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ABSTRACT
Allreduce is a fundamental collective used in parallel computing and

distributed training of machine learning models, and can become a

performance bottleneck on large systems. In-network computing

improves Allreduce performance by reducing packets on the fly

using network routers. However, the throughput of current in-

network solutions is limited to a single link bandwidth.

We develop, compare and contrast two different sets of Allre-

duce spanning trees embedded into PolarFly, a high-performance

diameter-2 network topology. Both of our solutions offer theoret-

ically guaranteed near-optimal performance, boosting Allreduce

bandwidth by a factor equal to half the network radix of nodes.

While our first set offers low-latency with trees of depth-3, the sec-
ond set offers congestion-free implementation which reduces com-

plexity and resource requirements of in-network computing units.

In doing so, we also distinguish PolarFly as a highly suitable

network for distributed deep learning and other applications that

employ throughput-bound large Allreductions.
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1 INTRODUCTION
Allreduce is a fundamental collective, which aggregates 𝑃 vectors

maintained by 𝑃 processes using an associative operation, such as

summation, and stores the result at each process. It is widely used

in High-Performance Computing (HPC) and Machine Learning

(ML) applications [50, 55]. In HPC, vectors are usually small, so the

operation is latency-bound. In ML, however, the vectors are usually

large, making the operation bandwidth-bound and data-parallel, as

seen, for example, in state-of-the-art languagemodels like GPT-3 [8].

In this paper, we propose a method to greatly increase Allreduce

bandwidth for ML and other applications that reduce large vectors.

1.1 In-network Computing
In-network computing is widely used to improve performance of

collectives [11, 21, 32, 36–38, 40, 54]. Allreduce can be offloaded by

embedding spanning trees on the network and aggregating input

packets in-flight using specialized network devices. This signifi-

cantly reduces network traffic and transfer protocol overheads.

Recent systems such as Intel PIUMA [36, 37] and Mellanox

SHARP [21], and switch architectures such as Flare [11], SwitchML

[54] and others [32, 40], utilize streaming aggregation for high

bandwidth Allreduce. However, for most of these approaches, the

maximumAllreduce bandwidth is limited to a single link bandwidth.

Mellanox SHARP supports concurrent operations on multiple (up

to two) Allreduce trees [21]. However, SHARP allows logically de-

fined trees and without any theoretical guarantees on congestion,

they can suffer from performance issues on non fat-tree topologies.

The solutions developed in this paper exhibit little or no congestion,

and can significantly benefit systems that support multiple trees.

1.2 Optimizing Allreduce Bandwidth
In indirect switched networks such as fat-trees, Allreduce is easily

implemented by mapping a reduction tree into multiple levels of the
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network, mirroring the switch arity. Typically, each compute node

has a single or a limited number of connections to the switches,

determined by the number of IO ports. This architectural design

limits the maximum achievable bandwidth for Allreduce. On the

other hand, direct networks such as multi-dimensional grids [33] or

HyperX [1] typically have all network links of a node accessible to

the compute. In such networks, we can use the entire pool of links

on a node and build multiple spanning trees to execute an Allreduce
instance in a data-parallel fashion over subsets of input vectors.

Direct networks can deliver significantly larger Allreduce band-

width by using concurrent spanning trees. However, the trees must

be carefully embedded, or else congestion (overlapping links be-

tween the trees) can create bottleneck edges with high traffic load,

nullifying the performance benefits of data-parallelism. To address

this, we propose novel methods of embedding multiple trees that

minimize congestion and achieve near-optimal aggregate Allreduce
bandwidth for a given network radix. Our schemes also offer a

trade-off between latency and congestion, with spanning trees of

depth just 3 in one solution, and edge-disjoint trees in another.

Prior works on multiported Allreduce on direct tori networks

have exploited data parallelism by launching multiple instances

of Reduce-scatter and All-gather [25, 30, 53]. They communicate,

store and compute large blocks of data, and are used in host-based

implementations. However, their memory requirements can be pro-

hibitive for in-network computation due to the limited buffers on

network devices. This paper explores Allreduce computation on

concurrent trees, which can be pipelined with a small memory

footprint equal to latency-bandwidth product of the links, and are

thus suitable for in-network computation.

1.3 The Target Topology and its Advantages
For the target network topology, we use PolarFly [35], a recently

proposed high-performance diameter-2 network based on Erdős-

Rényi polarity graphs (𝐸𝑅𝑞 ) [9, 13].

Although recent, PolarFly has been shown to outperform previ-

ous networks such as Slim Fly, Dragonfly, HyperX, and Fat Trees,

in terms of scaling efficiency, bisection width, and performance

per cost. It also exhibits flexibility in construction with many feasi-

ble network radixes and modular layouts for practical large-scale

deployments. These desirable qualities make PolarFly an enticing

candidate for development of in-network collectives.

Our solutions for high-bandwidth Allreduce demonstrate fur-

ther advantages of PolarFly, and highlight it as a good candidate

network to be used in Machine Learning applications.

1.4 Our Mathematical Approach
We use the rich mathematical structure of PolarFly to embed high-

performance Allreduce spanning trees with provable performance

guarantees. We develop two different Allreduce solutions for Po-

larFly – one uses a set of trees with congestion-2 and depth-3which

reduces latency, and the other uses edge-disjoint trees (no conges-

tion) which reduces resource requirement of in-network computing

devices. Both of our solutions achieve provably optimal or near-

optimal aggregate bandwidth, thus improving Allreduce bandwidth

by a factor proportional to the network radix.

PolarFly is one of a recent wave of mathematically designed

low-diameter networks, including Slim Fly [5], Bundlefly [39] and

others. The success here of amathematical approach to Allreduce on

PolarFly suggests that the mathematical structure of other networks

may similarly be used to generate optimal Allreduce solutions.

2 CONTRIBUTIONS
• We observe that the problem of maximizing Allreduce band-

width on a direct network can be reduced to one of finding

an optimal set of spanning trees in the network with high-

est aggregate bandwidth. Practical considerations impose

additional constraints on depth and congestion of these trees.

• We present a formal performance model for a given set of

spanning trees embedded in a network, which takes into ac-

count the impact of congestion on the achievable bandwidth.

• Under this performance model, we define optimality for a

given network, and demonstrate that a multi-tree embed-

ding can boost Allreduce bandwidth proportionally to the

network radix, compared to a single tree embedding.

• We present here two novel solutions for near-optimal band-

width Allreduce computation on the state-of-the-art low-

diameter network PolarFly [35]. Our first solution derives a

set of very low latency depth-3 trees using the Polarfly layout.

The second derives an optimal number of disjoint spanning

trees in 𝐸𝑅𝑞 in the form of Hamiltonian paths, whose exis-

tence and construction are first shown in this paper.

• Thus, our work also makes a case for suitability of PolarFly

for applications sensitive to Allreduce bandwidth, such as

distributed ML training.

3 PROBLEM STATEMENT
The primary focus of this work is to use multiple embedded trees to

exploit data parallelism in Allreduce. As we discuss in Section 4.4,

this translates to the mathematical problem of finding a set of mul-
tiple spanning trees in the network topology that maximizes the

aggregate bandwidth under the performance model of Section 5.2.

Of course, one can always find large sets of spanning trees. How-

ever, a solution usable in practice minimizes edge overlap between

the trees, as congested links create performance bottlenecks and re-

quire network devices to maintain a proportional number of states.

This increases resource requirements and can even impact feasibil-

ity of implementation. For high performance, low-latency is also

desirable, which encourages low-depth trees.

4 BACKGROUND
4.1 Interconnection Network
A network may be represented as an undirected graph 𝐺 = (𝑉 , 𝐸):
𝑉 is the set of nodes, 𝐸 is the set of links and |𝑉 | = 𝑁 is the number

of nodes. There is a network device associated with each node,

which coordinates routing and computation on data packets for

in-network computing, which we refer to as a router. Each node

is incident to at most 𝑑 bidirectional links, where 𝑑 is the network

radix, and can simultaneously communicate on all of them.

4.2 Allreduce Collective
We study a global Allreduce that takes an associative binary opera-

tor

⊕
and an input 𝑥𝑖 from each node 𝑣𝑖 ∈ 𝑉 , and distributes the

reduction 𝑦 =
⊕𝑁−1

𝑗=0 {𝑥 𝑗 } to all nodes. In the generalized vector
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Allreduce, each 𝒙 𝒊 is a vector of𝑚 elements {𝑥𝑖,0, ...𝑥𝑖,𝑚−1}, and the
output 𝒚 = {𝑦0, ...𝑦𝑚−1} is an element-wise reduction of all input

vectors, i.e., 𝑦𝑘 =
⊕𝑁−1

𝑗=0 {𝑥 𝑗,𝑘 }. Therefore, Allreduce computation

can be parallelized over vector elements.
Host-based Allreduce algorithms require compute nodes to co-

ordinate computation and communication. Latency-optimal algo-

rithms such as Recursive Doubling [18, 22] minimize the number

of point-to-point communication rounds. Bandwidth-optimal al-

gorithms such as Recursive Halving and Ring-Allreduce [46, 51]

minimize communication volume per node and enable pipelining.

