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Abstract

Network performance measurement and prediction is
very important to predict the running time of high perfor-
mance computing applications. The LogP model family has
been proven to be a viable tool to assess the communica-
tion performance of parallel architectures. However, non-
intrusive LogP parameter assessment is still a very difficult
task. We compare well known measurement methods for
Log(G)P parameters and discuss their accuracy and net-
work contention. Based on this, a new theoretically ex-
act measurement method that does not saturate the net-
work is derived and explained in detail. Our method only
uses benchmarked values instead of computed parameters
to compute other parameters to avoid propagation of first-
order errors. A methodology to detect protocol changes in
the underlying communication subsystem is also proposed.
The applicability of our method and the protocol change
detection is shown for the low-level API as well as MPI im-
plementations of different modern high performance inter-
connection networks. The whole method is implemented in
the tool Netgauge and it is available as open source to the
public.

1 Introduction
Network performance prediction is very important to as-
sess the quality of parallel algorithms. We propose a low-
overhead measurement method and implementation to as-
sess LogGP parameters accurately and to detect network
protocol changes which are often introduced by high-level
communication libraries, such as MPI [30, 31].
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Different network models have been proposed in the
past. Many are used to model a specific hardware or net-
work architecture [26, 6] or the shared memory paradigm
[25, 12]. There are also some general-purpose parallel mod-
els which try to stay architecture independent like PRAM
[10, 22], BSP [39], C3 [16] or the LogP [7] model. Sev-
eral studies compare the accuracy of those models [28, 15,
4, 37, 17]. The LogP model family, originally proposed by
Culler et al., has been found to be the most accurate model
for many modern interconnection networks.

The different LogP model extensions aim at improving
the prediction accuracy of the standard LogP model by tak-
ing different network effects into consideration. The LogGP
model by Alexandrov et al. [1] models large messages with
the new G parameter that indicates bulk-transfer rates. The
LoGPC model by Moritz et al. [33] discusses the effects of
network contention in the LogGP model. Synchronization
overhead during the sending of large messages in high-level
communication libraries such as MPI is modeled in the Log-
GPS model. The LogfP model [19] adds the new param-
eter f, which represents the number of consecutive small
messages that can be sent for “free”, to address the hard-
ware parallelism (e.g., pipelining, super-scalar principles)
in current high-performance networks like InfiniBandTM.
All those different models can be combined to predict the
performance of a specific network. We decided to use the
LogGP model for this work because it has been proven to be
accurate and it is general enough to keep the applicability of
our measurement method for many networks.

The models of the LogP family have been used by dif-
ferent research groups to derive new algorithms for parallel
computing, predict the performance of existing algorithms,
or prove an algorithm’s optimality [3, 9, 18, 20, 23, 29].
While the derivation of new algorithms and the proof of op-



timality can be done without the real parameter values, ac-
curate measurement methods for the single parameters are
necessary to predict performance of algorithms or message
transmission processes.

Network models can also be used to modify algorithms
in runtime-changing environments adaptively. This is very
important for wide-area networks as they are typically used
in grid computing. Another application field is multi-NIC
message scheduling, i.e., schedule messages across multi-
ple, probably homogeneous, network interfaces to minimize
the cumulative transmission time. All those methods need
to assess the model parameters during the running time of
the application. This makes a low-overhead measurement
method for the LogGP parameters necessary (a method that
avoids network flooding or saturation).

Another pitfall for the parameter measurement is the fact
that most modern communication systems use message-
size dependent protocols to optimize communication (e.g.,
[27, 11, 13]). Small messages are often copied to prepared
(e.g., preregistered in case of InfiniBandTM cf. [32]) local
send or remote receive buffers to speed up the communi-
cation. This method is commonly named “eager protocol”.
Larger messages can not be copied to a buffer on the re-
ceiver side (because there may not be enough space), and
a local copy would introduce too much overhead. Those
messages force a synchronization, and the protocol type is
often called “rendezvous protocol”. More protocol types
can be introduced by the developer of the communication
subsystem as needed. The switch between those protocol
types is usually transparent to the user, i.e., he does not re-
alize it explicitly. Our method is able to recognize protocol
switches automatically since changes in the message trans-
mission times can be detected. We compute own parameter
sets for all identified protocol ranges.

The following section describes related work to assess
LogGP parameters and discusses positive and negative ef-
fects of the proposed methods. Section 3 introduces our
new low-overhead measurement approach and its implica-
tions to the accuracy of the resulting LogGP parameters.
Measurement results for different low-level interfaces and
MPI implementations and a short comparison are presented
in Section 4. The last Section 5 summarizes our contribu-
tion and points out future work in this area.

