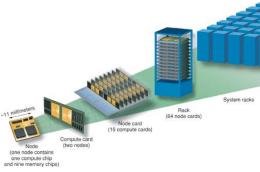
BLUE WATERS SUSTAINED PETASCALE COMPUTING

Generic Topology Mapping Strategies for Large-scale Parallel Architectures

Torsten Hoefler and Marc Snir

Scientific talk at ICS'11, Tucson, AZ, USA, June 1st 2011,



Hierarchical Sparse Networks are Ubiquitous

- Large-scale systems are built with low-dimensional network topologies
 - E.g., 3d-torus Jaguar (18k nodes), BG/P (64k nodes)



- Number of nodes grows (~100k-1M for Exascale)
 - Will rely on fixed arity switches
 - Diameter increases
 - >Bisection bandwidth decreases (in relative terms)

Application Communication Patterns

- Scalable communications are sparse!
 - E.g., 2d FFT decomposition
 - Most patterns have spatial locality

- Trivial mapping of processes to nodes often fails to take advantage of locality
 - E.g., linear mapping of a 3d grid onto a hierarchical (e.g., multicore) network (should use sub-cubes)

Topology Mapping - State of the Art

- Problem has been analyzed for mapping Cartesian topologies [Yu'06,Bhatele'09]
 - But communication network might have complex structure (failed links, "naturally grown")
 - And application likely to be non-Cartesian too (AMR)
- The general problem has not been studied much
 - We show that it's NP-complete
 - Also consider heterogeneous networks [PERCS'10]

Terms and Conventions

- Application communication pattern is modeled as weighted graph $\mathcal{G}=(V_{\mathcal{G}},\omega_{\mathcal{G}})$
 - $V_{\mathcal{G}}$ is the set of processes
 - $\omega_{\mathcal{G}}$ represents the communication volume
- Physical network is $\mathcal{H} = (V_{\mathcal{H}}, C_{\mathcal{H}}, c_{\mathcal{H}}, \mathcal{R}_{\mathcal{H}})$
 - $V_{\mathcal{H}}$ set of physical nodes
 - $C_{\mathcal{H}}(u)$ number of PEs in node $u \in V_{\mathcal{H}}$
 - $c_{\mathcal{H}}(u, v)$ link capacity (bandwidth) of link $(u, v) \in V_{\mathcal{H}} \times V_{\mathcal{H}}$
 - $\mathcal{R}_{\mathcal{H}}$ set of routes (may be multiple routes from u to v)

- Topology Mapping $\Gamma: V_{\mathcal{G}} \to V_{\mathcal{H}}$
- Average dilation (|p| = length of path p)
 - $Dilation(uv) = \sum_{p \in \mathcal{P}(\Gamma(u)\Gamma(v))} \mathcal{R}_{\mathcal{H}}(\Gamma(u)\Gamma(v))(p) \cdot |p|$
 - $Dilation(\Gamma) = \sum_{u,v \in V_{\mathcal{G}}} \omega_{\mathcal{G}}(uv) \cdot Dilation(uv)$
 - "average path length through the network"
- Worst-case congestion (cf. paper for equation)
 - "congestion of a link is ratio of traffic to bandwidth"
 - "worst-case congestion is the maximum congestion on any link in the network"

