Parallel scaling of Teter's Minimization for *Ab Initio* Calculations

Torsten Hoefler

Department of Computer Science Technical University of Chemnitz

CHERRER HPCNano Workshop 2006 Supercomputing'06 Tampa, FL, USA November 13th 2006

Outline

Introduction

- Introduction to ABINIT
- Teter's Conjugate Gradient Minimization

Parallelization

- Already implemented Parallelization
- A new Proposal
- Verifying this Proposal
- 3 Hunting the Overlap
 - Non blocking Collectives NOLOGY

うくつ

Introduction to ABINIT Teter's Conjugate Gradient Minimization

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Outline

Non blocking Follettest NOLOGY

Introduction to ABINIT Teter's Conjugate Gradient Minimization

Sac

ABINIT Introduction

- ABINIT solves time-independent Schrödinger equation
- effective one-particle case, uses DFT
- $\widehat{H}_{tot}\Phi = E_{tot}\Phi$
- $\bullet \Rightarrow$ Eigenvalue problem
- Eigenvalues and -vectors determined with CG minimization (Teter et al.)
- wavefunction Φ written in plain-wave basis set

OF TECHNOLOGY

Introduction to ABINIT Teter's Conjugate Gradient Minimization

(日) (伊) (王) (王)

Sac

ABINIT Program Flow

Introduction to ABINIT Teter's Conjugate Gradient Minimization

Jac.

ABINIT Tracing

Torsten Hoefler Teter Parallelism

Introduction to ABINIT Teter's Conjugate Gradient Minimization

nac

Outline

- Introduction to ABINIT
- Teter's Conjugate Gradient Minimization
- 2 Parallelization
 - Already implemented Parallelization
 - A new Proposal
 - Verifying this Proposal
- 3 Hunting the Overlap
 - Non blocking Folle Evest NOLOGY

Introduction to ABINIT Teter's Conjugate Gradient Minimization

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Conjugate Gradient Operations

- dot- and matrix-vector product
- dot-product: $\langle \Phi_i | \Phi_j \rangle$
- matrix-vector product: $\hat{H}\Phi$

•
$$\widehat{H} = E_{kin}^e + V_{loc}^e + V_{nl}^e$$

- E_{kin}^e and V_{loc}^e in reciprocal (k-) space
- V^e_{nl} in real space
- $\bullet \Rightarrow$ 3D-FFT to transform between real and reciprocal space

Already implemented Parallelization A new Proposal Verifying this Proposal

nac

Outline

Introduction Introduction to ABINIT Totor's Conjugate Organization

Teter's Conjugate Gradient Minimization

Parallelization

- Already implemented Parallelization
- A new Proposal
- Verifying this Proposal
- 3 Hunting the Overlap
 - Non blocking Folle Ever NOLOGY

Already implemented Parallelization A new Proposal Verifying this Proposal

 $\mathcal{O} \mathcal{O} \mathcal{O}$

K-Point Parallelization

- Bands have to be minimized for each k-point
- Minimization for each k-point is independent
- All k-point data is only needed for the calculation of ETOT
- $\bullet \Rightarrow$ straightforward parallelization
- ABINIT implementation:
 - Good speedup :-)
 - Uses only collective communication :-)
 - Limited to nkpt :-(
 T
 Limited to nkpt :-(
 T
 - Uses MPI_COMM_WORLD :-(
 - Uses MPI_BARRIER :- (INOLOGY

Already implemented Parallelization A new Proposal Verifying this Proposal

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Band Parallelization

- The Teter Method allows parallel CG
- Orthogonalization constraint forces non-ideal solution
- \Rightarrow tricky parallelization
- ABINIT implementation:
 - Speedup depends on interconnect :-/
 - Uses Send/Recv :-(
 - Limited by *nband/c* (*c* not easily predictable)

OF TECHNOLOGY

Already implemented Parallelization A new Proposal Verifying this Proposal

nac

Outline

Already implemented Parallelization A new Proposal Verifying this Proposal

G Parallelization

Vector Distribution

2 3

5

7

8

9

10

11

12

13

14

- Distribute plane wave coefficients
 Distribute real space FFT Grid
- Strict load balancing
- Minimize communication
- Possible to combine with Band and k-Point parallelization

OF TECHNOLOGY

Introduction Parallelization Already implemented Parallelization A new Proposal Verifying this Proposal

Real Space Distribution

3D-FFT Distribution

< 🗇 ▶

- < ∃ →

< □ >

Jac.

