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ABSTRACT
Chiplet architectures are a promising paradigm to overcome the
scaling challenges of monolithic chips. Chiplets offer heterogene-
ity, modularity, and cost-effectiveness. The design space of chiplet
architectures is huge as there are many degrees of freedom such
as the number, size and placement of chiplets, the topology of the
inter-chiplet interconnect and many more. Existing tools for cost
and performance prediction are often too slow to explore this de-
sign space. We present RapidChiplet, a fast, open-source toolchain
to predict latency and throughput of the inter-chiplet interconnect,
as well as a chip’s manufacturing cost and thermal stability.

Website & code: https://github.com/spcl/rapidchiplet

1 INTRODUCTION
Increasing the performance-per-cost of processors and accelerators
has become more challenging than ever, leading to a slow-down of
Moore’s law [22]. Reasons for this slow-down are the exponentially
growing design and manufacturing costs when transitioning to a
more advanced technology node [19] as well as the diminishing re-
turn of this transition due to the scaling limits of IO-drivers, analog
circuits, and, most recently, static random access memory (SRAM).
A promising solution to these challenges is 2.5D integration, where
multiple silicon dies called chiplets are integrated into the same
package. The fact that a single chiplet design can be reused for mul-
tiple products reduced the design cost per chip. Furthermore, since
2.5D integration allows integrating heterogeneous chiplets built in
different technologies into the same package, only components that
can take full advantage of technology scaling are manufactured
in advanced and costly technology nodes. Components that have
reached their scaling limits are manufactured in mature, low-cost
technologies. Due to its economic benefits, 2.5D integration found
its way into the products of industry-leading companies, such as
NVIDIA’s P100 GPU [17] (only for high-bandwidth memory (HBM))
and AMD’s EPYC and Ryzen CPUs [23].

The design space for 2.5D stacked chips is huge. One can decide
between different packaging options [18, 21, 27, 29], chiplet counts
and sizes [9], chiplet placements [13], die-to-die (D2D) link imple-
mentations [7, 24] and protocols [1, 3], inter-chiplet interconnect
(ICI) topologies [4, 14, 16, 25, 26], and many more factors. Further-
more, there are many different metrics of interest, such as the area
requirements, power consumption, thermal properties, and manu-
facturing cost of a chip or the latency and throughput of the ICI.

Exploring this huge design space with the tools currently available
is challenging due to two major reasons: Firstly, existing tools usu-
ally either focus on the manufacturing cost [8], thermal properties
[12, 30], or the performance of the ICI [2, 5, 15, 20]. To the best
of our knowledge, there is no toolchain to analyze all metrics of
interest in a unified framework. Secondly, while there are many
tools for pre-RTL analysis, they still take multiple minutes to be
executed even on designs with a relatively small number of chiplets.
While this is sufficient to compare a set of selected designs, it is not
fast enough to explore a design space with trillions of options.

To address these two issues, we introduce RapidChiplet, a fast
and unified toolchain for rapid design space exploration of chiplet
architectures. RapidChiplet takes a unified input format to estimate
the area, power consumption, thermal stability, and manufacturing
cost of a chip as well as the latency and throughput of the ICI. Com-
puting these estimates only takes milliseconds, allowing the evalua-
tion of hundreds of thousands of designs. We show that our latency
and throughput proxies are up to 15× and 1695× faster than cycle
accurate simulations, while only deviating by 2-5% and 6-15% from
the simulation-based results. To perform amore accurate evaluation
of selected designs, RapidChiplet provides a seamless integration
of the established, cycle-accurate BookSim2 [15] network-on-chip
simulator. We extended BookSim2 by many additional features such
as new synthetic traffic patterns, the integration of Netrace [10] to
simulate real traffic traces, or the differentiation between compute-,
memory-, and IO-chiplets. The open-source RapidChiplet toolchain
enables exploring the design space of chiplet architecture by pro-
viding fast estimates for the seven most relevant metrics.