2 Existing Approaches and Related Work

The LogGP model as described by Alexandrov et al. in [1]
consists of the following parameters: L is an upper bound
on the Latency of a send operation from one processor to an-
other. o is the overhead, i.e., the time that the host processor
is engaged in the transmission or reception of a message and
can not perform other operations. g is the gap between two
consecutive messages. It defines the minimum time-interval
between two message sends or receptions. G is the Gap per

byte for long messages. It defines the needed time to trans-
mit a single byte for the bulk-transfer of long messages. P
is the number of involved Processors.

Previous works used different strategies and changes of
the original model to assess the single parameters as accu-
rately as possible. We discuss the well-known approaches
in the following.

The first measurement method for the LogP model has
been proposed in [8] by Culler et al., the author of the
original LogP model. He differentiates between os on the
sender side and or on the receiver side which complicates
the model slightly. To assess os, he measured the time to
issue a small number (n) of send operations and divided it
by n. This could be problematic on modern architectures,
because they tend to copy the message to a temporary buffer
and send it later (e.g. TCP). This would make the measure-
ment of os depend on n and only realistic for very large n
when all buffers are filled. But this is not possible because
a large number of n would benchmark g. Culler et al. use a
delay between messages that is larger than a single round
trip time (RTT) to assess or, based on the measurement
of os, which makes the result dependent on the accuracy
of os and introduces second-order errors. The g param-
eter is simply benchmarked by flooding the network with
many small messages and dividing the time by the number
of messages. Finally, L can be computed from the other
parameters L = RTT/2− or − os.

A second, similar approach was used by Ianello et al. in
[21]. He uses similar techniques to assess the LogP param-
eters for Myrinet.

Kielmann et al. used heavy model changes and proposed
a solution to assess parameters for his pLogP (parametrized
LogP) model in [24]. He uses the time for a single send op-
eration to assess os. This could be influenced by caching
effects similar to the original idea in [8]. He defines or

as the time to copy the message from the receive buffer.
This clearly neglects the time in which the system is busy
to receive the message to the temporary buffer (cf. TCP).
The g assessment sends n messages to a peer and the peer
sends a single message back after it received n. The time
between the first send and the reception of the final answer
divided by n is used as g. Those n messages and a sin-
gle reply message need (n · g + L) + (L + g) in pLogP.
An error of (2L + g)/n is made if one simply divides this
sum by n. The impact of this error can be reduced if n is
large enough that (2L + g)/n << g. If we try to reach
1% accuracy, we need n > (2L + g)/(g · 0.01), which is
19640 for the LogGP parameters gained for TCP (see Sec-
tion 4). L is computed from the RTT of a zero-byte message
L = (RTT (0) − 2g(0))/2. The fact that every parameter
depends on the message size complicates the model and the
predictions fairly.

The latest work, the only one that assesses all LogGP pa-
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rameters besides L, was proposed by Bell et al. in [2]. The
parameter os is measured with a delay between message
sends. This delay d is adjusted until d + o fits g + (s− 1)G
for a specific message size s exactly. This requires multiple
measurement steps to adjust the correct d. Now, os is com-
puted via g+(s−1)G−d, which relies on the correctness of
g and G. The method to assess or is similar to the method
in [8], but he delays the transmission of the answer on the
receiver side. He uses a similar technique as Kielmann to
measure g, which suffers from the same problem that he
has to send a huge number of packets (n) to get an accurate
measurement and the network is effectively flooded. L can
not be measured because modern networks tend to start the
message transmission before the CPU is done (L is started
before o ends). Bell et al. introduce the end to end latency
(EEL) which denotes the RTT for a very small packet.

All proposed schemes use only single message sizes to
derive parameters, which could be inaccurate for some net-
works that show anomalies at specific message sizes. The
second problem with some methods is that the accuracy de-
pends on the number of sent messages, which makes net-
work flooding necessary to achieve good predictions. How-
ever, flooding causes unnecessary network contention and
should not be used during application runs. We propose
a new measurement scheme that avoids flooding as much
as possible and delivers accurate parameters. The following
section describes the working principle of our new measure-
ment method.