Already implemented Parallelization A new Proposal Verifying this Proposal

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Implementation Issues

• Necessary communication (complexity):

- Dot-products (O(1))
- Computation of kinetic energy (O(1))
- FFT transpose (O(natom))
- Only collective communication:
 - MPI_ALLREDUCE for reductions
 - MPI_ALLTOALL for FFT transpose
- Principles:
 - only coll. communication
 - separate communicator
 - simplification of the main code
 - heavy usage of math librarys

Introduction Already implemented Parallelization Parallelization A new Proposal ting the Overlap Verifying this Proposal

Benchmarking the Implementation of cgwf

Introduction Already implemented Parallelizati Parallelization A new Proposal Hunting the Overlap Verifying this Proposal

Possible Reasons for limited Scalability

serial parts (Amdahl's law)

- allocations
- scalar calculation
- index reordering (packin,packout FFT)
- communication overhead
 - latency of blocking collective operations
 - limits scalability significantly
 - overhead will be modelled in the following

OF TECHNOLOGY

Introduction Already implemented Paralleliza Parallelization A new Proposal Hunting the Overlap Verifying this Proposal

Outline

1) Introduction

- Introduction to ABINIT
- Teter's Conjugate Gradient Minimization

Parallelization

- Already implemented Parallelization
- A new Proposal
- Verifying this Proposal

Hunting the Overlap

nac

IntroductionAlready implemented ParallelizationParallelizationA new ProposalHunting the OverlapVerifying this Proposal

The LogP Model

Torsten Hoefler Teter Parallelism

< □ ▶

< 🗇 ▶

< ∃ ► <

5990

∍

Already implemented Parallelization A new Proposal Verifying this Proposal

SQ C

Modelling the MPI_ALLREDUCE

 $\bullet \ \rightarrow \mbox{MPI_REDUCE}$ to node 0 and MPI_BCAST

Introduction Alr Parallelization A r Inting the Overlap Ver

Already implemented Parallelizatio A new Proposal Verifying this Proposal

SQ C

Modelling the MPI_ALLTOALL

- $\bullet \ \rightarrow$ each node hast to send to all others
- single host:

P0 P1 P2 P3 P4 CHEMNITZUNIVERSIT

- all hosts send, assuming FBB
- $t_{a2a}(P, size) = size \cdot ((2o + L) + (P 1) \cdot (g + o))$

Verifying this Proposal

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Predicting the Overhead

•
$$o_{red}(P) = nband \cdot (9 + 2 \cdot nband) \cdot t_{red}(P, 1)$$

- $o_{red}(P) = O(log_2 P)$
- natom = 43:
 - $o_{red}(P) = 126 \cdot (9 + 2 \cdot 126) \cdot 2 \cdot (\lceil log_2 P \rceil \cdot 9.88)$
 - $o_{red}(P) = 65772 \cdot (\lceil log_2 P \rceil \cdot 9.88)$
- $o_{a2a}(P) = 2 \cdot o_{a2a}(P, N_x \cdot N_y \cdot N_z/P)$
- $o_{a2a}(P) = O(1)$ natom = 43:
 - $o_{a2a}(P) \equiv E$ TECHNOLOGY • $O_{a2a}(P) \approx 6.3s$

Introduction Already implemented Parallelizatio Parallelization A new Proposal ting the Overlap Verifying this Proposal

Verifying the Overhead Prediction

Introduction Already implemented Paralleliza Parallelization A new Proposal Hunting the Overlap Verifying this Proposal

Can we predict parallel Scaling?