2 BACKGROUND
2.1 2.5D Packaging and Die-to-Die Links
There are multiple technologies to provide connectivity between
chiplets in 2.5D stacked chips: The organic package substrate can
be used to implement D2D links. Links in an organic package sub-
strate are repeaterless, and can reach lengths of up to 10-50mm [3]
(depending on data rate, bump pitch, and link termination). Since
such links are connected to the chiplets using rather large con-
trolled collapse chip connection (C4)-bumps, the link bandwidth
is severely constrained. Silicon bridges [21, 27] and passive silicon
interposers [18] both enable D2D links that are connected to the
chiplet usingmicrobumps. The narrow pitch of microbumps enables
high-bandwidth links, however, these links are still repeaterless, and
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their length cannot exceed some millimeters [3, 21]. Active silicon
interposers [29] allow the construction of buffered, high bandwidth
links of unlimited length, and they even enable the construction
of on-interposer routers. However, they are about 10 times more
expensive than passive interposers [6] and more power-hungry.

Independently of the packaging, each D2D link needs two physi-
cal layers (PHYs), one in the sending and one in the receiving chiplet.
PHYs are needed to translate between protocols, clock speeds and
voltage levels which differ between on-die and D2D links.

2.2 Chiplet Placements and ICI Topologies
Since chips based on passive silicon interposers and silicon bridges
have a severely limited link length, one usually only connects
adjacent chiplets. Homogeneous chiplets (i.e., chiplets with the
same shape and functionality) are often placed in a 2D grid and
connected using a 2D mesh topology, however, improved place-
ments/topologies such as HexaMesh [13] have been proposed. For
chips with heterogeneous chiplet shapes, one typically deploys a
custom, hand-optimized placement and topology.

For chips based on an active interposer, many different ICI topolo-
gies have been proposed. Topologies such as Double-Butterfly [14],
ButterDonut [16], ClusCross [25], Kite [4], or SID-Mesh [26] try to
maximize the bisection bandwidth while minimizing the network
diameter and the length of D2D links.

2.3 On-Chip Traffic Types
On-chip traffic can be categorized into four types: compute-to-
compute (C2C), compute-to-memory (C2M), compute-to-IO (C2I),
and memory-to-IO (M2I) traffic (see Fig. 1). C2C traffic originates
from explicit communication between compute chiplets, or from
control-messages in cache coherency protocols. C2M traffic is caused
by a core accessing a shared scratchpad memory (SPM) or from
coherency traffic between the L1 and L2 cache. C2I traffic is initi-
ated by a core accessing an off-chip resource, e.g., main memory.
M2I traffic originates from cache coherency traffic between the L2
cache and main memory.

Compute-Chiplet Memory-Chiplet IO-Chiplet
D2D Link C2C-Path C2M-Path C2I-Path M2I-Path

c1c1c5 c6

c7

c2

c4 c3

Figure 1: (§2.3) Traffic types and paths within each type.

3 THE RAPIDCHIPLET ARCHITECTURE
We introduce RapidChiplet, a fast toolchain for rapid design-space
exploration of chiplet architectures. Fig. 2 provides an overview of
the RapidChiplet architecture. A design file containing links to the
seven different input files is passed to RapidChiplet, which then
reads and validates these input files. RapidChiplet computes seven

different metrics. To minimize runtime, each metric can be toggled
on and off using command line arguments. The results are stored
in a results file. For more accurate ICI latency and throughput
results at the cost of a higher runtime, RapidChiplet is able to
run simulations using the BookSim2 [15] network-on-chip (NoC)
simulator. We extend BookSim2 with additional synthetic traffic
patterns, the integration of Netrace [10] for dependency-drive, trace-
based simulations, and many more features.
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Figure 2: (§3) RapidChiplet Architecture Overview.

3.1 Inputs Files
We explain the seven input files read by RapidChiplet. These files
can be combined in arbitrary ways, i.e., we can have many designs
with the same chiplets but different placements or with the same
placement but different topologies.

• Technology Nodes: A list of technologies, each with a PHY-
latency, wafer-radius, wafer-cost, and defect density.