3 Low Overhead Parameter Measurement

We describe a new low-overhead LogGP parameter assess-
ment method in the following. We implemented our ap-
proach as a new “communication pattern” in the extensi-
ble open source Netgauge tool [34]. Netgauge is a modular
network benchmarking tool that uses high-precision timers
to benchmark network times. The difference to other tools
like NetPipe [38], coNCePTuaL [35] or the Pallas Micro
Benchmarks (PMB) [36] is that the the framework offers the
possibility to use MPI as infrastructure to distribute needed
protocol or connection information for other low-level APIs
(e.g. Sockets, InfiniBandTM, SCI, Myrinet/GM ...) or to
benchmark MPI Send/MPI Recv itself. This is important
to compare low-level performance with MPI performance
and enables the user to assess the quality and overheads
of a specific MPI implementation. Our LogGP communi-
cation pattern enables a detailed analysis of the introduced
software overhead.

Transmission modules for MPI, TCP, UDP,
InfiniBandTM, and several other networks are included in
Netgauge and enable us to compare the performance of
MPI with the underlying low-level API’s performance.
More low-level modules (e.g., SCI) are under development.
The newest version of Netgauge supports LogGP parameter

measurement as described in this paper. We followed
the useful hints provided by Gropp et al. [14] to achieve
reproducible and accurate benchmark results.

3.1 General Definitions

Many parallel systems do not have an accurately synchro-
nized clock with a resolution that is high enough to mea-
sure network transmissions (in the order of microseconds).
This forces developers of network benchmarks to do all time
measurement on only one machine and measure a round trip
time (from now on RTT). Many benchmarks (e.g. Netpipe,
PMB) use the so called ping-pong scheme. This scheme
uses two hosts, the client that initiates the communication
and measures needed RTTs and the server that mirrors all
received packets back to the client. This common scheme
is depicted in the left part of Figure 1. Other schemes as
our simplified ping-ping (originally mentioned in [36]), de-
picted in the right part of Figure 1, can be used to get
the performance of multiple consecutive message sends.
However, one has to be aware that a ping-ping with many
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Figure 1. Left: ping-pong micro-benchmark
scheme for 1 byte messages in the LogGP
model; Right: ping-ping micro-benchmark
scheme for 1 byte messages in the LogGP
model.

packets is able to saturate the network and introduce con-
tention easily. An additional possibility to influence the
benchmark is a ping-ping scheme with an artificial delay be-
tween each message send. The delay can easily be achieved
with calculation on the CPU.

We combine all those possibilities and use them to as-
sess all LogGP parameters as less intrusively as possible.
We introduce the notion of the parametrized round trip time
(from now on PRTT) to define a specific parameter combi-
nation for the RTT. The possible parameters are the number
of ping-ping packets (n), the delay between each packet (d)
and the message size (s). A measurement result of a specific
combination of n, d and s is denoted as PRTT(n,d,s).

A pseudocode for server and client to measure a sin-
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void server(int n, int s) {
for(int i=0; i<n; i++)
/* receive s bytes from client */
recv(client, s);

5 /* send s bytes to client */
send(client, s);

}

double client(int n, int d, int s) {
10 t = -time(); /* get time */

/* send s bytes to server */
send(server, s);
for(int i=0; i<n-1; i++) {
wait(d); /* wait d microseconds */

15 /* send s bytes to server */
send(server, s);

}
/* receive s bytes from server */
recv(server, s);

20 t += time(); /* get time */
return t;

}

Listing 1. Pseudocode to measure
PRTT(n,d,s)

gle PRTT(n,d,s) is given in Listing 1. The following sub-
sections show that the notion of PRTT(n,d,s) is sufficient
to assess all LogGP parameters accurately without network
flooding or unnecessary contention.

The parametrized round trip time for a single ping-ping
message without delay can be expressed in terms of the
LogGP model as follows:

PRTT (1, 0, s) = 2 · (L + 2o + (s − 1)G). (1)

If we define the cumulative hardware gap Gall as

Gall = g + (s − 1)G , (2)

n ping-ping messages can be modeled as (remember that
the LogGP model defines o < Gall)

PRTT (n, 0, s) = 2 · (L + 2o + (s − 1) · G) +
(n − 1) · Gall . (3)

With (1), we get

PRTT (n, 0, s) = PRTT (1, 0, s) +
(n − 1) · Gall . (4)

This equation can easily be extended to the general case
with a variable delay d as

PRTT (n, d, s) = PRTT (1, 0, s) +
(n − 1) · max{o + d, Gall} . (5)

The following section uses the PRTT to assess the
LogGP parameters of different network interfaces.