However, these algorithms incur multiple rounds of communica-

tion and data transfers from process memory to network, and large

traffic volume per compute node. Therefore, a host-based Allreduce

may suffer from high latency and poor performance scalability.

4.3 In-network Computing and Allreduce
In-network computing offloads computation to specialized network

devices, referred to as routers in this paper, that can reduce data

packets in-flight. This enables Allreduce computation with a single

data transfer from application memory to network, and simultane-

ously reduces network traffic.

Offloading collectives like Allreduce onto the network requires

embedding a dataflow graph into the network. Logically, Allre-

duce can be computed as a reduction operation followed by an

output broadcast, both of which can be executed on a spanning

tree topology [19–21, 36, 37]. Inputs move up the tree towards the

root, getting reduced at the nodes. The final reduction output com-

puted at the root can be broadcasted to all nodes by traversing

down the same tree. In a network embedding, the vertices and

edges are mapped to routers and physical paths in the network,

respectively. Allreduce can also be computed on a Hypercube but

we found the tree-based approach to be the most effective, giving

strong theoretical guarantees on PolarFly.

The performance of an embedded Allreduce tree is primarily

characterized by two parameters:

(1) Latency – a function of the depth of the embedded tree, and

(2) Bandwidth – upper bounded by link bandwidth 𝐵, for one tree.

In a direct network, Allreduce bandwidth can be boosted by em-
bedding multiple spanning trees in the network. Each node, with

access to all of the associated router’s links, can concurrently insert

disjoint sub-vectors in different trees, exploiting data parallelism.

4.4 In-network Computing: Router Architecture
We define an abstract router architecture inspired by real world de-

signs that support high-bandwidth collective embeddings, primarily

Intel PIUMA [36, 37] and Mellanox SHARP [21].

Each router has a reduction engine that can aggregate data pack-

ets in-flight. We assume that data movement in network embed-

dings (including reduction engines) is pipelined for high throughput

computation. Flow-control mechanisms such as credit tracking, are

often used to operate the pipeline at link bandwidth [21, 37].

We assume that each router features a mechanism to configure

connectivity between its I/O-ports and reduction engine, allow-

ing us to map a dataflow graph onto the network [36, 37]. This

mechanism provides explicit control over the embedded paths and

deterministic routing. Thus, an Allreduce can be computed on a

spanning tree over the physical network topology itself. The prob-

lem of embeddingAllreduce trees now translates to finding spanning
trees in the physical network topology.

Some routers allow embeddings to be logically defined by config-

uring the children and parent(s) of each router [20, 21]. The physical

routing paths are decided by the routing algorithm at runtime and

can be variable. Such mechanisms can incur path conflicts and are

difficult to analytically reason about in terms of performance.

5 CONGESTION AND BANDWIDTH
5.1 Congestion Model
Congestion 𝐶 (𝑒) on an edge 𝑒 = (𝑢, 𝑣) is defined as the number of

dataflow graph edges mapped to a physical link in the network. The

bandwidth on a congested link is shared between the logical edges

and can bottleneck the performance of the collective embedding.

When the spanning trees are defined over the physical network

topology itself, there is no congestion within a tree [36, 37]. How-

ever, congestion can happen when multiple spanning trees with

overlapping edges are embedded. In this scenario, congestion on a

link is equal to the number of trees containing the link.

We assume that the arithmetic unit on a router can compute mul-

tiple reductions at link rate. Thus, overlapping reduction vertices

in trees do not affect Allreduce bandwidth. This can be realized by

adding more compute resources in routers, whereas link bandwidth

sharing under congestion is a fundamental limitation.

Operating under congestion requires maintaining unique states

for each overlapping tree on a link. One way to do so is to tag

the packets with a tree identifier and store them in a common

buffer [20, 21]. This requires a sophisticated engine that can track

and retrieve packets of all overlapping trees that use the same router

port. Another option is to use a number of Virtual Channels (VCs)

equivalent to worst-case link congestion [36, 37]. VCs have disjoint

resources (buffers, configuration), which enables multiple logical

datapaths on each link to identify the state.

However, maintaining multiple tree IDs or VCs increases logic

and buffering requirements. This can increase router area and

power, especially for large-scale networks with high radix [34, 52].

These practical constraints make it desirable to minimize conges-

tion in the design of the set of spanning trees.

5.2 Performance Under Congestion
In a multi-tree embedding with congestion, the bandwidth for each

tree is computed using Algorithm 1. The bottleneck edge with the

lowest ratio of available bandwidth to congestion constrains the

throughput of all trees containing this edge. Its bandwidth is equally

divided amongst these trees that consume equivalent bandwidth

on their other links as well. The algorithm iterates and distributes

the remaining bandwidth on the links among rest of the trees. We

note that for all trees, the bandwidth computed by Algorithm 1 is

independent of the order in which edges are selected when multiple

choices for the bottleneck edge are available.

Theorem 5.1. Given a network 𝐺 (𝑉 , 𝐸) with link bandwidth 𝐵

and a set of embedded Allreduce trees 𝐹 = {𝑇0,𝑇1, . . . ,𝑇𝑟 } executing
concurrently, if Algorithm 1 computes bandwidth 𝐵𝑖 for tree 𝑇𝑖 , then
the maximum achievable Allreduce bandwidth is

∑𝑟
𝑖=0 𝐵𝑖 .
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Algorithm 1 Performance under Congestion

Input: Network Topology 𝐺 (𝑉 , 𝐸), link bandwidth 𝐵

Input: set of Allreduce Trees 𝐹
Output: Bandwidth 𝐵𝑖 for each Tree 𝑇𝑖 ∈ 𝐹

1: for each link 𝑒 ∈ 𝐸 ⊲ Initialization

2: Available link bandwidth 𝐿(𝑒) = 𝐵

3: Congestion 𝐶 (𝑒) = # trees in 𝐹 containing 𝑒

4: while 𝐹 not empty do
5: 𝑒min ← argmin𝑒

𝐿 (𝑒 )
𝐶 (𝑒 )

6: for each Tree 𝑇𝑖 ∈ 𝐹 containing 𝑒min

7: 𝐵𝑖 =
𝐿 (𝑒min )
𝐶 (𝑒min ) ⊲ Assign Tree Bandwidth

8: for each edge 𝑒 in 𝑇𝑖
9: 𝐿(𝑒) ← 𝐿(𝑒) − 𝐵𝑖 ⊲ remaining link bandwidth

10: 𝐶 (𝑒) ← 𝐶 (𝑒) − 1 ⊲ update congestion on link

11: Remove 𝑇𝑖 from 𝐹

12: Remove 𝑒min from 𝐸

Proof. Assume that the Allreduce collective is computed on a

vector of size𝑚, and each tree𝑇𝑖 computes Allreduce on a subvector

of size𝑚𝑖 . We compute the optimal distribution of𝑚𝑖 to maximize

aggregate Allreduce bandwidth. Assuming constant latency 𝐿 for

each tree, the execution time of 𝑇𝑖 is

𝑡𝑖 = 𝐿 + 𝑚𝑖

𝐵𝑖
.

Since all trees are executing concurrently, overall Allreduce time is

𝑡𝑎𝑟 = max

0≤𝑖≤𝑟
𝑡𝑖 .

Given

∑𝑟
𝑖=0𝑚𝑖 = 𝑚, the optimal distribution of sub-vector sizes

that minimizes Allreduce time achieves equal execution times for

individual trees. Mathematically speaking,

𝑡0 = 𝑡1 = 𝑡2 = · · · = 𝑡𝑟 (1)

=⇒ 𝑚𝑖 =𝑚 · 𝐵𝑖∑𝑟
𝑖=0 𝐵𝑖

for all 𝑖 ∈ [0, 𝑟 ] (2)

For this distribution of sub-vectors, the allreduce time is given by

𝑡𝑎𝑟 = 𝑡𝑖 =
𝑚𝑖

𝐵𝑖
=

𝑚∑𝑟
𝑖=0 𝐵𝑖

(3)

From Equation (3), Allreduce bandwidth is

∑𝑟
𝑖=0 𝐵𝑖 . □

In Corollary 7.1, we apply Theorem 5.1 to our exemplar network,

obtaining an optimal bandwidth proportional to the network radix.