• Chiplets: A list of chiplets, each with dimensions, a type (com-
pute, memory, or IO), PHY locations, a technology (a key to the
technology nodes file), power consumption, internal latency, com-
ponent count (#cores, #memory-banks or #memory-controllers),
and a flag specifying whether or not the chiplet can relay traffic.

• Chiplet Placement: A list of chiplets, each with a position,
rotation, and a name (a key to the chiplets file). For chips with
an active interposer, this file also contains a list of interposer
routers, each with a position and port-count.

• ICI Topology: A list of links, each with two endpoints that can
be PHYs of chiplets or ports of interposer-routers.

• Packaging: The link routing (manhattan or euclidean), link la-
tency (constant or length-dependent) and packaging yield. If a
silicon interposer is used, this file additionally contains the in-
terposer’s technology (a key to the technology nodes files). For
active interposers, this file also contains the latency and power
consumption of interposer-routers.

• ThermalConfig: The resolution, iteration-limit and termination-
condition for the thermal simulation as well as heat exchanges
parameters explained in Section 3.7.

• BookSim Config: All parameters needed for simulations in
BookSim2 (refer to BookSim [15] for more details).

3.2 Input Validation
RapidChiplet validates all input files which includes checking for
overlapping chiplets, PHYs used by more than one link, invalid keys
to the chiplets or technology nodes file, links attached to non-existing
PHYs or ports, and many more.
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3.3 Area Summary
RapidChiplet computes the sum of all chiplet areas as well as the
area of a minimal rectangle enclosing the whole placement. The
difference between these two numbers acts as a metric of how
area-efficient a given placement is.

3.4 Power Summary
RapidChiplet computes the power used by chiplets, by interposer-
routers, as well as the total power consumption.

3.5 Link Summary
The link summary states the minimum, average and maximum
length of a D2D link in the chip as well as a list containing the
length of each D2D link.

3.6 Manufacturing Cost
In a first stage, we estimate the manufacturing cost 𝐶𝑐𝑖 of each
chiplet type 𝑐𝑖 . To this end, we start by computing the number of
chiplets 𝑁𝑐𝑖 that can be produced per wafer. Let 𝐴𝑐𝑖 be the area of
a chiplet of type 𝑐𝑖 .

𝑁𝑐𝑖 =
𝜋 · wafer_radius2

𝐴𝑐𝑖

− 2 · 𝜋 · wafer_radius√︁
2 · 𝐴𝑐𝑖

(1)

The first term represents the ratio betweenwafer area and chiplet
area, including chiplets that only partially lie within the wafer. To
correct for cut-off chiplets, we subtract the second term. Next, we
compute the number of known-good-dies 𝐺𝑐𝑖 :

𝐺𝑐𝑖 =
𝑁𝑐𝑖

1 + defect_density · 𝐴𝑐𝑖

(2)

Finally, we compute the per-chiplet cost 𝐶𝑐𝑖 :

𝐶𝑐𝑖 =
waver_cost

𝐺𝑐𝑖
(3)

For chips with a silicon interposer, we compute the interposer
cost 𝐶𝑖𝑝 analog to the chiplet cost, for chips without an interposer,
we set 𝐶𝑖𝑝 = 0. Finally, we compute the total cost:

𝐶 =

𝐶𝑖𝑝 + ∑
𝑐𝑖 ∈chiplets

𝐶𝑐𝑖

packaging_yield (4)

3.7 Thermal Analysis
Weuse a fast and simple thermal model that divides the 2.5D stacked
chip into a 2D grid. At each point in time, each grid-cell has a certain
temperature. Time is discretized into multiple iterations. In each
iteration, each grid-cell experiences the following effects, where
𝑇amb is the ambient temperature and the parameters 𝑘 model the
thermal conductivities of different materials:
• If the cell contains a chiplet with power 𝑃𝑐 and area 𝐴𝑐 or an

interposer-router with power 𝑃𝑖𝑟 , its temperature 𝑇 is increased
by Δ𝑇c (chiplets) and/or Δ𝑇ir (interposer-routers):

Δ𝑇c =
𝑃c · 𝑘c
𝐴c

Δ𝑇ir = 𝑃ir · 𝑘ir (5)