3.2 Assessment of the Overhead o

If we rewrite Equation 5 to

PRTT (n, d, s)− PRTT (1, 0, s)
n − 1

= max{o + d, Gall} ,

and choose d, such that d > Gall, we get

PRTT (n, d, s)− PRTT (1, 0, s)
n − 1

= o + d . (6)

This enables us to compute o from the mea-
sured PRTT (n, d, s) and PRTT (1, 0, s). We chose
PRTT (1, 0, s) for d to ensure that d > Gall This assump-
tion has been proven to be valid for all tested networks.
However, if a network with a very low latency L and a very
high gap g exists, one can fall back to d = PRTT (2, 0, s)
to guarantee d > Gall. We chose PRTT (1, 0, s) to avoid
unnecessary long benchmark times.

The measurement of o for n = 3 is illustrated in Fig-
ure 2. The whole figure represents a LogGP model for
PRTT (3, d, s), it is easy to see that the last part is a sim-
ple PRTT (1, 0, s). If we subtract PRTT (1, 0, s) from
PRTT (3, d, s), we get 2d+2o which equals to (n−1)(d+
o) (remember that n = 3 in our example) as shown in Equa-
tion (6).

This measurement method enables us to get a pretty ac-
curate value of o for each message size s. It needs only a
small number of messages (we used n = 16 in our tests)
that does not saturate or flood the network unnecessarily to
measure o. Furthermore, we are able to compute o directly
from a single measurement and without inter-dependencies
to other LogGP parameters (that are computed themselves
and contain already an error of first order). We do also not
need to adjust d stepwise to fit other values.

3.3 Assessment of the Gap Parameters g,G

Using Equation (4), we get a polynomial of degree one of
the form f(s) = G · s + g:

G(s − 1) + g =
PRTT (n, 0, s)− PRTT (1, 0, s)

n − 1
(7)

This represents a linear function. One could simply mea-
sure PRTT (n, 0, s) and PRTT (1, 0, s) for two different s
and solve the resulting system of linear equations directly.
However, several networks have anomalies or a huge de-
viation between different data sizes. Another problem is
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Figure 2. Measurement Method for o for n = 3. This figure shows the components of PRTT (n, d, s).

also that this method would not allow us to detect protocol
changes in the lower levels that influence the LogGP param-
eters.

We chose to measure PRTT (n, 0, s) and
PRTT (1, 0, s) for many different s and fit a linear
function to these values. The function value for s = 1 is
our g and the slope of this function represents our G.

We use the least squares method [5], which can be solved
directly for the needed two degrees of freedom (g and G),
to perform the fit. This gives us an accurate tool to assess
g and G with multiple different message sizes and to de-
tect protocol/parameter changes in the underlying transport
layers (see Section 3.5). This helps to avoid mispredictions
and to detect anomalies at specific message sizes.

We use only a small n (n = 16 for our tests) to bench-
mark every single message size. Thus, we do not need to
flood or overload the network and our results are not influ-
enced by anomalies for specific message sizes (as we ex-
perienced with TCP). Furthermore, we are able to use our
method to detect changes in the underlying communication
protocol, as described in Section 3.5.

A graphical representation of our method with Open
MPI over InfiniBandTM is shown in Figure 3.

3.4 Assessment of the Latency Parameter L

Bell et al. discussed the interesting phenomenon that the
occurrence of L and o is not ordered. It happens on modern
interconnect networks that o and a part of L overlap (some
message processing is done after the sending of the message
is started). This is due to the fact that the network develop-
ers want to minimize the round trip time and try to move all
the bookkeeping after the message send. This effect does
not allow us to measure a useful L (L may even be neg-
ative in certain situations). We take a similar approach as
[2] and report half of the round trip time (EEL in [2]) of a
small message as latency. We use PRTT (1, 0, 1)/2 for this
purpose.
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Figure 3. Parameter Benchmark and Fit for
Open MPI over InfiniBandTM.

3.5 Detection of Protocol Changes
Modern network APIs are complex systems and try to de-
liver highest performance to the user. This requires to use
different transport protocols for different message sizes. It
is obvious that each transport protocol has its own unique
set of LogGP parameters. The problem is that the network
APIs aim to be transparent to the user and do often not
indicate protocol switches directly. These facts can make
LogGP benchmarks very inaccurate if one does not differ-
entiate between the used transport modes. Our approach is
to detect those protocol changes automatically and provide
a different set of LogGP parameters for each transport type
to the user.

We define the mean least squares deviation from mea-
surement point k to l and the fit-function f(s) = G · s + g
as

lsq(k, l) =
∑l

i=k (G · size(i) + g − val(i))2

l − k − 2
, (8)

where val(i) is the measured value at point i and size(i)
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is the message-size at point i. The subtraction of 2 in the
denominator is because we have 2 degrees of freedom for
the solution of the least squares problem.