6 POLARFLY
In this paper, we choose as a representative network the high-

performance diameter-2 PolarFly [35], a network topology based

on the Erdős-Rényi polarity graphs 𝐸𝑅𝑞 . (Note that this is not the

same as the commonly known Erdős-Rényi random graphs [6, 17]).

𝐸𝑅𝑞 graphs exist for every radix 𝑞 + 1, where 𝑎 is a positive

integer, 𝑝 is prime, and 𝑞 = 𝑝𝑎 is a prime power [9, 13, 35]. These

are derived from Galois finite fields, which have order 𝑞.

Later, we will create and contrast two sets of high-bandwidth

Allreduce spanning trees that offer a trade-off between latency and

congestion. To do so, we look at two very different ways to construct

the Erdős-Rényi polarity graphs 𝐸𝑅𝑞 that underlie PolarFly.We then

show how the layout of PolarFly derives from these.

• The projective geometry construction of 𝐸𝑅𝑞 [9, 13] is the

basis of our first construction of low-depth spanning trees,

giving a low-latency high-bandwidth Allreduce.

• The Singer difference set construction of 𝐸𝑅𝑞 [4, 7, 56] is the

basis of our second construction of disjoint spanning trees,

giving a zero-congestion high-bandwidth Allreduce.

The graph constructions are isomorphic: they provide concep-

tually different methods of constructing the same 𝐸𝑅𝑞 graphs [14]

(and thus the PolarFly topology) and these conceptually different

methods are used in the design of the two types of spanning trees.

6.1 Projective Geometry Construction of
Erdős-Rényi graphs

(a) A non-quadric cluster (b) Edges between clusters

Figure 1: The PolarFly layout for 𝑞 = 11. The vertex coloring distinguishes
quadrics𝑊 (11) (red),𝑉1 (11) vertices (green), and𝑉2 (11) vertices (blue). The
starter quadric from Algorithm 2 is in bright red and the centers of each
cluster are in bright green. The image of the layout on the left depicts a single
non-quadric cluster. The one on the right shows the connections between
two non-quadric clusters. The number of edges between clusters and within a
cluster match up with Properties 1-3.

Erdős-Rényi (ER) graphs express dot-product orthogonality be-

tween vectors, using arithmetic defined over finite fields F𝑞 .
Since multiples of vectors retain their original orthogonality

relationship, 𝐸𝑅𝑞 vertices are represented by left-normalized (the

leftmost non-zero coordinate is 1) 3-dimensional vectors: [𝑥,𝑦, 𝑧] ∈
F3𝑞 . The existence of multiplicative inverses in F𝑞 ensures that

every non-zero vector in F3𝑞 has a left-normalized representative,

obtained by multiplying the vector by the inverse of the leading

non-0 coefficient. Thus, the vertex set of 𝐸𝑅𝑞 is

{[1, 𝑦, 𝑧] : 𝑦, 𝑧 ∈ F𝑞} ∪ {[0, 1, 𝑧] : 𝑧 ∈ F𝑞} ∪ {[0, 0, 1]}.
From this construction, we see that the order of 𝐸𝑅𝑞 is 𝑁 = 𝑞2 +

𝑞 + 1. An edge (𝑢, 𝑣) exists in 𝐸𝑅𝑞 if and only if vectors [𝑢1, 𝑢2, 𝑢3],
[𝑣1, 𝑣2, 𝑣3] ∈ F3𝑞 are orthogonal, i.e., their dot-product 𝑢 · 𝑣 = 𝑢1𝑣1 +
𝑢2𝑣2 +𝑢3𝑣3 = 0 in F𝑞 . When 𝑞 is prime, this simply means checking

whether 𝑢 · 𝑣 ≡ 0 (mod 𝑞), since the multiplication is modular

when 𝑞 is prime, but more complicated when 𝑞 is not prime, as in

[41, 42]. A detailed illustration of this construction can be found in

Lakhotia et al. [35].

The use of finite field arithmetic in ER graphs gives rise to self-

orthogonal vertices called quadrics, i.e. vectors [𝑢1, 𝑢2, 𝑢3] ∈ F𝑞 so

that 𝑢2
1
+ 𝑢2

2
+ 𝑢2

3
= 0 in F𝑞 . The self-orthogonality of quadrics is

represented by a self-loop incident on them. The PolarFly network

ignores the self-loops for practical reasons.
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Theorem 6.1. [3, Proposition 2.2] 𝐸𝑅𝑞 is a diameter-2 graph for
every prime power 𝑞. There is at most one path of length 2 between
any pair of distinct vertices in 𝐸𝑅𝑞 .

The quadrics lead to a natural categorization of 𝐸𝑅𝑞 vertices into

three subsets [37, 45], as shown in Figure 1:

(1) Quadrics𝑊 (𝑞) that are self-orthogonal.
(2) Vertices 𝑉1 (𝑞) that are adjacent to quadrics.

(3) Vertices 𝑉2 (𝑞) that are not adjacent to quadrics.

Table 1 specifies the cardinality of these subsets in the entire graph

as well as the neighborhood of individual vertices.

𝑾 (𝒒) 𝑽1 (𝒒) 𝑽2 (𝒒)

# of vertices in 𝑬𝑹𝒒 𝑞 + 1 𝑞 (𝑞+1)
2

𝑞 (𝑞−1)
2

# of neighbors of 𝑣, if:
𝒗 ∈ 𝑾 (𝒒) 0 𝑞 0

𝒗 ∈ 𝑽1 (𝒒) 2
𝑞−1
2

𝑞−1
2

𝒗 ∈ 𝑽2 (𝒒) 0
𝑞+1
2

𝑞+1
2

Table 1: Vertex count of each type in the entire graph 𝐸𝑅𝑞 , and in the neigh-
borhood of a single vertex (ignoring self-loops on quadrics).

6.1.1 PolarFly Layout. Lakhotia et al. [37] proposed a modular lay-

out for PolarFly that divides 𝐸𝑅𝑞 vertices into smaller clusters. For

brevity, we restrict the discussion to odd prime powers𝑞, which cov-

ers most design points of PolarFly. Note that we have a conceptually

similar layout and an Allreduce solution for even 𝑞.

Algorithm 2 computes the PolarFly layout for 𝐸𝑅𝑞 . Lakhotia et

al. [37] showed that Algorithm 2 adds every vertex to exactly one

cluster, and proved several properties of the subgraphs induced by

these clusters. The properties relevant to the derivation of Allreduce

trees are listed below.

Property 1. Contents of the Clusters:
(1) Quadric cluster𝑊 has 𝑞 + 1 vertices and every non-quadric

cluster 𝐶𝑖 has 𝑞 vertices, for a total of 𝑁 = 𝑞2 + 𝑞 + 1 vertices.
(2) There are no edges between any pair of quadrics.
(3) The center 𝑣𝑖 in a non-quadric cluster𝐶𝑖 is adjacent to all other

vertices in 𝐶𝑖 .

Property 2. Connectivity between the quadric cluster𝑊 and a
non-quadric cluster 𝐶𝑖 :

(1) There are 𝑞 + 1 edges between𝑊 and 𝐶𝑖 .
(2) Every quadric is adjacent to exactly one vertex in 𝐶𝑖 .
(3) Every 𝑉1 (𝑞) vertex in 𝐶𝑖 is adjacent to exactly two quadrics.

Property 3. Connectivity between distinct non-quadric clusters
𝐶𝑖 and 𝐶 𝑗 :

(1) There are 𝑞 − 2 edges between 𝐶𝑖 and 𝐶 𝑗 .
(2) The center vertex 𝑣 𝑗 and one non-center vertex 𝑢 ∈ 𝐶 𝑗 , are not

adjacent to 𝐶𝑖 .
(3) There is a non-starter quadric 𝑤 ′ adjacent to both 𝑢 and 𝑣𝑖

(the center of 𝐶𝑖 ).

6.2 Singer Difference Set Graph Construction
The Singer difference set was introduced by Singer in 1938 [56].

Singer difference sets of order 𝑞+1 always exist if 𝑞 is a prime power.

None are known to exist for other orders, and their existence is a

well-known open problem in mathematics [14].

