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Example: Memory Subsystem
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Multi-dimensional Performance Metrics

A Very helpful for HW/SW co-design
A Good for comparison of applications =
A Good for comparison of machines | -
A Design application-optimized (specific) HW

A Not good for absolute estimates
A App. A on machine A vs. app. B on machine B
AARAbsol ute performanceo i s

AMost useful (utimeteor sall )vemeatrr
A Also most important as time is fundamentally limited
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What Is Performance Modeling?

A Understand the resource usage of an application
on a particular architecture

A We focus mostly on time as a resource
A Generate analytic expressions to estimate runtime
ACl osely related to fiPer f
A Often builds on empirical techniques
A Also cutting into complexity theory
A More pragmatic (asymptotes often insufficient)
A Complex (low-order terms cannot be dropped)

Performance Medeling and Simulation on Blue Waters
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Performance Modeling and Productivity?

A Predict resources and costs to solve a particular
problem instance

A Evaluate effectiveness of a computing platform to
solve a particular problem

A Understand bottlenecks, i.e., HW/SW Co-Design

A Find performance bugs and assess upper and
lower bounds of code optimizations

A Makes programmers think about the structured
performance profile of an application or platform

Performance Medeling and Simulation on Blue Waters
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Performance Modeling from 10.000 Feet
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How to Derive a Platform Model

Application Model
(Algorithm, Structure)

Performance Modeling and Simulation on Blue Waters



BlU[ W AI[HS Fok MW TEEE  GHOAT AKS COMSORTIUN

SUSTAINED PETASCALE COM

Example: Blue Waters - Overview
A >300.000 compute cores
A Based on POWER?

A 10 PF/s peak (not important, more later)
A 1 PF/s sustained

A Direct network with 1.1 TB/s per hub
A Total approx. 10 PB/s

A >1.2 PB main memory
A >18 PB on-line disk storage
A >500 PB near-line storage

Performance Medeling and Simulation on Blue Waters
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Blue Waters System

Building Block

SuperNode / r

(1024 cores) a D l
& I nnmn_4 Near-line Storage
Drawer - IS

(256 cores) 2y On-line Storage
SMP node X
(32 cores)
P7 Chip
(8 cores)
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POWER7: Core

= Execution Units
= 2 Fixed point units
= 2 Load store units
* 4 Double precision floating point
= 1 Branch
= 1 Condition register
= 1 Vector unit
= 1 Decimal floating point unit
= 6 wide dispatch
- Recovery Function Distributed
- 1,2,4 Way SMT Support
= Qut of Order Execution
- 32KB |-Cache
- 32KB D-Cache

« 256KB L2
= Tightly coupled to core

Performance Medeling and Simulation on Blue Waters Source: IBM



BLUE WATERS | £ GO LTS ST

SUSTAINED PETASCALE COMPUTING

POWERY7 Chip (8 cores)

A Base Technology
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L1 32KB Instruction / core
L1 32KB Data / core
L2 = 256KB / core

iy W

L3 = 4MB eDRAM / core

o o Po I» Do

Fast private and
shared region

Performance Modeling and Simulation on Blue Waters Source: IBM 16
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1.1 TB/s HUB

192 GB/s Host Connection T%

336 GB/s to 7 other local nodes

12C
To Optical
Modules

240 GB/s to local-remote nodes

320 GB/s to remote nodes

L local
HUB To HUB Copper Board Wiring

D Bus
Interconnect of Supernodes

Optical

40 GB/s to general purpose 1/0O
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Drawer
A 8 nodes

A 32 chips

A 256 cores

First Level Interconnect
U L-Local

U HUB to HUB Copper Wiring

U 256 Cores
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Supernode

Second Level Interconnect
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National Petascale Computing Facility
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