• The following amount of heat is transferred between any two
adjacent grid-cells (from the hotter to the colder cell):

Δ𝑇t = 𝑘t · |𝑇cell1 −𝑇cell2 | (6)

• For cells at the perimeter of the grid, the following amount of
heat is removed (dissipated through the side of the chip):

Δ𝑇s = 𝑘s · |𝑇cell −𝑇amb | (7)

For cells at the corners, Δ𝑇s is removed twice.
• All cells dissipate heat into the heat sink:

Δ𝑇hs = 𝑘hs · |𝑇cell −𝑇amb | (8)

We run this simulation until the temperature change is below a
threshold or the maximum number of iterations is exceeded.

3.8 ICI Latency Proxy
To compute the latency of the four traffic types C2C, C2M, C2I,
and M2I, we represent the 2.5D stacked chip as a graph (see Fig. 3).
In this graph, chiplets and interposer-routers are represented as
nodes, while D2D links and links between interposer-routers are
represented as edges. Each node and each edge has a latency-value
associated with it: For chiplet-nodes the latency is set to the chiplet-
specific internal latency 𝐿𝐶 representing the time it takes to route
the message from the incoming PHY to either a component (core,
memory-bank or memory-controller) to an outgoing PHY. For
interposer-router nodes, the latency is set to the interposer-router
latency 𝐿𝐼𝑅 . The latency of edges is set to the link latency 𝐿𝐿 which
can be computed based on the link length or set to a constant value
(configured through the packaging input file). For edges between a
chiplet and an interposer-router, the PHY latency 𝐿𝑃 is added to the
edge latency, and for edges between two chiplets, the PHY latency
𝐿𝑃 is added twice as a packet needs to traverse two PHYs.

Compute-Chiplet Memory-Chiplet IO-Chiplet Interposer router
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(a) Chip Schematic
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Figure 3: (§3.8) A chip and its graph representation.

For any given traffic type, we find the shortest path between any
pair of source and destination chiplets (e.g, for C2M traffic, only
compute-chiplets can be the source and only memory-chiplets can
be the destination). We compute the latency of each such path by
finding the shortest path in the graph and summing up all node and
edge latencies on the path. We report the average, minimum and
maximum latency per traffic type and a list of per-path latencies.

3.9 ICI Throughput Proxy
We approximate the throughput using the same graph represen-
tation as for the latency. We use shortest path routing. The user
can choose between three different routing modes for cases where
multiple shortest paths exist:
• default: Use the first shortest path that was found.
• random: Randomly select one of the shortest paths.
• balanced: Greedily balance paths across edges.
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For each edge 𝑒 in the graph, we compute the number of paths 𝑁𝑒

that use that edge. The largest number of paths per edge 𝑁𝑒 acts as
a proxy for the congestion in our network. We estimate the total
communication volume per cycle as𝑉 = 1/𝑁𝑒 ·𝑃 , where 𝑃 is the total
number of paths in the given traffic type. Our throughput proxy is
the injection rate, at which the sending components (compute-cores
or memory banks) can inject traffic into the network. To compute it,
we divide the communication volume 𝑉 by the number of sending
components. Note that chips with more sending than receiving
components have a peak injection rate below 1.0.

3.10 Export to BookSim2 (+Netrace)
BookSim2 [15] is an established, cycle-accurate NoC simulator,
however, it only supports synthetic traffic patterns. We extend
BookSim2 by adding support for real traffic traces. We use Netrace
[10, 11] to read the traces and identify dependencies between differ-
ent packets. We implement two modes for trace-based simulations:
In the Authentic mode, a packet is injected into the network once
all dependencies are fulfilled and the cycle, in which the packet
appears in the trace, is reached. This represents a real scenario
where the compute cores need some time to read a packet, perform
some computations and inject a new packet into the network. In the
Idealized mode, a packet is injected as soon as all dependencies
are satisfied (modelling indefinitely fast cores). We further extend
BookSim2 by adding new synthetic traffic patterns for random-
uniform C2C, C2M, C2I, andM2I traffic. Additionally, wemodify the
routing function in BookSim to only route traffic through chiplets
with relay capability.