- $\bullet \Rightarrow$ kind of (comm. overhead as limiting factor)
- ideal scaling: t(P) = t(1)/P• $\rightarrow \lim_{P \to \infty} t(P) = 0$
- overhead: $o(P) = o_{red}(P) + o_{a2a}(P)$ • $\rightarrow \lim_{P \to \infty} o(P) = \infty$
- crossing point (P_c) denotes maximum scaling
 t(P_c) = o(P_c)
 OF TECHNOLOGY

Introduction Already implemented Paralle Parallelization A new Proposal ing the Overlap Verifying this Proposal

Modelled Prediction

Introduction Already implemented Parallelization Parallelization A new Proposal ting the Overlap Verifying this Proposal

Comparison to Benchmarks

Already implemented Parallelization A new Proposal Verifying this Proposal

Sac

Intermediate Conclusions

- Teter's scheme is efficiently parallelizeable
- k-pt, band, and g parallelism can be combined
- parallel scaling can be predicted
- parallel scaling depends on overhead
- overhead depends on system size and LogP parameters
- \Rightarrow overhead is a hard limitation (is it?)
- overlapping could help ;o) HNOLOGY

Non blocking Collectives

Outline

3

Introduction

- Introduction to ABINIT
- Teter's Conjugate Gradient Minimization
- 2 Parallelization
 - Already implemented Parallelization
 - A new Proposal
 - Verifying this Proposal
 - CHEMNITZ UNIVERSITY
 - Non blocking Collectives

nac

Non blocking Collectives

Non blocking Communication

- Communication can be overlapped with computation
- Progr. model to support overlapping is too complex (threads)
- Non blocking comm. does not change progr. model

Supported by MPI (MPI_ISEND, MPI_IRECV)
 CHEMNITZ UNIVERSITY
 OF TECHNOLOGY

Send/Recv is there - Why Collectives?

- Gorlach, '04: "Send-Receive Considered Harmful"
- ⇔ Dijkstra, '68: "Go To Statement Considered Harmful"

point to point:

if (rank == 0) then
 call MPI_SEND(...)
else
 call MPI_RECV(...)
end if

vs. collective: EMNITZ UNIVERSITY

cmp. math libraries vs. loops

Why non blocking Collectives

- overlap communication and computation
- many collectives synchronize unneccessarily
- scale at least with $O(log_2P)$ sends
- wasted CPU time: log₂P · L
 - Fast Ethernet: $L = 50-60 \ \mu s$
 - Gigabit Ethernet: $L = 15-20 \ \mu s$
 - InfiniBand: $L = 2-7 \ \mu s$
 - $1\mu s \approx$ 4000 FLOPs on a 2GHz Machine

Final Conclusions and Future Work

Conclusions

- Teter's minimization scales ok
- communication overhead is the limiting factor
- parallel scaling is predictable (not easily)
- scaling could be enhanced with overlapping communication and computation to hide latency
- collective communications should be preferred
- \Rightarrow non-blocking collective operations
- LibNBC http://www.unixer.de/NBC

Future Work

- use non-blocking collectives to enhance QM codes
- e.g., overlapping schemes for 3D-FFT

Sac

The Teter Algorithm

- Steepest descent: $\vec{d}^i = -\frac{\partial f}{\partial \vec{x}^i} = -G\vec{x}^i$
- $f(\vec{x}) \rightarrow E$ Kohn Sham Energy Functional
- $\vec{x} \rightarrow \psi_e$ Wave function for each *e*lectron
- $G \rightarrow H$ Hamilton Operator
- Teter's scheme:
 - 1: check residual for convergence
 - 2 compute steepest descent vector
 - orthogonalize it to all bands
 - compute preconditioned steepest descent
 - orthogonalize it to all bands
 - compute conjugate gradient vector
 - step into cg direction
 - goto 1

Non blocking Collectives

Verifying the Predictions

• Kielmann's logp-mpi benchmark:

$$L = 9.78 \mu s, o = 0.05 \mu s, g = 0.01 \mu s$$

Jac.

Torsten Hoefler