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Quantifying uncertainty in weather forecasts is
critical, especially for predicting extreme weather
events. This is typically accomplished with ensemble
prediction systems, which consist of many perturbed
numerical weather simulations, or trajectories, run
in parallel. These systems are associated with a
high computational cost and often involve statistical
post-processing steps to inexpensively improve their
raw prediction qualities. We propose a mixed model
that uses only a subset of the original weather
trajectories combined with a post-processing step
using deep neural networks. These enable the
model to account for non-linear relationships that
are not captured by current numerical models or
post-processing methods. Applied to global data,
our mixed models achieve a relative improvement
in ensemble forecast skill (CRPS) of over 14%.
Furthermore, we demonstrate that the improvement
is larger for extreme weather events on select case
studies. We also show that our post-processing can
use fewer trajectories to achieve comparable results
to the full ensemble. By using fewer trajectories, the
computational costs of an ensemble prediction system
can be reduced, allowing it to run at higher resolution
and produce more accurate forecasts.
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1. Introduction
Operational weather predictions have a large impact on society. They influence individuals on
a daily basis, and in more severe cases, save lives and property by predicting extreme events
such as tropical cyclones. However, developing reliable weather prediction systems is a difficult
task due to the complexity of the Earth System and the chaotic behaviour of its components.
Small errors introduced by observations, their assimilation, and the forecast model configuration
escalate chaotically, leading to a significant loss in forecast skill within a week. Numerical Weather
Prediction (NWP) is based on computer models solving complex partial differential equations at
limited resolution. To be useful, weather forecasts try to estimate the uncertainties in predictions
using ensemble simulations, where a forecast model is run a number of times from slightly
different initial conditions, parameter values, and stochastic forcing. The resulting spread of
predictions among ensemble members provides an estimate for the prediction uncertainty. This
enables us to estimate the probability of, for example, precipitation for a specific location and time
of day as well as the probability of a tropical cyclone hitting a large city.

In this paper we will focus on post-processing ensemble predictions performed at the
European Centre for Medium-Range Weather Forecasts (ECMWF) [1] using deep neural
networks (DNNs). ECMWF runs an operational forecast that consists of one high resolution
(9 km grid) deterministic forecast (HRES), and an ensemble (ENS) with 51 members at a
lower resolution (18 km), of which one is the unperturbed control trajectory. Each ensemble
member starts from slightly different initial conditions and uses a different stochastic forcing
in the physical parameterisation schemes of subgrid-scale processes — so-called stochastic
parameterisation schemes. While ensemble methods have become a standard tool for numerical
weather predictions, there is an ongoing discussion on how many ensemble members should be
used. Larger ensembles allow for a better sampling of the probability density function (PDF) of
predictions. However, computing power is limited and forecasts are bound by strict operational
time windows of a couple of hours. Smaller ensembles would therefore allow individual members
to run at higher resolution, likely resulting in better forecasts by each ensemble member [2].

The demand for ever more precise and dependable forecasts has led NWP methods to rank
amongst the scientific domains with the most significant demand for supercomputing time [3–6].
As such, the NWP field is constantly looking for new methods to improve accuracy and reduce the
computational cost of its models. This is where the recent advances in DNNs [7] become relevant.
The breadth of tasks and efficient inference DNNs enable has made them a very attractive
option for improving weather forecasts [8–12]. Related studies have also shown their capabilities
for predicting chaotic behavior [13,14]. However, the full potential of these methods remains
unexplored in many areas of NWP.

We use convolutional neural networks (CNNs) [15] and locally connected networks
(LCNs) [16] to both improve forecast skill and reduce the computational requirements for
NWP. We approach these goals through three different tasks: Uncertainty Quantification, Bias
Correction, and PDF Calibration. Each is a different task that is addressed with a different
neural network. First, uncertainty quantification is usually performed by examining the spread
(standard deviation) of the forecasting ensemble. Here, we train a neural network to produce a
similar spread as an ensemble, using only a small fraction of the ensemble members as input.
We achieve a relative RMSE improvement of over 16% in forecast ability compared to using
five of ten ensemble members to predict temperature. Second, we train a neural network to
predict a point-wise bias to account for local trends in weather patterns. This results in a relative
RMSE improvement of 7.9% on temperature. Lastly, we calibrate the ensemble PDF given a bias-
corrected input, using our uncertainty quantification network. This results in a forecast skill
increase of over 14.5% using only half the trajectories of a full ensemble. The reduced number
of input ensemble forecasts also allows NWP to be run at a fraction of the cost of additional
trajectories. Prediction time is further reduced by making use of high throughput graphics
processing units (GPUs) for DNN inference.
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Our code and data are publicly available1.