We take an x point look-ahead method and compare the
mean least squares deviation of the intervals [lastchange :
current] with the deviation of the interval [lastchange :
current+1], [lastchange : current+2], ..., [lastchange :
current+x]. We define lastchange as the first point of the
actual protocol (the point after the last protocol change, ini-
tially 0) and current as our current point to test for a proto-
col change. If current is the last measured value of a pro-
tocol, and a new protocol begins at current + 1, the mean
least squares deviation rises from this point on. We consider
the next x (typically 3-5) points to reduce the effect of single
outliers. If lsq(lastchange, current + j) ∀1 ≤ j ≤ x is
larger than lsq(lastchange, current) · pfact, we assume
that a protocol change happened at current. The factor
pfact determines the sensitivity of this method. Empirical
studies unveiled that pfact = 2.0 was a reasonable value
for our experiments. However, this factor is highly network
dependent and further network-specific tuning may be nec-
essary to detect all protocol changes accurately.

4 Applying the Method

This section discusses first results of the application of our
measurement methods with the tool Netgauge [34]. We an-
alyzed different interconnect technologies and parallel sys-
tems to evaluate their performance in the LogGP model.
The used test-systems are described in Table 1.

We benchmarked TCP over Gigabit Ethernet and
MPICH2 1.0.3, SCI with NMPI 1.2, InfiniBandTM with
Open MPI/OpenIB and Myrinet with Open MPI/GM. The
graphs for G·(s−1)+g (cf. Equation (7)) for InfiniBandTM

and Myrinet are shown in Figure 4.
Table 2 shows the numerical results for the LogGP mea-

surements on the different systems. We uses blocking
MPI SEND and MPI RECV to measure those values. The
TCP results show that o, g and G are nearly identical for
MPICH2 and RAW TCP (they are not distinguishable in the
diagram because they lie practically on the same line). We
do also see that o is not constant as assumed in the LogGP
model but has a linear slope. We encounter no protocol
change for TCP in the interval [1, 65536] bytes. The SCI
results indicate that the implementation uses polling to send
and receive messages because o ≈ Gall.

InfiniBandTM shows also a very interesting behavior.
The Open MPI OpenIB component uses also polling to
send or receive messages. A protocol change at approx-
imately 12kb leads to a large increase of g. This is due
to the rendezvous protocol which introduces an additional
RTT of a small status message, which costs ≈ 2L + 4o in
LogGP, before the actual transmission begins. The block-
ing MPI SEND accounts this to g because it has to wait
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Transport CPU OS Additional Information
MPICH2 Opteron 246, 2GHz Linux 2.6.9 MPICH2 1.0.2, BCM5704 GigE Network Chip
NMPI/SCI Xeon 2.4GHz Linux 2.6.9 NMPI-1.2, SCI-Adapter PSB66 D33x
Open MPI/OpenIB Opteron 244 Linux 2.6.9 Open MPI 1.1.2, OFED-1.0, Mellanox MT25208
Open MPI/gm Athlon MP 1.4GHz Linux 2.6.9 Open MPI 1.1.2, GM 2.0.23, Myrinet 2000

Table 1. Details about the test systems.

until a message is sent before it sends the next one. G is
mainly identical across all message-sizes. The low-level
OpenIB API has a small g and G which exhibits no pro-
tocol change. The low-level overhead to post a send request
is independent of the message size. Open MPI introduces
an additional overhead which is due to the local copy (for
eager send) or InfiniBandTM memory registration ([32], for
rendezvous).

Myrinet appears to be using no polling for small mes-
sages (o < Gall) and polling for messages larger than 32kB
(o ≈ Gall). The protocol change is again clearly visible in
the graph and is correctly recognized by our method. The
low-level API delivers a slightly lower G and a similar g in
the measured interval. The overhead o of the GM API is
constant as for InfiniBandTM.

5 Conclusions and Future Work

We compared well known Log(G)P measurement
methods and derived a new accurate LogGP param-
eter measurement scheme. Our method is able to
detect protocol changes in the underlying commu-
nication subsystem. An open source implementa-
tion within the Netgauge framework is available at
http://www.unixer.de/research/netgauge/
for public use. This implementation has been tested
extensively with different modern MPI implementations
and low-level networking APIs.

We plan to extend Netgauge to use more low-level com-
munication modules and to analyze more different inter-
connects and MPI implementations. The evaluation of this
scheme for guiding a homogeneous multi-NIC scheduler
for Open MPI has already begun and seems very promising.
Later versions of Netgauge will also support the parameter
benchmarking for non-blocking communication.
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