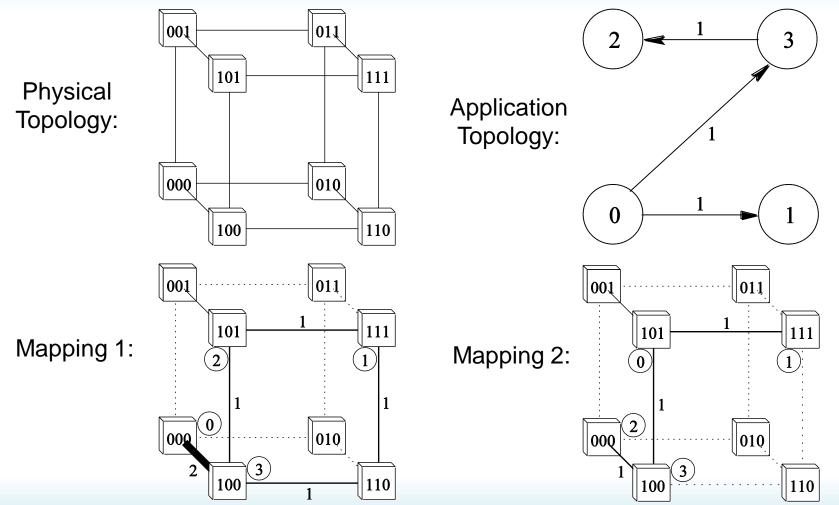
Meaning of the Metrics

- Worst-case congestion (or just "congestion")
 - Lower bound on the communication time
 - Measure of performance
- Average dilation (or just "dilation")
 - Number of transceivers involved in communication
 - Measure for power consumption

Assumptions and Practical Issues

Assumptions:

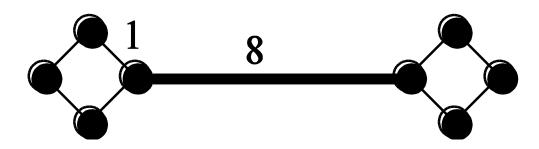
- 1. Infinite bandwidth for intra-node communication
- 2. Dilation=0 for intra-node communication
- 3. Nonblocking (full-bandwidth) switches
- 4. Oblivious routing with fixed routing algorithm


Practical Issues:

- 1. Process communication pattern is defined once
- 2. Processes are mapped once

Example Mappings

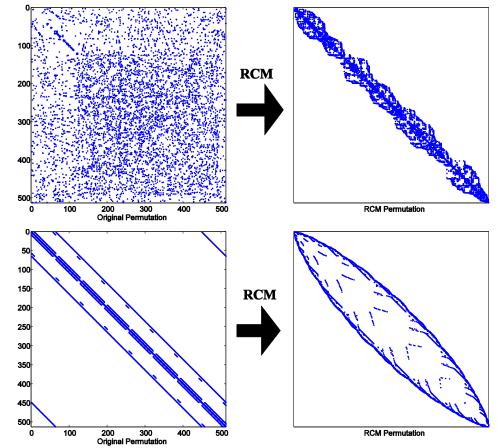
Topology Permutation Mapping


- Application topologies ${\mathcal G}$ are often only known during runtime
 - Prohibits mapping before allocation
 - Batch-systems also have other constraints!
- MPI-2.2 defines interface for re-mapping
 - Scalable process topology graph
 - Permutes ranks in communicator
 - Returns "better" permutation π to the user
 - User can re-distribute data and use $\boldsymbol{\pi}$

- Reduction to MINIMUM CUT INTO BOUNDED SETS [ND17 in Garey&Johnson]
- Intuition:
 - Assume host graph is "dumbbell"

- Any mapping defines a partition of the application graph into two equal sizes
- Must minimize the edge-cut for optimal congestion

Mapping Heuristics (1/3)


- 1. Simple Greedy
 - Start at some vertex in \mathcal{H}
 - Map heaviest vertex in ${\cal G}$ as "close" as possible
 - Runtime: $\mathcal{O}(|V_{\mathcal{G}}| \cdot (|E_{\mathcal{H}}| + |V_{\mathcal{H}}| \log |V_{\mathcal{H}}| + |V_{\mathcal{G}}| \log |V_{\mathcal{G}}|))$
- 2. Recursive Bisection
 - Recursively cut ${\mathcal H}$ and ${\mathcal G}$ into minimal bisections
 - Map vertices in ${\cal G}$ to vertices in ${\cal H}$
 - Runtime: $\mathcal{O}(|E_{\mathcal{G}}|\log(|V_{\mathcal{G}}|) + |E_{\mathcal{H}}| \cdot |V_{\mathcal{G}}|)$