(a) Related Work
There have been many works leveraging the modelling capabilities of neural networks (NNs) for
NWP. Early attempts at applying shallow NNs showed success in emulating physical processes
and saving computational power [17]. Since then, building on recent DNN developments, much
effort has gone into applying NNs to weather nowcasting [18–21]. Nowcasting focuses on the
emulation of physical processes for short term (up to six hours), high-resolution forecasts. Other
works have also shown the significant capabilities of DNNs to predict longer ranging forecasts
and extreme weather patterns [12,22–26].

In contrast, we focus on the post-processing of operational medium-range ensemble forecasts
and the prediction of extreme weather events. Post-processing ensemble outputs has been a
long-standing effort in the weather forecasting community. Methods such as Ensemble Model
Output Statistics (EMOS) [27] and Bayesian Model Averaging (BMA) [28] currently allow
for improvements of the raw ensemble forecast skill. Hamill and Whitaker [29] show initial
explorations of those techniques on re-forecast datasets, also used in this paper, for temperature
at 850 hPa (T850) and geopotential at 500 hPa (Z500). Advances in neural networks have
only recently reached the field of ensemble models in weather forecasting, focusing on its
application to specific weather stations [9,30] or global interpolations [31]. We expand on this
work by applying DNNs on the novel task of improving the forecast skill for global predictions,
specifically extreme weather forecasts, while reducing their computational costs.

2. Data
The quality of ensemble forecasts has improved significantly over the last decades and ensemble
predictions are using increased resolutions and numbers of trajectories. Learning from past
ensemble predictions would therefore lead to inconsistencies as the correction for mean and
spread would need to adjust for changes in the quality of predictions over time. To address this,
re-forecasts [32] apply current state-of-the-art forecast models to past measurements.

We use data from re-forecast ensemble experiments at ECMWF. These are routinely generated
to provide an estimate of the "climate" of the forecast model for each date of the year, which can
be used to remove model drifts during post-processing and for measuring the generic skill of the
forecast system [33,34]. The re-forecast experiments run a 10-member ensemble (ENS10) and an
unperturbed control experiment. Simulations use 91 vertical levels, the spectral representation
of the model fields is truncated at the global wavenumber 639, and a cubic octahedral reduced
Gaussian grid is used for the representation of model fields in grid-point space that provides an
approximately uniform distribution of grid-cells on the sphere with a 18 km grid-spacing (the
"TCo639" grid [35]). Simulations are performed with the same system for 1999-2017, with two
forecast simulations starting each week, providing a large dataset with consistent forecast quality.

To fully train our networks and evaluate their forecast skill we also need ground truth
weather conditions at specific forecast lead times. For this, we use the fifth major ECMWF
ReAnalysis (ERA5) [36], which includes data on weather from 1979 up to the present2. Compared
to re-forecasts, reanalysis datasets are produced by applying a constant stream of observations
through state-of-the-art data assimilation on state-of-the-art forecast models used for decade-
long simulations. In ERA5, this process generates reanalysis fields that are available at an hourly
frequency for over 300 parameters.

1https://github.com/spcl/deep-weather
2Available for download under https://cds.climate.copernicus.eu/

https://github.com/spcl/deep-weather
https://cds.climate.copernicus.eu/
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Figure 1: Inputs and ground truths to our neural networks.

