
university-logo

Introduction

Parallelization

Hunting the Overlap

Parallel scaling of Teter’s Minimization for

Ab Initio Calculations

Torsten Hoefler

Department of Computer Science
Technical University of Chemnitz

HPCNano Workshop 2006
Supercomputing’06

Tampa, FL, USA

November 13th 2006

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

ABINIT Introduction

ABINIT solves time-independent Schrödinger equation

effective one-particle case, uses DFT

ĤtotΦ = EtotΦ

⇒ Eigenvalue problem

Eigenvalues and -vectors determined with CG minimization

(Teter et al.)

wavefunction Φ written in plain-wave basis set

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

ABINIT Program Flow

Start

(1)

choose Coefficients

(3)

calculate trial potential

(2)

calculate Electron density

(6)

check convergence

(7)

mix new Density

(8)

calculate Potential calculate total Energy

(5)

(4)

minimize electronic Energy

Stop

SCF−cycle

Initialization

not converged

converged

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

ABINIT Tracing

projbd (36.0%/36.0%)

cgwf (83.6%/1.3%)

fourwf (27.4%/0.0%) nonlop (21.5%/0.0%)

sg_fftrisc (27.4%/5.7%) nonlop_pl (21.5%/0.1%)

vtowfk (97.3%/4.3%)

orthon (5.7%/5.6%)

sg_ffty (14.8%/14.8%) sg_fftpx (6.6%/6.6%) opernl4a (11.6%/10.3%) opernl4b (9.8%/8.7%)

⇒ 83% for Teter minimization

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

Conjugate Gradient Operations

dot- and matrix-vector product

dot-product: 〈Φi |Φj〉

matrix-vector product: ĤΦ

Ĥ = Ee
kin + V e

loc + V e
nl

Ee
kin and V e

loc in reciprocal (k-) space

V e
nl in real space

⇒ 3D-FFT to transform between real and reciprocal space

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

K-Point Parallelization

Bands have to be minimized for each k-point

Minimization for each k-point is independent

All k-point data is only needed for the calculation of ETOT

⇒ straightforward parallelization

ABINIT implementation:

Good speedup :-)
Uses only collective communication :-)

Limited to nkpt :-(

Uses MPI_COMM_WORLD :-(
Uses MPI_BARRIER :-(

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Band Parallelization

The Teter Method allows parallel CG

Orthogonalization constraint forces non-ideal solution

⇒ tricky parallelization

ABINIT implementation:

Speedup depends on interconnect :-/

Uses Send/Recv :-(

Limited by nband/c (c not easily predictable)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

G Parallelization

FFT ⇒ Two parallelization schemes:

Distribute plane wave coefficients

Distribute real space FFT Grid

Strict load balancing

Minimize communication

Possible to combine with Band and

k-Point parallelization

Vector Distribution

1
2
3
4
5
6
7
8
9

11
10

12
13
14
15

1
2
3
4
5
6
7
8
9

11
10

12
13
14
15

PE1

PE0

PE2

PE3

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Real Space Distribution

z

x

y

1
2
3
4
5
6
7
8
9

11
10

12
13
14
15

PE1

PE0

PE2

PE3

00

0 0

1D−FFT on xy−lines

MPI_ALLTOALL

00

0 0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

2

2

2

2

2
2

2

2

2

1

1

1

1

1

1

1

1

1

2

2

2

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3

MPI_ALLTOALL

2D−FFT on z−planes

FFT−Box FFT−Box

3D−FFT Distribution

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Implementation Issues

Necessary communication (complexity):

Dot-products (O(1))
Computation of kinetic energy (O(1))
FFT transpose (O(natom))

Only collective communication:

MPI_ALLREDUCE for reductions

MPI_ALLTOALL for FFT transpose

Principles:

only coll. communication
separate communicator

simplification of the main code

heavy usage of math librarys

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Benchmarking the Implementation of cgwf

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

S
p
e
e
d
u
p
 (

s
)

processors (P)

SiO2, natom=43, nband=126, npw=48728
SiO2, natom=86, nband=251, npw=97624

linear

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Possible Reasons for limited Scalability

serial parts (Amdahl’s law)

allocations

scalar calculation

index reordering (packin,packout - FFT)

communication overhead

latency of blocking collective operations

limits scalability significantly
overhead will be modelled in the following

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

The LogP Model

CPU

Network

o s L
o

r

level

time

g

Sender Receiver

g

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Modelling the MPI_ALLREDUCE

→ MPI_REDUCE to node 0 and MPI_BCAST

P0

P1

P2

P3

P4

P5

P6

P7

o
s

fr = max(o
r , g)

fs = max(o
s , g)

o
rL

sf

o
r

o
s

o
r

sf

o
r

sf

o
r

o
s

o
r

o
s

o
r

tred (P, size) = 2·size·(2o+L+(⌈log2P⌉−1)·max{g,2o+L})

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Modelling the MPI_ALLTOALL

→ each node hast to send to all others

single host:

