A Communication Model for Small Messages with InfiniBand

Torsten Höfler, Wolfgang Rehm TU Chemnitz

23.06.2005

Torsten Höfler, Wolfgang Rehm TU Chemnitz A Communication Model for Small Messages with InfiniBand

Outline

2

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Motivation Previous Work InfiniBand Specialities

Outline

Introduction

Motivation

- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Motivation Previous Work InfiniBand Specialities

Motivation

advantages of a model

- proof a lower bound to a problem
- understand architectural details
- \Rightarrow models have to be very accurate
 - why InfiniBand?
 - state of the art technology
 - offloading based network
- \Rightarrow special model for offloading based networks
 - Optimizing Barriers?
 - InfiniBand Barrier is well tuned (Panda et. al.)
 - others are optimal in abstract models (Finkel et. al.)

▲ 伊 ▶ ▲ 国 ▶ ▲ 国

Motivation Previous Work InfiniBand Specialities

Motivation

advantages of a model

- proof a lower bound to a problem
- understand architectural details

\Rightarrow models have to be very accurate

- why InfiniBand?
 - state of the art technology
 - offloading based network
- \Rightarrow special model for offloading based networks
 - Optimizing Barriers?
 - InfiniBand Barrier is well tuned (Panda et. al.)
 - others are optimal in abstract models (Finkel et. al.)

▲ 伊 ▶ ▲ 国 ▶ ▲ 国

Motivation Previous Work InfiniBand Specialities

Motivation

- advantages of a model
 - proof a lower bound to a problem
 - understand architectural details
- \Rightarrow models have to be very accurate
 - why InfiniBand?
 - state of the art technology
 - offloading based network
- \Rightarrow special model for offloading based networks
 - Optimizing Barriers?
 - InfiniBand Barrier is well tuned (Panda et. al.)
 - others are optimal in abstract models (Finkel et. al.)

• = • •

Motivation Previous Work InfiniBand Specialities

Motivation

- advantages of a model
 - proof a lower bound to a problem
 - understand architectural details
- \Rightarrow models have to be very accurate
 - why InfiniBand?
 - state of the art technology
 - offloading based network
- \Rightarrow special model for offloading based networks
 - Optimizing Barriers?
 - InfiniBand Barrier is well tuned (Panda et. al.)
 - others are optimal in abstract models (Finkel et. al.)

→ Ξ →

Motivation Previous Work InfiniBand Specialities

Motivation

- advantages of a model
 - proof a lower bound to a problem
 - understand architectural details
- \Rightarrow models have to be very accurate
 - why InfiniBand?
 - state of the art technology
 - offloading based network
- \Rightarrow special model for offloading based networks
 - Optimizing Barriers?
 - InfiniBand Barrier is well tuned (Panda et. al.)
 - others are optimal in abstract models (Finkel et. al.)

Motivation Previous Work InfiniBand Specialities

Outline

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Mode

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Motivation Previous Work InfiniBand Specialities

Known Models

- PRAM, C^3 , BSP are too inaccurate (\rightarrow paper)
- LogP as base model
 - L Hardware latency
 - o Processor overhead
 - g gap between consecutive messages
 - P number of processors

Motivation Previous Work InfiniBand Specialities

Outline

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Motivation Previous Work InfiniBand Specialities

InfiniBand Specialities

- user-level communication
- requests are queued in hardware
- HCA fetches a request from the top of the queue
- application is notified in Completion Queue (CQ)
- CQ can be shared between different connections
- different possibilites for sending Data (SEND, RDMA, Reliable, Unreliable ...)

Architectural Considerations The LoP Model Measuring the Parameters

Outline

2

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

Architectural Considerations

- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Introduction Architectural Considerations A new Model The LoP Model Results and Conclusion Measuring the Parameters

RTT Model

 $\bullet~$ three sections \rightarrow NIC warmup, maximum, saturation

Torsten Höfler, Wolfgang Rehm TU Chemnitz

Architectural Considerations The LoP Model Measuring the Parameters

Overhead Model

• cache and pipelining on the host-cpu

• pipeline startup:
$$t_{ov}(\lambda_{1...3}) = \lambda_1 + rac{\lambda_2}{\lambda_3 + p}$$

Architectural Considerations The LoP Model Measuring the Parameters

Outline

2

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

3 Results and Conclusion

- Modeling Results
- Conclusions

-

Architectural Considerations The LoP Model Measuring the Parameters

The LoP Model

- model every possible Transport Type separately
- HCA offers additional level of parallelism
- new possibilities for overlapping
- implicit parallelism on the HCA proposed by IBA standard

Architectural Considerations The LoP Model Measuring the Parameters

LoP Problems

- h parameter cannot be measured directly
- linear model for g is not appropriate
- *h* is modeled as part of the $L \rightarrow L(p)$
- architectural assumptions are used to model RTT

Architectural Considerations The LoP Model Measuring the Parameters

Outline

2

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Introduction Archite A new Model The Lo Results and Conclusion Measu

Architectural Considerations The LoP Model Measuring the Parameters

Parametrization

- o_s(p) time to complete VAPI_post_sr()
- o_r(p) time to complete VAPI_post_rr()
- $L(p) = \frac{RTT(p)}{2} (p \cdot o_s(p) + o_s(1))$

Torsten Höfler, Wolfgang Rehm TU Chemnitz

Modeling Results Conclusions

Outline

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Modeling Results Conclusions

RDMA $o_s(p)$ Results

Torsten Höfler, Wolfgang Rehm TU Chemnitz

Modeling Results Conclusions

RDMA RTT(p) Results

Torsten Höfler, Wolfgang Rehm TU Chemnitz

Modeling Results Conclusions

Deriving the Hardware Latency

Torsten Höfler, Wolfgang Rehm TU Chemnitz

Modeling Results Conclusions

Outline

Introduction

- Motivation
- Previous Work
- InfiniBand Specialities

A new Model

- Architectural Considerations
- The LoP Model
- Measuring the Parameters

- Modeling Results
- Conclusions

Modeling Results Conclusions

Conclusions

- analysis of small messages performance for IBA
- development of a new very accurate model
- LogP is quite accurate for saturated networks
- LoP offers different optimization chances
- e.g. sending more than one message together
- $\bullet \Rightarrow \text{optimized barrier} \rightarrow 40\% \text{ speedup}$

Modeling Results Conclusions

Future Work

- analyze different algorithms in the LoP context
- simplification of the LoP model
- expansion to arbitrary message sizes
- evaluation for different offloading based networks

Modeling Result Conclusions

Questions/Comments?

Questions/Comments?

© Scott Adams, Inc./Dist. by UFS, Inc.

∃ ▶ ∢ ∃

Torsten Höfler, Wolfgang Rehm TU Chemnitz A Communication Model for Small Messages with InfiniBand