(a) Data Selection
We use the ENS10 dataset for our forecasts and make use of ERA5’s constant data assimilation
product as ground truth, given the ENS10 forecast lead times. ENS10 and ERA5 both provide
global data, which we interpolate to a latitude/longitude grid with a 0.5 degree resolution. We
do this to avoid the native grid that was used within simulations, as it is unstructured in the
longitudinal direction. While the use of latitude/longitude grids does lead to over-saturation of
gridpoints in the poles, it simplifies our models; we leave the use of unstructured grids to future
research. We also focus on a single pressure level for each model. When predicting temperature
at 850 hPa (T850), we provide all input fields at 850 hPa. Similarly, when predicting geopotential
at 500 hPa (Z500) all input fields are at 500 hPa. The years 1999-2013 are used for training, 2014-15
for validation, and 2016-17 for testing. Since the datasets are re-forecasts and a reanalysis, there
is no difference in data assimilation and predictions between older and more recent dates, and
therefore the selection of consecutive years should not have a major impact. We have verified that
the selection of different training, validation and testing splits only has a minor impact on results
(e.g., we see 7.6% improvement with our bias correction network, versus an average of 8.3%
when performing cross-validation). Furthermore, we select these (most recent) years as it is our
goal to model and evaluate our networks’ capabilities to predict future weather given training-
input from the past. The effects of climate change on the uncertainty of forecasts are currently
being explored [37]. For our selected parameters and years, these effects are low. It is, however,
important to use complete years, as different seasons demonstrate different weather patterns. We
target forecasts with a lead time of 48 hours, and use the reduced ensemble forecasts for 0, 24, and
48 hour lead times as inputs.

(b) Data Preprocessing
As the datasets consist of several terabytes of data, we set up a data preprocessing pipeline to
enable faster training. We first select the relevant inputs and labels to each of our respective
models from the data provided in GRIB [38] format. We then convert the data from a 16-bit fixed
point format to 32-bit floating point. This simplifies and speeds up training, while not impacting
the results. Finally, we standardize (to zero mean, unit variance) our features and save them in the
TFRecord format, which is the preferred dataset file extension in the TensorFlow deep learning
framework. The resulting inputs and training targets can be seen in Figure 1. We base our model
inputs on the first five ENS10 trajectories as we observed no significant differences in the average
means or spreads when using different selections.
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For DNNs to learn local weather patterns, it is important to keep local spatial differences in
variability (coherence) when standardizing meteorological data [24]. However, if only one value
per mean and standard deviation are applied to scale values on the whole globe, there will be
massive differences for specific regions, e.g., different means and standard deviations closer to
the poles compared to the equatorial region. This can lead to poor accuracy when applying CNNs
that are translation-invariant. At the same time, just applying gridpoint-wise standardization will
result in losing important information, otherwise represented through the coherence.

To remedy this problem, we apply a heuristic we refer to as Local Area-wise Standardization
(LAS) (see Figures 2 and 3). First we apply a moving average and moving standard deviation
filter on our training set. We use a step size of one and a filter size of 7× 7 (the largest CNN filter
size we apply in our DNNs). Then, as our mean and standard deviation maps now have reduced
dimensions, we pad them using the edge values for latitudes and a wrap around for longitudes.
Finally, we apply a Gaussian filter (truncated at four standard deviations) with a large standard
deviation (of 10) to the padded result. This upscaling method, first padding and then blurring the
upscaled feature map with a gaussian filter, allows for the coherence to be kept between singular
grid points.

Using LAS we notice a relative improvement in our DNN results of around 15% for spread
prediction on our validation sets, as well as faster convergence times compared to applying the
same standardization for all grid points. However, as expected, we see no difference when using
it with our LCNs, which are not translation-invariant (see Section 3(b)). The method is not fine-
tuned and serves as an initial effort to reduce the workload on the neural networks by already
accounting for reoccurring patterns, such as higher mean temperatures around the equator and
reduced standard deviations.
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Figure 2: Local Area Standardization. The process is done twice, once by taking the mean of the
moving filter, and once by taking its standard deviation, thereby obtaining a mean and standard
deviation (std) map respectively.

(a) Mean values. (b) Standard deviation values.

Figure 3: LAS values for Temperature at 850 hPa (T850), years 1999-2013 of ENS10.
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3. Neural Networks
We develop separate neural networks for our uncertainty quantification and output bias
correction tasks, which are described throughout this section: a residual neural network
composed of Inception-style modules [39] and a U-Net [40] architecture with an additional
locally-connected layer, respectively. While prior work in weather uncertainty prediction [31]
used a 3D U-Net [41] architecture, the DNNs we develop perform better for our tasks.

Residual connections [42] (also called “skip” connections) pass unmodified features between
layers that are not directly connected to each other, allowing them to be directly used by later
layers. Such connections were found to be crucial for our results. Indeed, Chen et al. [43]
demonstrated that applying successive residual connections has many similarities to ordinary
differential equations. We also considered recurrent neural networks, but do not apply them here
due to the short input sequences and lack of improvement in prior work [31].