In BookSim2, one specifies the injection rate and runs the simu-
lation to identify the average packet latency under that rate. While
this is sufficient to identify the ICI’s zero-load latency, it requires
multiple runs to determine the saturation throughput. We provide a
wrapper for BookSim2 that runs multiple simulations with increas-
ing injection rates to identify the saturation throughput with 10%,
1%, or 0.1% precision. For 10% precision, we simply increase the
injection load by 10% in each step until we reach saturation. For 1%
precision, we transition from 10%-steps to 1%-steps when we are
close to saturation and for 0.1% precision, we even use 0.1%-steps.

3.11 Additional Utilities
• Visualizer: A tool to visualize single chiplets and whole chips.

The images in Fig. 6 are created using this tool.
• Generators: A set of parameterized generators for established

chiplet placements and ICI topologies.

4 EVALUATION
We evaluate the runtime and accuracy of RapidChiplet on a set of
chips containing a 2D grid of compute-chiplets with equal-sized
memory-chiplets on the left/right and IO-chiplets on the top/bottom.
We vary the scale from 2×2 compute chiplets up to 16×16 compute
chiplets, and we use two topologies, a mesh on a passive interposer
and a concentrated mesh on an active interposer. Fig. 6 shows two
example for the scale 4 × 4. We set the internal latency of chiplets
and the interposer-router latency to 5 cycles, the PHY latency to
12 cycles, and the link latency to 1 cycle for the passive interposer,
and to 0.5 cycles/mm for the active interposer. All experiments are

performed on a laptop with an Intel Core i7-1165G7 CPU running
Arch Linux with kernel version 6.5.5.

Compute-Chiplet Memory-Chiplet IO-Chiplet Interposer router

(a) 4 × 4 mesh. (b) 4 × 4 concentrated mesh.

Figure 6: (§4) Example topologies used in the evaluation.

4.1 Runtime Analysis
Fig. 7 breaks down the runtime of RapidChiplet into time spent
for input reading, input validation, computing the area, power and
link summaries, computing the manufacturing cost, constructing
the routing tables and estimating the latency and throughput. We
omit the runtime of the thermal analysis, since it heavily depends
on the grid resolution and the termination criterion. We observe
that for the smallest design, all six metrics can be computed in a
single millisecond. For large designs with 256 compute chiplets plus
memory- and IO-chiplets, one second is sufficient to compute all
six metrics. Note that each of the six metrics can be toggled on and
off, therefore, the total runtime can significantly decrease if only a
subset of the metrics is selected. Moreover, input files are only read
and validated if they are needed for the selected metrics.
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Figure 7: (§4.1) RapidChiplet runtime breakdown. Shaded
area represents minimum and maximum over 10 executions.

4.2 Comparison to BookSim2
We compare the accuracy and runtime of our latency and through-
put proxies to cycle-accurate simulations in BookSim2 [15]. An
important input parameter affecting both the runtime and accuracy
of BookSim2 is the sample period (i.e., how many cycles do we
simulate). We discovered that for small designs, BookSim2’s results
stay stable after about 500 cycles, while for large designs, about
5000 cycles are required. Hence, we adjust the sample period based
on the scale of a design.
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Latency Throughput

RapidChiplet
BookSim

RapidChiplet
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x15 x15

RapidChiplet

BookSim (10%)
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BookSim (0.1%)

BookSim (10%)

BookSim (0.1%)

RapidChiplet

BookSim (1%)

Figure 4: (§4.2) Runtime of RapidChiplet compared to BookSim2.
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Figure 5: (§4.2) RapidChiplet Accuracy. We compare the results from RapidChiplet (RC) to those of BookSim2 (BS).

