (1 node 5300s)



And Applications?

2) Medical Image Reconstruction (32 Nodes)
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Data-parallel Computations

And Applications?

Automated Pipelining with C++ Templates

@ loop tiling

@ automated overlap with window of outstanding
communications

@ optimizing tiling factor and window size

Computation

reads

- input_reference

+ operator() (int, Buffer

Communication

- output_reference

writes
OutData

+ operator() (Buffer)
+ wait(int, Buffer)
+ test(Buffer)

writes

sends

Buffer

+ handle

+ tile_size()

1

BufferVector

- . Buffer

> + size()
+ operator()
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Data-parallel Examples

1) Parallel Data Transformation (e.g., Compression)

@ scatter from source, transformation, gather to destination
@ scatter/gather step pipelined
@ example uses bzip2 algorithm

2) 3d Fast Fourier Transformation

@ 1d-distribution identical to “normal” 3D-FFT

start communication as early as possible

start MPI_lalltoall as soon as rst xz-plane is ready
calculate next xz-plane

start next communication accordingly ...

collect multiple xz-planes (tile factor)

6 ¢ ¢ ¢ ¢
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Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)
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Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction
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Transformation z Direction

start MPI_lalltoall of rst xz plane and transform second pl ane

y X

cyan color means that data is communicated in the background
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Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication
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Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to go on ...
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Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed )
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Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation
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Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication
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1) Parallel Compression Communication Overhead
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2) 10243 3d-FFT over In niBand

MPI/BL ==
MPI/NB == 3
6 "NBC/NB
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1 ppn 2 ppn
@ P=128, “Coyote”@LANL - 128/64 dual socket 2.6GHz Opteron node:



2) 10243 3d-FFT on XT4

18
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FFT Time (s)
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And Applications?

MPI/BL ===

NBC/NB

32 procs

64 procs

128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron
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2) 10243 3d-FFT on XT4 (Communication Overhead)

MPI/BL ===
4 = NBC/NB

Communication Overhead (s)

32 procs 64 procs 128 procs
@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron
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2) 6402 3d-FFT In niBand (Communication Overhead)
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Ongoing Efforts

Ongoing Work

@ optimized collectives and modeling

@ more low-level transports (e.g., MX)
@ analyze of oading/onloading collectives

4

MPI-Forum (MPI-3) Efforts

@ proposed non-blocking collectives
@ proposed sparse collective

Applications

@ work on more applications (apply C++ templates)
@ ) interested in collaborations (ask me!)
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Discussion

THE END

Questions?

Thank you for your attention!
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