Algorithm 2 PolarFly layout [37]

Input: 𝐸𝑅𝑞 graph of max degree 𝑞 + 1
Output: Clusters𝑊,𝐶0 . . . ,𝐶𝑞−1

1: Add all quadrics𝑊 (𝑞) to a cluster𝑊

2: Select an arbitrary starter quadric𝑤 ∈𝑊 (𝑞)
3: for each vertex 𝑣𝑖 adjacent to𝑤

4: Add 𝑣𝑖 to an empty cluster 𝐶𝑖 . 𝑣𝑖 is the center of 𝐶𝑖
5: Add all non-quadric neighbors of center 𝑣𝑖 to 𝐶𝑖

The Symsig network used Singer difference sets in its construc-

tion in 2017 [7]. Erskine, Fratrič, and Širáň noted the isomorphism

between the Singer graph and the Erdős-Rényi polarity graph 𝐸𝑅𝑞
in 2019 [14]. These papers provide much detail on the structure and

construction of Singer difference sets and graphs. We outline here

relevant details of their construction.

Definition 6.2 (Singer difference set). [7, 56] A Singer difference
set 𝐷 is a set of 𝑞 + 1 elements of Z𝑁 such that the set {(𝑑𝑖 − 𝑑 𝑗 )
mod 𝑁 | 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 and 𝑑𝑖 ≠ 𝑑 𝑗 } is the set of all integers from 1 to

𝑁 − 1 = 𝑞2 + 𝑞, with no repetition.

Singer difference sets for 𝑞 = 3 and 4 are shown in Figure 2. We

use the following construction from [57] of Singer difference sets.

(1) Construct the finite Galois field F𝑞3 using a degree-3 primi-

tive polynomial 𝑓 (𝑥) over F𝑞 with root Z .

(2) List the 𝑞3 − 1 powers of Z in F3𝑞 .

(3) Reduce each of these powers of Z to its form (𝑖 · Z 2 + 𝑗 · Z +𝑘)
with 𝑖, 𝑗, 𝑘 ∈ F𝑞 , using the fact that 𝑓 (Z ) = 0 in F𝑞3 .

(4) Select those Z ℓ of the form Z + 𝑘 . The difference set 𝐷 is

{ℓ | Z ℓ = Z + 𝑘 mod 𝑓 (Z ), where 𝑘 ∈ F𝑞}.
(5) Reduce all elements of 𝐷 mod 𝑁 .

Different primitive polynomials or roots may give different differ-

ence sets. For reproduction of our results and graphs, we used the

lexicographically smallest degree-3 irreducible 𝑓 (𝑥) over F𝑞 .
Definition 6.3 (Singer graph). [7] Let 𝐷 be a Singer difference

set 𝐷 over Z𝑁 . The Singer graph 𝑆𝑞 = {𝑉 , 𝐸} has vertices 𝑉 = {𝑖 |
0 ≤ 𝑖 < 𝑁 }, and has edges 𝐸 = {(𝑖, 𝑗) | (𝑖 + 𝑗) mod 𝑁 ∈ 𝐷}.

Definition 6.4 (Edge sum). Let 𝑒 = (𝑖, 𝑗) be an edge of 𝑆𝑞 . The

sum (𝑖 + 𝑗) mod 𝑁 is called the edge sum of 𝑒 .

Definition 6.5 (Reflection point). [7] Let𝐷 be a Singer difference

set. An element 𝑖 of Z𝑁 is called a reflection point if 𝑖 + 𝑖 ∈ 𝐷 , i.e. 𝑖
has a self-loop.

The use of the Singer difference set construction permits an easy

edge-coloring of 𝐸𝑅𝑞 , where colors correspond to edge sums, which

are elements of the difference set, by the definition of the edges. We

later use that coloring to construct paths of two alternating colors,

many of which are Hamiltonian, and collect Hamiltonian paths of

different colors to form a large set of edge-disjoint spanning trees.

Example Singer difference sets and graphs for 𝑞 = 3 and 4, with

their edge-colorings, are shown in Figure 2, and corresponding col-

lections of edge-disjoint Hamiltonian paths are shown in Figure 4.

6.3 Relationship of the Singer Graph to PolarFly
Erskine et al. showed the isomorphism of 𝐸𝑅𝑞 and 𝑆𝑞 , in the fol-

lowing theorem [14]. This is also an immediate consequence of the
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(a) A Singer difference set and graph for 𝑞 = 3. The order of the graph 𝑁

is 32 + 3 + 1 = 13. This Singer difference set is {0, 1, 3, 9}. Reflection points
(quadrics) are {0, 7, 8, 11}, and the corresponding vertices have self-loops.

(b) A Singer difference set and graph for 𝑞 = 4. The order of the graph 𝑁

is 42 + 4 + 1 = 21. This Singer difference set is {0, 1, 4, 14, 16}. Reflection
points (quadrics) are {0, 2, 7, 8, 11}, and the corresponding vertices have
self-loops.

Figure 2: Two Singer difference sets and graphs. The tables show the difference
sets in grey cells, and the differences generated in white cells. Each difference
element corresponds to a color. All integers from 1 to𝑞2+𝑞 appear exactly once
in each table. In the graphs, edges are colored according to their difference-set
edge sums (sums mod 𝑁 of the vertices they connect). Reflection points are
colored by their self-loop color. The layout of the integers exhibits a striking
parallelism between edges with the same edge sum.

relationship between finite projective planes and Singer difference

sets shown much earlier in Berman [4]. The theorem implies that

all results on Singer graphs discussed here apply to the family of

Erdős-Rényi polarity graphs as well, and thus to PolarFly.

Theorem 6.6. [14] The Singer graph 𝑆𝑞 is isomorphic to the Erdős-
Rényi polarity graph 𝐸𝑅𝑞 .

This implies that the quadrics, 𝑉1, and 𝑉2 nodes in PolarFly

correspond with vertices in the Singer graph, and may be discussed

in terms of Singer difference sets.

First, we require the following lemma, which is true since 𝑁 =

𝑞2 + 𝑞 + 1 is always odd.

Lemma 6.7. In the ring Z𝑁 , 2−1 exists and is 𝑞2+𝑞+2
2

= 𝑁+1
2

.

Corollary 6.8. The quadrics of PolarFly are the elements 𝑤 of
𝑆𝑞 of the form𝑤 = 2

−1 · 𝑑𝑖 , for some 𝑑𝑖 ∈ 𝐷 . Each quadric in 𝐸𝑅𝑞 is
thus a reflection point in 𝑆𝑞 and has a self-loop corresponding to a
unique element of the difference set.

Proof. Let𝑤 be a quadric. Then (𝑤,𝑤) is an edge, so𝑤 +𝑤 =

2 ·𝑤 mod 𝑁 = 𝑑𝑖 ∈ 𝐷 . So𝑤 = 𝑑𝑖 · 2−1, by Lemma 6.7. Conversely,

if 𝑑 ∈ 𝐷 , 𝑑 = 2 ·𝑤 𝑗 , for some quadric𝑤 𝑗 . □

Corollary 6.9. The𝑉1 nodes of PolarFly are the elements of 𝑆𝑞 of
the form 𝑑𝑖 − 2−1 ·𝑑 𝑗 , where 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 with 𝑑𝑖 ≠ 𝑑 𝑗 . The𝑉2 nodes of
PolarFly are the elements of 𝑆𝑞 that are neither quadrics nor𝑉1 nodes.

Proof. The 𝑉1 vertices are the neighbors of the quadrics. The

corollary follows from Definition 6.3 and Corollary 6.8. □

We summarize these identifications between the two graphs:

• Corollary 6.8 identifies quadrics in 𝐸𝑅𝑞 with reflection points

in 𝑆𝑞 . Quadrics have self-loops, and are shown as colored

vertices in the graphs in Figure 2.

• Corollary 6.9 identifies 𝑉1 elements of PolarFly with neigh-

bors of reflection points in 𝑆𝑞 . 𝑉1 elements are shown as

neighbors of self-loop vertices in the graphs in Figure 2.

Together, these two corollaries show that the PolarFly layout can

also be derived from Singer graphs, as this only relies on the classi-

fication of vertices into quadrics,𝑉1 and𝑉2 sets (Algorithm 2). Thus,

our Allreduce solution based on PolarFly layout (discussed later in

Section 7.1) can be derived for either construction of PolarFly.

7 IN-NETWORK ALLREDUCE ON POLARFLY
As discussed in Section 3, Allreduce performance reduces to an

optimization problem: finding a large set of spanning trees in the

network with low congestion and latency. Sections 4.3 and 5.1 show

that the number of occurences of an edge in the set of spanning

trees determines congestion, and the depth of the trees, latency.

We provide two Allreduce solutions on PolarFly. The first solu-

tion is based on the layout of PolarFly as shown by Lakhotia et al.

[35], and provides a set of trees with congestion of 2 and depth at

most 3. In this solution, there is some congestion as some of the

edges in PolarFly appear in two different trees. The second is based

on Singer difference sets [56], and provides a set of edge-disjoint

trees, offering no congestion at the cost of higher depth.

We start with the following corollary of Theorem 5.1, giving the

optimal bandwidth of in-network Allreduce in PolarFly.