Fig. 4 compares the runtime of computing all six metrics in Rapid-
Chiplet to that of identifying the zero-load latency or saturation
throughput using BookSim2. We show the runtime of BookSim2 for
throughput results with 10%, 1%, and 0.1% precision. Our process of
identifying the saturation throughput by running multiply simula-
tions with increasing loads introduces a dependency of the runtime
of BookSim2 on the throughput result, which is the reason for
the unstable runtime of BookSim2 in the throughput plot. Table 1
shows the average speedup of RapidChiplet over BookSim2. The
reason for the higher speedup in throughput compared to latency
is that computing the latency with BookSim2 only requires one
simulation at low load (few packets to simulate), while comput-
ing the throughput requires multiple simulations with high loads
(many packets). We conclude that RapidChiplet delivers a speedup
between one and three orders of magnitude.

Table 1: (§4.2) Speedup of RapidChiplet over BookSim.

Metric (precision) Speedup
2D Mesh

Speedup
Concentrated 2D Mesh

Latency ×15 ×15
Throughput (10%) ×543 ×235
Throughput (1%) ×998 ×414
Throughput (0.1%) ×1695 ×701

Fig. 5 compares the latency and throughput proxies of Rapid-
Chiplet to the results of BookSim2. Table 2 states the average rela-
tive error for each traffic type. Despite the high speedup of Rapid-
Chiplet over cycle-accurate simulations, its latency proxy only
differs from the simulation-based result by 2-5% and its throughput
proxy only differs by 6-15%. This proves that RapidChiplet is suit-
able for design space explorations where one needs to quickly assess
countless designs and where a small accuracy loss is acceptable.

Table 2: (§4.2) Relative error of RapidChiplet.

Traffic
2D Mesh Concentrated 2D Mesh

Latency Throughput Latency Throughput
C2C 2.69 % 6.29 % 4.37 % 12.61 %
C2M 1.97 % 6.84 % 4.36 % 14.6 %
C2I 2.82 % 7.10 % 4.14 % 14.75 %
M2I 3.44 % 7.56 % 3.27 % 3.61 %

5 RELATEDWORK
Various tools for early-stage design space exploration exist, how-
ever, they usually focus on a single metric or on a subset of the
relevant metrics. Most of these tools are slightly more accurate but
significantly slower than RapidChiplet.

ChipletActuary [8] is a cost model for chiplet architectures con-
sidering both the recurring engineering (RE) and non-recurring
engineering (NRE) cost. Other cost models for 2.5D stacked chips,
like the one by Tang et al. [28] have been proposed. HotSpot [12] is
an established tool for thermal simulations. More recently, thermal
models specifically for chiplet architectures, like, e.g., the work by
Wang et al. [30] have been developed.

For early-stage latency and throughput predictions, cycle-accurate
simulators such as BookSim2 [15], Noxim [5], Nostrum [20] or Gar-
net [2] are frequently used. While these simulators were originally
conceived for NoC simulations in monolithic chips, methodologies
[31] to use them for simulations of 2.5D stacked chips have been
proposed. As we have shown, running cycle-accurate simulations
takes orders of magnitude longer than our latency and through-
put proxies. For cases where the cycle-accurate results required,
RapidChiplet provides a seamless integration of BookSim2 [15].
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6 CONCLUSION
The design space for chiplet architectures is huge, as there are count-
less options for packaging, chiplet placement, D2D link implemen-
tation, ICI topology and many more. When exploring this design
space, we are interested in many metrics such as chip area, power
consumption, thermal properties, manufacturing cost, ICI latency,
and ICI throughput. Exploring this large design space requires a fast
framework capable of providing estimates for all relevant metrics.

As we are not aware of an existing toolchain satisfying these
requirements, we propose RapidChiplet, a fast and unified toolchain
to estimate the seven most relevant metrics of chiplet architectures.
RapidChiplet only takes somemicroseconds to predict these metrics
for designs with tens of chiplets and only a second for designs with
more than 300 chiplets. Our latency and throughput proxies are up
to 15× and 1695× faster than cycle-accurate simulations while only
deviating by 2-5% and 6-15% from simulation-based results.

Due to its short execution time, RapidChiplet is suitable as a cost
function to both traditional optimization algorithms such as simu-
lated annealing as well as novel, machine learning based optimiza-
tionmethods. By providing the open-source RapidChiplet toolchain,
we facilitate exploring the complex design space of chiplet archi-
tectures, sparking future advancements in this active research area.
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