- 3. Graph Similarity Cuthill McKee
- Apply RCM to \mathcal{H} and \mathcal{G}
- Map resulting permutations
- Runtime:

 $\mathcal{O}(m_{\mathcal{H}} \log(m_{\mathcal{H}}) | V_{\mathcal{H}} |)$ + $\mathcal{O}(m_{\mathcal{G}} \log(m_{\mathcal{G}}) | V_{\mathcal{G}} |)$ (m = max degree)

Mapping Heuristics (3/3)

3. Hierarchical Multicore Mapping

- Assuming $C(v) = p \ \forall v \in \Gamma(V_{\mathcal{H}})$
- Partition \mathcal{G} into P/p balanced partitions
- Using METIS for $(k,1+\epsilon)$ -balanced partitions
 - Might need corrections!
- 4. Simulated Annealing / Threshold Accepting (TA)
 - SA was proposed as heuristic [Bollinger&Midkiff]
 - Using TA to improve found solution further

Practical Issues – A TopoMapper Library

- 1. Getting the network topology statically
 - Query each network, generate adjacency list file
 - Key is the hostname (must be unique)

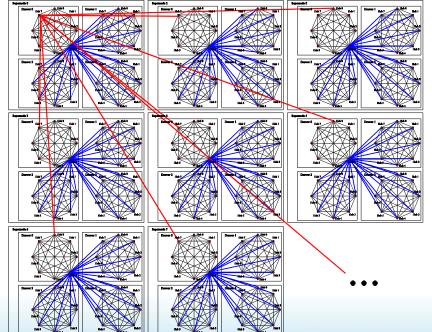
Interconnection Network (API)	Topology Query Tool(s)
Myrinet (MX)	fm_db2wirelist
InfiniBand (OFED)	ibdiagnet & ibnetdiscover
SeaStar (Cray XT)	xtprocadmin & xtdb2proc
BlueGene/P (DCMF)	DCMF API

- 2. Querying the topology and location
 - Only supported on BlueGene (DCMF personality)

Experimental Evaluation - Methodology

- We assume static routing with load spread evenly
- Real-world MatVec from Florida Sparse Matrix Coll.
 - F1, audikw_1: symmetric stiffness matrices, representing automotive crankshafts
 - nlpkkt240: nonlinear programming (3d PDE, constrained optimization problem)

Matrix Name	RowsandColumns	NNZ (sparsity)
F1	343,791	$26,837,113\ (2.27\cdot 10^{-4}\%)$
audikw_1	943,695	$39,297,771 \ (4.4 \cdot 10^{-5}\%)$
nlpkkt240	27,993,600	$401,232,976 \ (5 \cdot 10^{-7}\%)$


Network Topologies (1/2)