P0

P1

P2

P3

P4

o
s

L
o

r

g o
s g o

s g o
s

o
r

o
r

o
r

L L

L

all hosts send, assuming FBB

ta2a(P, size) = size · ((2o + L) + (P − 1) · (g + o))

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Predicting the Overhead

ored(P) = nband · (9 + 2 · nband) · tred (P,1)

ored(P) = O(log2P)

natom = 43:

ored (P) = 126 · (9 + 2 · 126) · 2 · (⌈log2P⌉ · 9.88)
ored (P) = 65772 · (⌈log2P⌉ · 9.88)

oa2a(P) = 2 · oa2a(P,Nx · Ny · Nz/P)

oa2a(P) = O(1)

natom = 43:

oa2a(P) = . . .
oa2a(P) ≈ 6.3s

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Verifying the Overhead Prediction

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

T
im

e
 (

t)

processors (P)

ALLREDUCE Overhead
ALLTOALL Overhead

Predicted ALLREDUCE Overhead (tred)
Predicted ALLTOALL Overhead (ta2a)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Can we predict parallel Scaling?

⇒ kind of (comm. overhead as limiting factor)

ideal scaling: t(P) = t(1)/P

→ limP→∞ t(P) = 0

overhead: o(P) = ored(P) + oa2a(P)

→ limP→∞ o(P) = ∞

crossing point (Pc) denotes maximum scaling

t(Pc) = o(Pc)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Modelled Prediction

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

T
im

e
 t

processors (P)

Predicted Overhead (ored+oa2a)
Ideal Calculation Scaling (t(P=1)/P)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Comparison to Benchmarks

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

S
p
e
e
d
u
p
 (

s
)

processors (P)

SiO2, natom=43, nband=126, npw=48728
SiO2, natom=86, nband=251, npw=97624

linear

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Already implemented Parallelization

A new Proposal

Verifying this Proposal

Intermediate Conclusions

Teter’s scheme is efficiently parallelizeable

k-pt, band, and g parallelism can be combined

parallel scaling can be predicted

parallel scaling depends on overhead

overhead depends on system size and LogP parameters

⇒ overhead is a hard limitation (is it?)

overlapping could help ;o)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Outline

1 Introduction

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

2 Parallelization

Already implemented Parallelization

A new Proposal

Verifying this Proposal

3 Hunting the Overlap

Non blocking Collectives

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Non blocking Communication

Communication can be overlapped with computation

Progr. model to support overlapping is too complex

(threads)

Non blocking comm. does not change progr. model

Supported by MPI (MPI_ISEND, MPI_IRECV)

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Send/Recv is there - Why Collectives?

Gorlach, ’04: ”Send-Receive Considered Harmful”

⇔ Dijkstra, ’68: ”Go To Statement Considered Harmful”

point to point:

if (rank == 0) then

call MPI_SEND(...)

else

call MPI_RECV(...)

end if

vs. collective:

call MPI_GATHER(...)

cmp. math libraries vs. loops

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Why non blocking Collectives

overlap communication and computation

many collectives synchronize unneccessarily

scale at least with O(log2P) sends

wasted CPU time: log2P · L

Fast Ethernet: L = 50-60 µs

Gigabit Ethernet: L = 15-20 µs
InfiniBand: L = 2-7 µs

1µs ≈ 4000 FLOPs on a 2GHz Machine

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Final Conclusions and Future Work

Conclusions

Teter’s minimization scales ok

communication overhead is the limiting factor

parallel scaling is predictable (not easily)

scaling could be enhanced with overlapping

communication and computation to hide latency

collective communications should be preferred

⇒ non-blocking collective operations

LibNBC http://www.unixer.de/NBC

Future Work

use non-blocking collectives to enhance QM codes

e.g., overlapping schemes for 3D-FFT

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

The Teter Algorithm

Steepest descent: ~d i = − ∂f
∂~x i = −G~x i

f (~x) → E Kohn Sham Energy Functional

~x → ψe Wave function for each electron

G → H Hamilton Operator

Teter’s scheme:
1 1: check residual for convergence
2 compute steepest descent vector
3 orthogonalize it to all bands
4 compute preconditioned steepest descent
5 orthogonalize it to all bands
6 compute conjugate gradient vector
7 step into cg direction
8 goto 1

Torsten Hoefler Teter Parallelism

university-logo

Introduction

Parallelization

Hunting the Overlap

Non blocking Collectives

Verifying the Predictions

Kielmann’s logp-mpi benchmark:

L = 9.78µs,o = 0.05µs,g = 0.01µs

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

T
im

e
 (

t)

processors (P)

ALLREDUCE 16 bytes
ALLTOALL 16 bytes

Predicted ALLREDUCE
Predicted ALLTOALL

Torsten Hoefler Teter Parallelism

	Introduction
	Introduction to ABINIT
	Teter's Conjugate Gradient Minimization

	Parallelization
	Already implemented Parallelization
	A new Proposal
	Verifying this Proposal

	Hunting the Overlap
	Non blocking Collectives