Corollary 7.1. For a PolarFly topology 𝐸𝑅𝑞 , the optimal bidirec-

tional bandwidth of in-network Allreduce is (𝑞+1)𝐵
2

.

Proof. 𝐸𝑅𝑞 has 𝑞 + 1 quadrics of radix 𝑞 each (ignoring self-

loops), and 𝑞2 non-quadrics of radix 𝑞 + 1 each, so the number of

edges is
𝑞 (𝑞+1)2

2
. There are 𝑞2 +𝑞 + 1 vertices, so each spanning tree

uses 𝑞2 +𝑞 edges. The corollary then follows from Theorem 5.1. □

7.1 Low Depth Allreduce Trees
In this section, we create a set of high-bandwidth Allreduce trees

with low depth for low latency. First, we analyze the connectivity

between quadrics and cluster centers 𝑣𝑖 in the following lemma.

Lemma 7.2. Consider a layout (Algorithm 2) of the PolarFly topol-
ogy 𝐺 (𝑉 , 𝐸) with starter quadric𝑤 . Given any pair of distinct non-
quadric clusters 𝐶𝑖 and 𝐶 𝑗 , the quadric neighbors of their centers 𝑣𝑖
and 𝑣 𝑗 are {𝑤,𝑤𝑖 } and {𝑤,𝑤 𝑗 }, respectively, for some {𝑤𝑖 ,𝑤 𝑗 } ∈
𝑊 (𝑞) such that𝑤𝑖 ≠ 𝑤 𝑗 .

Proof. From Table 1, centers 𝑣𝑖 and 𝑣 𝑗 have exactly two quadric

neighbors. From the layout construction (Algorithm 2), one of these

is the starter𝑤 which creates a 2-hop path

(
𝑣𝑖 ,𝑤, 𝑣 𝑗

)
. If the other

quadric neighbors 𝑤𝑖 and 𝑤 𝑗 are identical, there will be another

2-hop path between 𝑣𝑖 and 𝑣 𝑗 , contradicting Theorem 6.1. □

Corollary 7.3. Every non-starter quadric𝑤𝑖 is adjacent to exactly
one unique cluster center 𝑣𝑖 .

Proof. Follows directly from Lemma 7.2 and the fact that there

are 𝑞 clusters and 𝑞 non-starter quadrics (Table 1). □
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𝑪𝒊

𝑣𝑖

(a) Root (level 0)

𝑪𝒊

𝑣𝑖

𝑾 𝑤𝑖 𝑤

(b) Vertices at level 1

𝑪𝒊

𝑣𝑖

𝑪𝒋

𝑾 𝑤𝑖 𝑤

(c) Vertices at level 2

𝑪𝒊

𝑣𝑖

𝑪𝒋

𝑣𝑗

𝑾 𝑤𝑖 𝑤

(d) Vertices at level 3

Figure 3: Construction of depth-3 Allreduce Spanning Tree 𝑇𝑖 . Level 𝑥 represents vertices at distance 𝑥 from the root. Edges used to span each level of 𝑇𝑖 are
highlighted in black. Vertices covered at or before the corresponding level of each subfigure are shown in a darker shade compared to uncovered vertices. (a) The
root of𝑇𝑖 is the center 𝑣𝑖 of cluster𝐶𝑖 (line 3, Alg. 3). (b) Vertices adjacent to 𝑣𝑖 lie in level 1 of𝑇𝑖 . This comprises all non-center vertices in𝐶𝑖 , starter quadric 𝑤, and
𝑤𝑖 – the non-starter quadric neighbor of 𝑣𝑖 (Corollary 7.3 and line 5, Alg. 3). (c) The remaining quadrics and non-center vertices of other clusters𝐶 𝑗 | 𝑗≠𝑖 are covered
in level 2 of𝑇𝑖 (line 8, Alg. 3). For clarity, only one other non-quadric cluster is shown. (d) The centers of other clusters lie in level 3 of𝑇𝑖 (line 10, Alg. 3).

Following the notation from Lemma 7.2 and Corollary 7.3, we

use𝑤𝑖 to denote the non-starter quadric neighbor of center 𝑣𝑖 for

all 0 ≤ 𝑖 < 𝑞. Algorithm 3 derives 𝑞 spanning trees in PolarFly with

worst-case congestion 2 and depth 3. The construction of these

trees is graphically and textually illustrated in Figure 3.

Algorithm 3 Low-Latency Spanning Trees in PolarFly

Input: PolarFly𝐺 (𝑉 , 𝐸), layout with starter quadric𝑤 , quadric

cluster𝑊 and non-quadric clusters 𝐶𝑖 |0≤𝑖<𝑞
Output: set of 𝑞 spanning trees {𝑇0, ...,𝑇𝑞−1} of 𝐺

1: Initialize available edge set 𝐸𝑎 = 𝐸

2: for each 𝑖 ∈ {0, 1..., 𝑞 − 1} ⊲ Construct 𝑇𝑖
3: Assign center 𝑣𝑖 of 𝐶𝑖 as the root of 𝑇𝑖
4: for each neighbor 𝑢 of 𝑣𝑖
5: Add 𝑢 and (𝑣𝑖 , 𝑢) to 𝑇𝑖 ⊲ Cover 𝐶𝑖 ,𝑤,𝑤𝑖

6: if 𝑢 ≠ 𝑤 then
7: for each neighbor 𝑧 of 𝑢

8: if 𝑧 ∉ 𝑇𝑖 then add 𝑧 and (𝑢, 𝑧) to 𝑇𝑖
9: for each non-quadric cluster 𝐶 𝑗 for 𝑗 ≠ 𝑖

10: Select any edge (𝑢, 𝑣 𝑗 ) ∈ 𝐸𝑎 incident with 𝑣 𝑗
11: Add 𝑣 𝑗 and

(
𝑢, 𝑣 𝑗

)
to 𝑇𝑖

12: Remove

(
𝑢, 𝑣 𝑗

)
from 𝐸𝑎

Theorem 7.4. Every output 𝑇𝑖 of Algorithm 3 is a spanning tree
in 𝐺 (𝑉 , 𝐸).

Proof. Consider the tree𝑇𝑖 , with root the cluster center 𝑣𝑖 . Since

the diameter of𝐺 is 2 (Theorem 6.1), any vertex is at most 2-hops

away from 𝑣𝑖 . Lines 4-8 cover all vertices within 2-hops of 𝑣𝑖 except

neighbors of starter quadric𝑤 , the cluster centers 𝑣 𝑗 for 𝑗 ≠ 𝑖 .

From Property 3, no two centers are adjacent to each other.

Hence, for any center 𝑣 𝑗 | 𝑗≠𝑖 , all its neighbors are covered. Clearly,
𝑇𝑖 does not have a cycle (line 8) and is a spanning tree if 𝐸𝑎 has

at least one edge of 𝑣 𝑗 when constructing 𝑇𝑖 . Initially (line 1), 𝐸𝑎
has 𝑞 + 1 edges of 𝑣 𝑗 and in any tree, at most one of these edges is

removed. Thus, for any 𝑖 < 𝑞, 𝐸𝑎 contains non-zero edges of 𝑣 𝑗 . □

Theorem 7.5. The depth of trees from Algorithm 3 is at most 3.

Proof. Follows directly from the construction. □

Theorem 7.6. Given a PolarFly 𝐺 (𝑉 , 𝐸), any edge (𝑢, 𝑣) ∈ 𝐸 lies
in at most 2 trees computed by Algorithm 3.

Proof. Let Δ𝑖 (𝑢) denote the distance of 𝑢 from the root in 𝑇𝑖 .

Since 𝑇𝑖 is a tree, an edge (𝑢, 𝑣) can be in 𝑇𝑖 only if Δ𝑖 (𝑢) ≠ Δ𝑖 (𝑣).
From Theorem 7.5, Δ𝑖 (𝑢) ≤ 3 for any 𝑖 and𝑢, and from Algorithm 3,

we can see that Δ𝑖 (𝑢) = 3 only if 𝑢 = 𝑣 𝑗 is a cluster for some 𝑗 ≠ 𝑖 .

An edge (𝑢, 𝑣) can belong to either of the three categories:

(1) Either 𝑢 or 𝑣 is a cluster center – Without loss of generality,

assume that 𝑣 = 𝑣𝑖 is a center for some 0 ≤ 𝑖 < 𝑞. Then,

(𝑢, 𝑣𝑖 ) lies in 𝑇𝑖 and at most one other tree when popped

from 𝐸𝑎 (line 10, Algorithm 3).