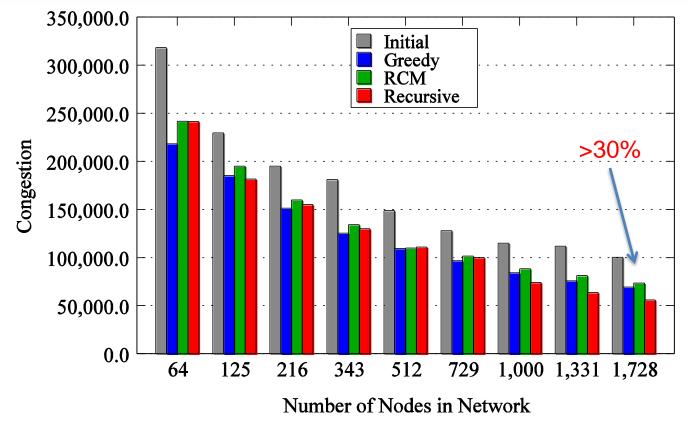
1. 3d Torus

- x=y=z for maximum bisection
- 3³ to 12³ maximum map file size: 31.2 kiB

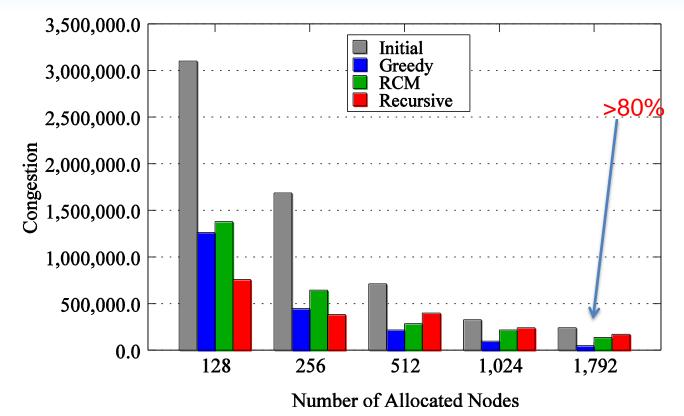
2. PERCS

- 7 LL, 24 LR links
- Assuming 9 D-links
- Total of 9248 nodes
- Map file size: 1455 kiB

Network Topologies (2/2)

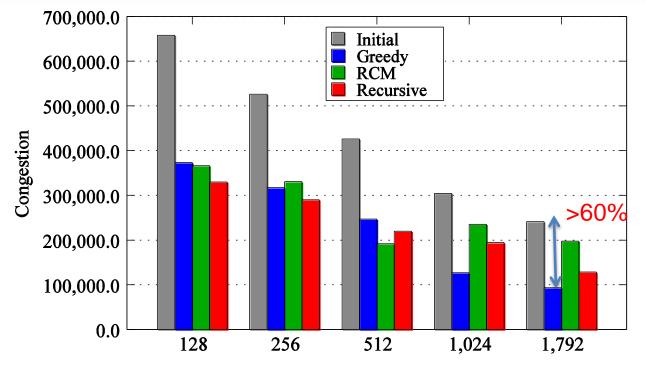

- Juropa (JSC, Germany)
 - 3292 endpoints
 - Map file size: 87 kiB
- Ranger (TACC, Texas)
 - 4081 endpoints
 - Map file size: 134 kiB
- Surveyor (BG/P, Argonne, Illinois)
 - Queried during runtime

Congestion on Torus Networks


- nlpkkt240, dilation for 12³: 9.0, 9.03, 7.02, 4.5
- Times for 123: <0.01s, 1s, 1s, 10 min

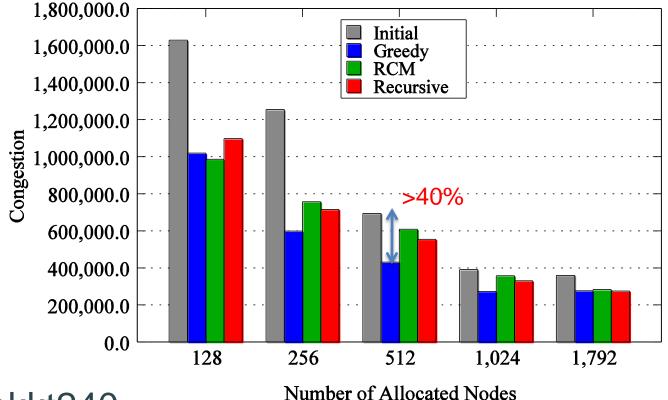
T. Hoefler, M. Snir: Generic Topology Mapping Strategies

