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ABINIT Introduction

ABINIT solves time-independent Schrödinger equation

effective one-particle case, uses DFT

ĤtotΦ = EtotΦ

⇒ Eigenvalue problem

Eigenvalues and -vectors determined with CG minimization

(Teter et al.)

wavefunction Φ written in plain-wave basis set
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ABINIT Program Flow

Start

(1)

choose Coefficients

(3)

calculate trial potential

(2)

calculate Electron density

(6)

check convergence

(7)

mix new Density

(8)

calculate Potential calculate total Energy

(5)

(4)

minimize electronic Energy

Stop

SCF−cycle

Initialization

not converged

converged
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ABINIT Tracing

projbd (36.0%/36.0%)

cgwf (83.6%/1.3%)

fourwf (27.4%/0.0%) nonlop (21.5%/0.0%)

sg_fftrisc (27.4%/5.7%) nonlop_pl (21.5%/0.1%)

vtowfk (97.3%/4.3%)

orthon (5.7%/5.6%)

sg_ffty (14.8%/14.8%) sg_fftpx (6.6%/6.6%) opernl4a (11.6%/10.3%) opernl4b (9.8%/8.7%)

⇒ 83% for Teter minimization
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Conjugate Gradient Operations

dot- and matrix-vector product

dot-product: 〈Φi |Φj〉

matrix-vector product: ĤΦ

Ĥ = Ee
kin + V e

loc + V e
nl

Ee
kin and V e

loc in reciprocal (k-) space

V e
nl in real space

⇒ 3D-FFT to transform between real and reciprocal space
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K-Point Parallelization

Bands have to be minimized for each k-point

Minimization for each k-point is independent

All k-point data is only needed for the calculation of ETOT

⇒ straightforward parallelization

ABINIT implementation:

Good speedup :-)
Uses only collective communication :-)

Limited to nkpt :-(

Uses MPI_COMM_WORLD :-(
Uses MPI_BARRIER :-(
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Band Parallelization

The Teter Method allows parallel CG

Orthogonalization constraint forces non-ideal solution

⇒ tricky parallelization

ABINIT implementation:

Speedup depends on interconnect :-/

Uses Send/Recv :-(

Limited by nband/c (c not easily predictable)

Torsten Hoefler Teter Parallelism
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G Parallelization

FFT ⇒ Two parallelization schemes:

Distribute plane wave coefficients

Distribute real space FFT Grid

Strict load balancing

Minimize communication

Possible to combine with Band and

k-Point parallelization
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Real Space Distribution
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Implementation Issues

Necessary communication (complexity):

Dot-products (O(1))
Computation of kinetic energy (O(1))
FFT transpose (O(natom))

Only collective communication:

MPI_ALLREDUCE for reductions

MPI_ALLTOALL for FFT transpose

Principles:

only coll. communication
separate communicator

simplification of the main code

heavy usage of math librarys

Torsten Hoefler Teter Parallelism
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Benchmarking the Implementation of cgwf
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Possible Reasons for limited Scalability

serial parts (Amdahl’s law)

allocations

scalar calculation

index reordering (packin,packout - FFT)

communication overhead

latency of blocking collective operations

limits scalability significantly
overhead will be modelled in the following

Torsten Hoefler Teter Parallelism
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Modelling the MPI_ALLREDUCE

→ MPI_REDUCE to node 0 and MPI_BCAST

P0
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P7
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fr = max( o
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fs = max( o
s , g)
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tred (P, size) = 2·size·(2o+L+(⌈log2P⌉−1)·max{g,2o+L})

Torsten Hoefler Teter Parallelism



university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Modelling the MPI_ALLTOALL

→ each node hast to send to all others

single host:

P0

P1

P2

P3

P4

o
s

L
o

r

g o
s g o

s g o
s

o
r

o
r

o
r

L L

L

all hosts send, assuming FBB

ta2a(P, size) = size · ((2o + L) + (P − 1) · (g + o))
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Predicting the Overhead

ored(P) = nband · (9 + 2 · nband) · tred (P,1)

ored(P) = O(log2P)

natom = 43:

ored (P) = 126 · (9 + 2 · 126) · 2 · (⌈log2P⌉ · 9.88)
ored (P) = 65772 · (⌈log2P⌉ · 9.88)

oa2a(P) = 2 · oa2a(P,Nx · Ny · Nz/P)

oa2a(P) = O(1)

natom = 43:

oa2a(P) = . . .
oa2a(P) ≈ 6.3s
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Verifying the Overhead Prediction
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Can we predict parallel Scaling?

⇒ kind of (comm. overhead as limiting factor)

ideal scaling: t(P) = t(1)/P

→ limP→∞ t(P) = 0

overhead: o(P) = ored(P) + oa2a(P)

→ limP→∞ o(P) = ∞

crossing point (Pc) denotes maximum scaling

t(Pc) = o(Pc)
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Modelled Prediction
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Comparison to Benchmarks
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Intermediate Conclusions

Teter’s scheme is efficiently parallelizeable

k-pt, band, and g parallelism can be combined

parallel scaling can be predicted

parallel scaling depends on overhead

overhead depends on system size and LogP parameters

⇒ overhead is a hard limitation (is it?)

overlapping could help ;o)
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Non blocking Communication

Communication can be overlapped with computation

Progr. model to support overlapping is too complex

(threads)

Non blocking comm. does not change progr. model

Supported by MPI (MPI_ISEND, MPI_IRECV)

Torsten Hoefler Teter Parallelism
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Send/Recv is there - Why Collectives?

Gorlach, ’04: ”Send-Receive Considered Harmful”

⇔ Dijkstra, ’68: ”Go To Statement Considered Harmful”

point to point:

if ( rank == 0) then

call MPI_SEND(...)

else

call MPI_RECV(...)

end if

vs. collective:

call MPI_GATHER(...)

cmp. math libraries vs. loops

Torsten Hoefler Teter Parallelism
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Why non blocking Collectives

overlap communication and computation

many collectives synchronize unneccessarily

scale at least with O(log2P) sends

wasted CPU time: log2P · L

Fast Ethernet: L = 50-60 µs

Gigabit Ethernet: L = 15-20 µs
InfiniBand: L = 2-7 µs

1µs ≈ 4000 FLOPs on a 2GHz Machine

Torsten Hoefler Teter Parallelism
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Final Conclusions and Future Work

Conclusions

Teter’s minimization scales ok

communication overhead is the limiting factor

parallel scaling is predictable (not easily)

scaling could be enhanced with overlapping

communication and computation to hide latency

collective communications should be preferred

⇒ non-blocking collective operations

LibNBC http://www.unixer.de/NBC

Future Work

use non-blocking collectives to enhance QM codes

e.g., overlapping schemes for 3D-FFT

Torsten Hoefler Teter Parallelism
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The Teter Algorithm

Steepest descent: ~d i = − ∂f
∂~x i = −G~x i

f (~x) → E Kohn Sham Energy Functional

~x → ψe Wave function for each electron

G → H Hamilton Operator

Teter’s scheme:
1 1: check residual for convergence
2 compute steepest descent vector
3 orthogonalize it to all bands
4 compute preconditioned steepest descent
5 orthogonalize it to all bands
6 compute conjugate gradient vector
7 step into cg direction
8 goto 1

Torsten Hoefler Teter Parallelism
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Verifying the Predictions

Kielmann’s logp-mpi benchmark:

L = 9.78µs,o = 0.05µs,g = 0.01µs
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