(2) Either 𝑢 or 𝑣 is a quadric, and neither is a cluster center –

Without loss of generality, assume that 𝑣 = 𝑤 ′ is a quadric
and 𝑢 is not a cluster center. From Property 1, 𝑢 is not a

quadric and from Algorithm 2, 𝑤 ′ ≠ 𝑤 is a non-starter

quadric. Let𝑤 ′ = 𝑤𝑖 be adjacent to center 𝑣𝑖 (Corollary 7.3)

and 𝑢 ≠ 𝑣𝑖 be a non-center vertex in cluster 𝐶 𝑗 | 𝑗≠𝑖 . Then
(𝑢,𝑤 ′) can only lie in trees 𝑇𝑖 and 𝑇𝑗 because for any ℓ ≠ 𝑖

and ℓ ≠ 𝑗 , Δℓ (𝑤𝑖 ) = Δℓ (𝑢) = 2.

(3) 𝑢 and 𝑣 are neither quadrics nor cluster centers – Assume

𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶 𝑗 . As in case 2, (𝑢, 𝑣) can only exist in 𝑇𝑖
and 𝑇𝑗 , as Δℓ (𝑤𝑖 ) = Δℓ (𝑢) = 2 for ℓ ≠ 𝑖 and ℓ ≠ 𝑗 .

□

Corollary 7.7. The aggregate bidirectional Allreduce bandwidth
of spanning trees obtained from Algorithm 3 is at least 𝐵 ·𝑞

2
.

Proof. From Theorem 7.6, the worst-case congestion is 2 for 𝑞

trees. To conclude, plug this into Algorithm 1. □

Corollaries 7.1 and 7.7 show that the spanning trees generated

by Algorithm 3 achieve near-optimal bandwidth and approach

optimality asymptotically.

As discussed in Section 4.3, in-network Allreduce computes a re-

duction on the embedded tree and then broadcasts the output using

the same tree. The partial sums communicated during reduction

computation comprise the reduction traffic, and the packets contain-
ing reduction output comprise the broadcast traffic. The following
lemma analyzes the flow of traffic on congested links (Algorithm 3).

Lemma 7.8. Consider a link (𝑢, 𝑣) that lies in two distinct trees 𝑇𝑖
and 𝑇𝑗 , computed by Algorithm 3. If the reduction traffic in 𝑇𝑖 flows
from 𝑢 to 𝑣 , then the reduction traffic in 𝑇𝑗 flows from 𝑣 to 𝑢.

Proof. In an Allreduce tree, reduction traffic moves towards the

root vertex (Section 4.3). Without loss of generality, we assume that

in 𝑇𝑖 , reduction traffic flows from 𝑢 to 𝑣 . Therefore, Δ𝑖 (𝑣) < Δ𝑖 (𝑢).
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To complete the proof, it suffices to show that Δ 𝑗 (𝑣) > Δ 𝑗 (𝑢). If
(𝑢, 𝑣) is used in𝑇𝑖 and𝑇𝑗 and Δ𝑖 (𝑣) < Δ𝑖 (𝑢), either of the following
is true (from the proof of Theorem 7.6):

(1) 𝑣 = 𝑣𝑖 is a center of 𝐶𝑖 – in 𝑇𝑗 , 𝑣 is a leaf vertex. Hence,

Δ 𝑗 (𝑣) > Δ 𝑗 (𝑢).
(2) 𝑢 is a center of 𝐶 𝑗 and (𝑢, 𝑣) is popped from 𝐸𝑎 in 𝑇𝑖 – in 𝑇𝑗 ,

𝑢 is the root. Hence, Δ 𝑗 (𝑣) > Δ 𝑗 (𝑢) = 0.

(3) 𝑣 = 𝑤𝑖 is a non-starter quadric adjacent to 𝑣𝑖 , and 𝑢 ∈ 𝐶 𝑗 is

not a center – in 𝑇𝑗 , 𝑢 is adjacent to the root 𝑣 𝑗 , but 𝑣 is not.

Hence, Δ 𝑗 (𝑣) > Δ 𝑗 (𝑢) = 1.

(4) 𝑣 ∈ 𝐶𝑖 and 𝑢 ∈ 𝐶 𝑗 are neither quadrics, nor cluster-centers –

in𝑇𝑗 ,𝑢 is adjacent to the root 𝑣 𝑗 , but 𝑣 is not. Hence, Δ 𝑗 (𝑣) >
Δ 𝑗 (𝑢) = 1. □

Lemma 7.8 highlights a practical advantage of the Allreduce

trees computed by Algorithm 3: any input port on a router partici-

pates in at most one reduction mapped to the router. Some routers

implement a wide-radix arithmetic engine, that can simultaneously

compute multiple reductions on disjoint input ports [21, 36]. Given

such an architecture, these trees can be embedded using a single

arithmetic engine per router. We also note that routers in Intel

PIUMA provide separate Virtual Channels (VCs) for reduction and

broadcast traffic [36]. For such a system, the proposed low-latency

solution does not require any additional VCs to handle congestion.

7.2 Edge-disjoint Allreduce Trees
To obtain a full bandwidth disjoint set of spanning trees, we use the

Singer difference set representation of 𝐸𝑅𝑞 discussed in Section 6.2.

This representation allows us to compute a large set of edge-disjoint

trees, in the form of Hamiltonian paths. The number of trees in the

set hits the upper bound of ⌊𝑞+1
2
⌋ in all cases where 𝑞 < 128.

Definition 7.9 (Non-repeating path). A path in a graph 𝐺 is

called non-repeating if no vertex appears twice in it.

Definition 7.10 (Maximal path). A path of a given type in a

graph 𝐺 is called maximal of its type if it is not contained in any

longer path of the same type.

Definition 7.11 (Alternating-sum path). A path (𝑏1, 𝑏2, . . . , 𝑏𝑘 )
in the Singer graph 𝑆𝑞 is called an alternating-sum path if there

exist distinct 𝑑0, 𝑑1 ∈ 𝐷 such that the edge sums of (𝑏𝑖−1, 𝑏𝑖 ) are 𝑑0
for 𝑖 even and 𝑑1 for 𝑖 odd.

Definition 7.11 will be used in this construction of maximal edge-

disjoint paths, since clearly, if two alternating-sum paths have four

distinct edge sums, they will be edge-disjoint.

All maximal alternating-sum paths may be constructed using

the element pairs (𝑑𝑖 , 𝑑 𝑗 ) of the difference set 𝐷 . In particular, the

constructed path is Hamiltonian if and only if (𝑑𝑖 −𝑑 𝑗 ) is relatively
prime to 𝑁 . This fact is proven in this section, and allows us to

construct Hamiltonian spanning trees.

The following lemmas will be used to construct Hamiltonian

paths in 𝑆𝑞 , which are of course spanning trees.

Lemma 7.12. Let (𝑏1, 𝑏2, . . . , 𝑏𝑘 ) be a maximal alternating-sum
non-repeating path on 𝑆𝑞 , with alternating sums 𝑑0 and 𝑑1. Then 𝑘
is odd, and 𝑏1 and 𝑏𝑘 are reflection points with 𝑏1 = 2

−1 · 𝑑1 and
𝑏𝑘 = 2

−1 · 𝑑0.

Proof. The alternating-sum path is maximal, so there is no 𝑏0
such that 𝑏0 +𝑏1 = 𝑑1. So 𝑏1 +𝑏1 = 𝑑1 (or equivalently, 𝑏1 = 2

−1 ·𝑑1,
by Lemma 6.7) and 𝑏1 is a reflection point.

Likewise, there is no 𝑏𝑘+1 where 𝑏𝑘 +𝑏𝑘+1 = 𝑑𝑖 , where 𝑑𝑖 = 𝑑0 if

𝑘 is odd and 𝑑𝑖 = 𝑑1 if 𝑘 is even. So 𝑏𝑘 + 𝑏𝑘 = 𝑑0 or 𝑑1, depending

on whether 𝑘 is odd or even, and 𝑏𝑘 must be a reflection point.

If 𝑘 is even, then 𝑏𝑘 + 𝑏𝑘 = 𝑑1. By Definition 6.5, 𝑏1 = 𝑏𝑘 . This

makes (𝑏1, 𝑏2, ...𝑏𝑘 ) a repeating path, contrary to assumption, so𝑘 is

odd. This means that𝑏𝑘+𝑏𝑘 = 𝑑0 (or equivalently,𝑏𝑘 = 2
−1 ·𝑑0). □

Theorem 7.13. Let 𝑑0 and 𝑑1 be distinct alternating sums from
the Singer graph 𝑆𝑞 of order 𝑁 . A unique maximal alternating-sum
non-repeating path (𝑏1, 𝑏2, . . . , 𝑏𝑘 ) in 𝑆𝑞 with alternating sums 𝑑0
and 𝑑1 exists if and only if

𝑘 =
𝑁

gcd(𝑑0 − 𝑑1, 𝑁 )
.