Congestion on PERCS



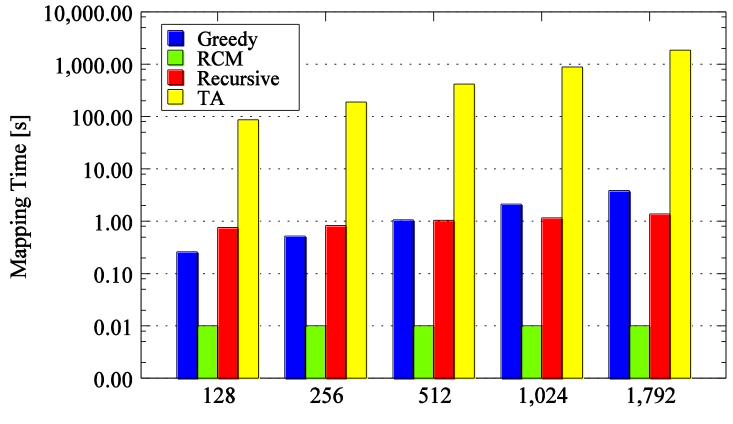
- nlpkkt240, packed allocation, dilation: all ~2.5
- Times: <0.01s, 0.8-22s, 4.5-7.5s, >41 min

Congestion on Juropa


Number of Allocated Nodes

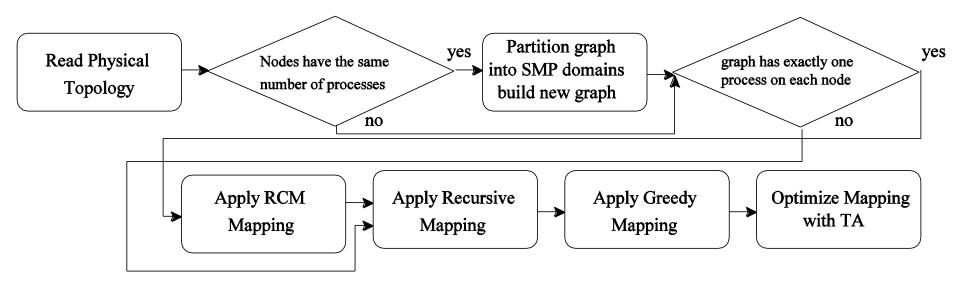
- audikw_1, dilation: 5.9, 5.8, 4.45, 5.13
- Times: <0.01s, 0.16-2.6s, 0.63-1.21s, 9 min

Congestion on Ranger


nlpkkt240

• times: <0.01s, 0.26-3.85s, 0.76-1.5s, 0.5-14 min

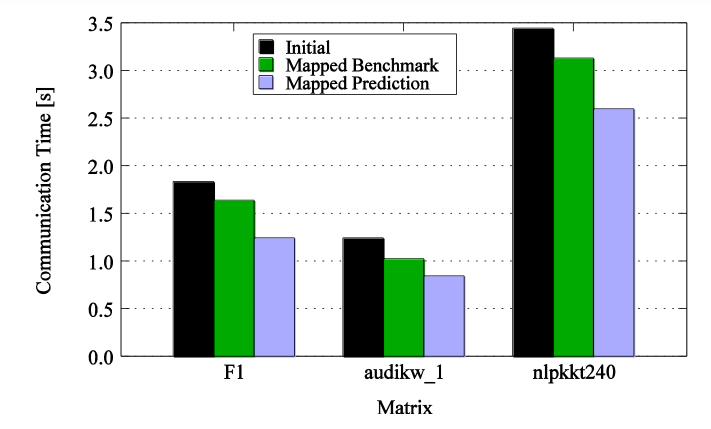
Number of Allocated Nodes


23/27

A Practical Mapping Strategy

- P cores are available use all of them!
 - All heuristics in parallel, greedy varies start processes

Real-World Benchmarks


- Used Surveyor which has close-to-optimal routing
- Load matrix, partition with ParMETIS
 - Construct MPI-2.2 distributed graph toplogy
 - Apply topology mapping
 - Re-distribute data
- Perform timed sparse MatVec
 - Report time for 100 communication phases
 - Maximum time across all ranks

Benchmark Results

• 512 nodes, up to 18% improvement measured

- LibTopoMap (download tools and library)
 <u>http://www.unixer.de/research/libtopomap</u>
- Conclusions
 - Topology mapping is feasible at large scale
 - Good heuristics exist and should be implemented in MPI-2.2
- Future Work
 - Exploit structure for faster optimal algorithms (e.g., Cartesian)
 - Consider intra-node costs