Proof. Let (𝑏1, 𝑏2, . . . , 𝑏𝑘 ) be a maximum alternating-sum non-

repeating path in the Singer graph. By Lemma 7.12, 𝑏1 = 2
−1 · 𝑑1

and 𝑏𝑘 = 2
−1 · 𝑑0. So

𝑏𝑘 − 𝑏1 = 2
−1 · (𝑑0 − 𝑑1). (4)

The path is alternating-sum, so the element 𝑏𝑖 for 1 < 𝑖 ≤ 𝑘 is

𝑑1 − 𝑏𝑖−1 if 𝑖 is odd, and 𝑑0 − 𝑏𝑖−1 if 𝑖 is even. So 𝑏𝑘 = 𝑑1 − 𝑏𝑘−1
by Lemma 7.12. Substituting 𝑏𝑖−1 in the equations for 𝑏𝑖 , we get

𝑏𝑘 = 2
−1 · (𝑘 − 1) · (𝑑1 − 𝑑0) + 𝑏1, and thus

𝑏𝑘 − 𝑏1 = −2−1 · (𝑘 − 1) · (𝑑0 − 𝑑1). (5)

Setting the right side of equations (4) and (5) equal gives

𝑘 · (𝑑0 − 𝑑1) ≡ 0 mod (𝑞2 + 𝑞 + 1) .

The path is maximum with no repetition, so 𝑘 must be

𝑘 =
𝑁

gcd(𝑑0 − 𝑑1, 𝑁 )
.

Conversely, assume there exist distinct 𝑑0 and 𝑑1 ∈ 𝐷 so that

𝑘 · (𝑑0 − 𝑑1) = 0 mod 𝑁 . For any such 𝑑0 and 𝑑1, 𝑘 is odd, since

𝑁 = 𝑞2 + 𝑞 + 1 is odd. Consider the path defined as follows: 𝑏1 is

the reflection point 2
−1 · 𝑑1, 𝑏𝑘 is the reflection point 2

−1 · 𝑑0, and
𝑏𝑖 for 1 < 𝑖 ≤ 𝑘 is 𝑑0 − 𝑏𝑖−1 if 𝑖 is even, and is 𝑑1 − 𝑏𝑖−1 if 𝑖 is odd.
This is clearly an alternating-sum path. It is maximal: if there were

a preceding 𝑏0 part of the alternating-sum path, then 𝑏0 + 𝑏1 = 𝑑1.

But 𝑏1+𝑏1 = 𝑑1, so 𝑏0 = 𝑏1. Likewise, 𝑏𝑘 = 𝑏𝑘+1. It is non-repeating,
since𝑘 is the smallest integer for which𝑘 ·(𝑑0−𝑑1) ≡ 0 mod 𝑁 . □

Corollary 7.14. A maximal alternating-sum non-repeating path
in the Singer graph exists for every pair of distinct 𝑑𝑖 and 𝑑 𝑗 in the
difference set 𝐷 , and each of these is unique (considering reversed
paths as distinct).

These paths need not be Hamiltonian. When the path is not

Hamiltonian, other alternating-sum paths using the same (𝑑𝑖 , 𝑑 𝑗 )
also exist, but are part of a cycle (thus either repeating or non-

maximal), and do not span the vertex set.

The following corollary gives the construction of all maximal

alternating-sum non-repeating paths in 𝑆𝑞 . The example in Table 2

shows the non-Hamiltonian paths in 𝑆4. Two examples of maximal

sets of edge-disjoint Hamiltonians are shown in Figure 4.

172



In-network Allreduce with Multiple Spanning Trees on PolarFly SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Corollary 7.15. Let 𝑑0 and 𝑑1 be a pair of alternating sums in
the Singer graph 𝑆𝑞 , and let

𝑘 =
𝑁

gcd(𝑑0 − 𝑑1, 𝑁 )
.

Then there is a unique maximal alternating-sum non-repeating
path (𝑏1, 𝑏2, . . . , 𝑏𝑘 ) in the Singer graph 𝑆𝑞 where

(1) the path source 𝑏1 is the reflection point 2−1 · 𝑑1,
(2) the path sink 𝑏𝑘 is the reflection point 2−1 · 𝑑0,
(3) the path element 𝑏𝑖 for 1 < 𝑖 ≤ 𝑘 is 𝑑0 − 𝑏𝑖−1 if 𝑖 is even, and

is 𝑑1 − 𝑏𝑖−1 if 𝑖 is odd,
(4) the path length is 𝑘 − 1 and the number of vertices is 𝑘 , and
(5) the path is Hamiltonian if and only if 𝑑0 − 𝑑1 is relatively

prime to 𝑁 .
This construction accounts for all maximal alternating-sum non-
repeating paths in 𝑆𝑞 .

Proof. Follows from Lemma 7.12, and Theorem 7.13. □

We know from Corollary 7.15 that the Hamiltonian alternating-

sum non-repeating paths in the Singer graph 𝑆𝑞 are exactly those

generated by pairs (𝑑0, 𝑑1) from the Singer difference set 𝐷 , where

𝑑0 − 𝑑1 is relatively prime to 𝑁 . Thus, it is easy to generate a

Hamiltonian path in 𝑆𝑞 by simply choosing two such elements 𝑑0
and 𝑑1 from 𝐷 . Non-Hamiltonian maximal alternating-sum non-

repeating paths exist when 𝑁 is not prime, as seen in Table 2, but

will not be the focus of this paper.

diff. set elts. # vertices end points
𝑑0 𝑑1

gcd(𝑑0 − 𝑑1)
𝑘 𝑏0 𝑏1

0 14 7 3 7 0

1 4 3 7 2 11

1 16 3 7 8 11

4 16 3 7 8 2

Table 2: This table shows all non-Hamiltonian maximal alternating-sum non-
repeating paths (𝑏1, ..., 𝑏𝑘 ) over 𝑆4 using the difference set {0, 1, 4, 14, 16} from
Figure 2b. These non-Hamiltonian paths come from those (𝑑0, 𝑑1 ) whose
difference (𝑑0 − 𝑑1 ) is not relatively prime to |𝑆4 | = 21. This excludes the path
reversals, which are generated by reversing 𝑑0 and 𝑑1. Each such path may
be generated by starting with 𝑏1, then appending 𝑑0 − 𝑏𝑖−1 if 𝑖 is even and
𝑑1 − 𝑏𝑖−1 if not. The end points are reflection points.

To maintain zero congestion in Allreduce, we want to use edge-

disjoint spanning trees, and to maximize bandwidth, we require

as many edge-disjoint spanning trees as possible. Therefore we

restrict our focus to the Hamiltonian paths.

Corollary 7.16. Let 𝑑0 and 𝑑1 be two distinct elements of the
Singer difference set𝐷 , and let (𝑏1, 𝑏2, . . . , 𝑏𝑘 ) be the unique maximal
alternating-sum non-repeating path in the Singer graph 𝑆𝑞 that they
generate. Then

𝑏𝑖 =

{
𝑖
2
· (𝑑1 − 𝑑0) + 𝑏1 if 𝑖 is even

𝑖+1
2
· 𝑑0 − 𝑖−1

2
· 𝑑1 − 𝑏1 if 𝑖 is odd.

This corollary leads to a description of the depth of a Hamiltonian

path (which is a spanning tree) of 𝑆𝑞 .

Lemma 7.17. The optimal depth of an alternating-sum Hamilton-
ian path (𝑏1, 𝑏2, . . . , 𝑏𝑁 ) is 𝑁−1

2
, and the root mod 𝑁 is

𝑏 (𝑁+1)/2 = 𝑏
2
−1 =

{
4
−1 · (𝑑1 − 𝑑0) + 𝑏1 if 𝑖 is even
4
−1 · (3 · 𝑑0 + 𝑑1) − 𝑏1 if 𝑖 is odd.

Proof. We choose the midpoint of the path to minimize the

depth. This occurs at vertex 𝑏 (𝑁+1)/2 and gives a depth of
𝑁−1
2

.

The formulation for the root is a consequence of Corollary 7.16. □

We will use sets of edge-disjoint Hamiltonian paths in Allreduce.

In order to optimize bandwidth, we need to maximize the number of

edge-disjoint Hamiltonian paths in 𝑆𝑞 . Recalling that a Hamiltonian

path is a spanning tree, we have the following upper bound.

Lemma 7.18. The upper bound for the number of edge-disjoint
Hamiltonian paths on 𝑆𝑞 is 𝑞+1

2
.

Proof. There are
𝑞 · (𝑞+1)2

2
edges in 𝑆𝑞 , and each Hamiltonian

path has 𝑞 · (𝑞 + 1) edges. □

(a) A maximal set of 2 edge-disjoint Hamiltonian paths for 𝑞 = 3. One is
colored with difference-set colors 0 (red) and 1 (green), and the other with
colors 3 (blue) and 9 (cyan). All edges of 𝑆3 are used in the two paths.

(b) A maximal set of 2 edge-disjoint Hamiltonian paths for 𝑞 = 4. One is
colored with difference-set colors 0 (red) and 1 (grey), and the other with
colors 4 (green) and 14 (blue). The cyan edges from 𝑆4 corresponding to
difference set element 16 are not used in either of the two paths.

Figure 4: Two examples of maximal sets of ⌊ (𝑞 + 1)/2⌋ edge-disjoint Hamito-
nian paths. 𝑆𝑞 is shown on the left, and the Hamiltonian paths are shown to
the right. Such (𝑑0, 𝑑1 )-colored paths start with the quadric having a self-loop
of color 𝑑1 and alternate edge colors until a self-loop of color 𝑑0 is reached. All
alternating-sum paths will be composed of two sets of joined parallel lines.

Theorem 7.19. Let 𝑡 denote the maximum number of edge-disjoint
Hamiltonian paths on 𝑆𝑞 . Then the aggregate bidirectional Allreduce
bandwidth of these spanning trees is 𝐵 · 𝑡 .

If the optimal number of edge-disjoint Hamiltonian paths on 𝑆𝑞

is achieved, then the aggregate Allreduce bandwidth is ⌊ (𝑞+1)
2
⌋ · 𝐵,

which is the optimal bandwidth for PolarFly.

Proof. This follows from the fact that the spanning trees are

edge-disjoint and the congestion model in Algorithm 1. □

In fact, we can often achieve the upper bound of
𝑞+1
2

for odd 𝑞

and ⌊𝑞+1
2
⌋ for even 𝑞, as illustrated by the examples in Figure 4.

• If 𝑁 is prime, all maximal alternating-sum non-repeating

paths in the Singer graph 𝑆𝑞 are Hamiltonian.

• If 𝑁 is composite, both non-Hamiltonian and Hamiltonian

maximal alternating-sum non-repeating paths must exist.

These are of cardinality 𝑘 , where gcd(𝑘, 𝑁 ) ≠ 1. All such

paths are constructed as in Corollary 7.15.

It may seem like the existence of non-Hamiltonian paths when

𝑁 is composite would imply that ⌊𝑞+1
2
⌋ edge-disjoint spanning

trees cannot be obtained. However, in Section 7.3, we show that a
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set of ⌊𝑞+1
2
⌋ edge-disjoint Hamiltonian paths exists for all possible

radixes of 𝑆𝑞 in the range [3, 129] (this is the upper bound
𝑞+1
2

when 𝑞 is odd and is the maximal possible size when 𝑞 is even).

To conclude this section, we provide a corollary to Theorem 7.13

counting exactly how many of these maximal alternating-sum non-

repeating paths will be Hamiltonian.

Corollary 7.20. The number of alternating-sum Hamiltonian
paths in 𝑆𝑞 is 𝜑 (𝑁 ), where 𝜑 is Euler’s totient function.

The totient function 𝜑 (𝑛) has generous bounds [43]:
• For prime 𝑛, the totient function is 𝑛 − 1.
• For composite 𝑛 ≠ 6,

√
𝑛 ≤ 𝜑 (𝑛) ≤ 𝑛 −

√
𝑛.

So even when 𝑁 is composite, there are between
𝑞+1
2

and
𝑞2

2

alternating-sum Hamiltonian paths to choose from.

7.3 Comparing the Two Solutions
We analyze the bandwidth achieved by our solutions for radixes

in the range [3, 129], which covers most of the design points of

interest. Corollary 7.7 states that the bidirectional bandwidth for the

low-depth solution is
𝑞𝐵
2

if 𝑞 is odd and is
(𝑞+1)𝐵

2
if 𝑞 is even (even 𝑞

not covered in this paper for brevity). Recall that Theorem 5.1 shows

that
(𝑞+1)𝐵

2
is the optimal bandwidth for Allreduce in PolarFly.

(a) Comparison of Allreduce bandwidth, normalized against the optimal.
Bandwidth of the Hamiltonian solution is optimal for all odd radixes
(most of the feasible radixes). Bandwidth of the low-depth solution quickly
approaches optimal for current- and next-generation high-radix routers.

(b) Comparison of tree depth, which is proportional to latency. Tree depth
of the Hamiltonian solution is quadratic in terms of the radix, but tree
depth of the low-depth solution is constant, giving consistent low latency.

Figure 5: Comparisons of Allreduce bandwidth and latency for the two ap-
proaches. For lower radixes, there is a tradeoff between bandwidth and latency,
with large gaps in bandwidth at some radixes. For higher radixes, the low-depth
solution provides both near-optimal bandwidth and constant low latency.

For our edge-disjoint Allreduce, the bandwidth is proportional

to the maximum number of edge-disjoint Hamiltonian paths in the

network as per Theorem 7.19, finding which can be expressed as an

independent set problem as follows: Construct a graph 𝐺𝑆 (𝑉𝑆 , 𝐸𝑆 ),
where (a) each vertex in 𝑉𝑆 represents a unique pair of difference

set elements whose maximal alternating-sum path is Hamiltonian,

and (b) two vertices are connected if they have a common element.

Clearly, the maximum independent vertex set of 𝐺𝑆 gives a set of

disjoint Hamiltonian paths of maximum cardinality in 𝑆𝑞 .

Finding maximum independent sets is NP-hard in general. There

are optimized algorithms to find a maximum independent set [24].

Here, we simply computed random maximal independent sets on

difference sets (generated using galois.py [28], PARI [59] and the

Online Encyclopedia of Integer Sequences [29]). We were able to

find a maximum independent set in 𝐺𝑆 for all radixes within 30

random instances, thus verifying that 𝑆𝑞 contains a set of ⌊𝑞+1
2
⌋

edge-disjoint Hamiltonian paths for all prime powers 𝑞 < 128.

Figure 5 compares the Allreduce bandwidths and latencies for

both solutions. Asymptotically, these solutions approach the opti-

mal bandwidth. However, there is a clear trade-off between latency

and bandwidth for small radix, as seen by comparing Figures 5a and

5b, and there are several data points for which there is a significant

gap between the Hamiltonian and low-depth solutions.

8 RELATEDWORK
Several works optimize host-based Allreduce using algorithmic [46,

51, 58], parameter tuning [16, 26, 60] and runtime [44, 47, 48] opti-

mizations. A detailed overview of collective algorithms is provided

in a survey by Moor and Hoefler [27]. However, all host-based

implementations have fundamental limitations involving multiple

communication rounds and network protocol overheads.

In-network computing is widely used to mitigate these chal-

lenges. Many networks provide hardware support for in-network re-

duction of short vectors [2, 15, 23, 33], which is a common operation

in linear solvers and scientific computing applications [12, 49, 50].

Emerging AI/ML applications perform Allreduce on very large

vectors [31, 54, 55], which tends to be bandwidth-bound and can bot-

tleneck the performance for large systems and models. To address

this, switches capable of link rate in-network aggregation have

been proposed [19, 32, 40, 54], with demonstrable application-level

benefits. Flare [11] uses general-purpose programmable switches

for high-bandwidth Allreduce computation. General-purpose pro-

grammable devices can be used to implement our routines, but

Flare is otherwise orthogonal. Intel PIUMA [1, 36] and Mellanox

SHARP [21] deploy high bandwidth in-network Allreduce in real-

world systems. BlueConnect uses parallel Reduce-scatter and All-

gather computations to improve bandwidth utilization in hierarchi-

cal networks like Fat trees [10]. For flat networks with uniform link

bandwidth and router radix, it is still gated by a single link band-

width. This work advances the state of current practice by exploiting

data parallelism in in-network Allreduce, boosting the bandwidth

by more than an order of magnitude for high-radix networks.

9 CONCLUSION
The problem of optimizing Allreduce bandwidth can be mapped to

that of finding multiple spanning trees in a network. We apply this

to PolarFly, a diameter-2 topology whose rich mathematical struc-

ture affords sets of spanning trees with highly desirable properties.

In this paper, we provide two solutions that achieve near-optimal

Allreduce bandwidth on PolarFly while minimizing congestion. In

this first, we construct a large set of spanning trees in PolarFly with

congestion just 2 and depth just 3. The second solution offers no

congestion, albeit at the cost of high depth.
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