(a) Uncertainty Quantification Model
There are many uncertainties present in NWP models and data. Data, or aleatoric, uncertainty
stems from observational measurement noise, while model uncertainty comes from structural
(e.g., forecast model) and parametric uncertainties. In addition to these inherent uncertainties,
we also introduce a structural uncertainty by applying a common assumption of NWP that the
distribution of errors and uncertainties for meteorological fields, which are represented by the
distribution of ensemble members in ensemble predictions, follow Gaussian distributions. Our
DNN is able to address data and structural uncertainties stemming from NWP; however, we
cannot address parametric uncertainties, as the data assimilation pipelines and forecast models
we use are fixed and used as prediction labels. More specifically, to reduce computational
requirements, our DNN initially aims to predict the full ensemble spread using only a subset
of NWP ensemble trajectories. The architecture is summarised in Figure 4.
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Figure 4: Spread Prediction Network for Uncertainty Quantification. All layers marked Conv have
a kernel dimension of 1× 1 and are meant to reduce the number of filters. For other convolutional
layers we use Batch Normalization (BN) and ReLU activations on the outputs.

The non-linear nature of our DNN model, which introduces a previously unused structure in
NWP and statistical post-processing, combined with the forecasts of the reduced NWP ensemble,
helps address the original structural uncertainty. Such a design also allows our model to take
into account deterministic forecasts, which it would otherwise struggle to learn. Additionally,
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Figure 5: Output Bias Correction model, based on a three-level U-Net and added LCN structure.

as CNNs are relatively robust to noise, they are naturally able to account for data uncertainty.
We also perform a minimal post-processing on NWP output, which reduces the number of
parameters by encoding all input features aside from spreads into reduced dimensions. This
output is then used for all subsequent steps.

The core of the DNN is based on the ResNet architecture [42]. We use ten Inception-style
modules [39] with residual connections; we did not see any improvement with more layers. Each
Inception-style module is composed of three parallel dilated convolutions (where dilation refers
to an increased stride between the convolution kernel elements), allowing the network to learn
differently-sized receptive fields (local regions). We also perform a channel-wise concatenation
of the post-processed NWP output to the input of each Inception-style layer (Figure 4, top). This
allows the network to prioritise between different lead times from NWP forecast spreads and its
own outputs. Using auxiliary losses for different lead times and depths performed worse than
pure NWP predictions.

Finally, the output of the last Inception-style module is combined with the NWP spread
through a weighted mean. This guarantees the network performs at least as well as the NWP
spread used as input during training. By combining this model with our bias correction model
and training with ERA5 data as the ground truth (see Section 3(c)), it is possible to also account
for parametric uncertainty. This allows our combined networks to cover all types of uncertainty.

(b) Output Bias Correction Model
Our output bias correction model, summarised in Figure 5, corrects for weather-dependent,
local biases in NWP forecasts. It is trained using the mean ensemble predictions with a 48-hour
lead time and ERA5 data as ground-truth. Since the forecast can resemble the ground-truth, a
straightforward predictor will closely resemble the identity function. Prior research [42] suggests
that approximating an identity mapping with several non-linear layers is difficult. We therefore
train our model to predict the difference between the NWP prediction and the ground-truth.

The network is based on a U-Net structure, which repeatedly convolves and downscales
inputs, followed by similarly upscaling the features (i.e., forming a “U” shape, as seen in
Figure 5). Specifically, each scaling operation is applied after several layers of convolution.
Residual connections are also used between the down- and upscaling sides. We make three
key changes to adapt the standard U-Net to our task. First, instead of up-convolution, we use
bilinear interpolation to upscale, followed by a 3× 3 convolution with stride 1. This is due
to checkerboard artifacts that are known to appear when only using a simple deconvolution
operation [44]. Second, we reduce the number of levels in the U-Net, from five levels to three,
as we found using additional levels resulted in overfitting on our data. Finally, we reduced
the number of filters in each convolution by half, as we observed no additional performance
improvements by using more.

As we aim to predict the bias emerging from specific regional patterns, the translational
invariance of regular convolution hinders performance. We therefore use a locally-connected
network (LCN) as the last layer. LCNs perform a similar operation to regular convolution, but
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instead of sharing filters across all spatial points, independent filters are used for each output.
When training, we apply `1 regularization on the difference between all adjacent filters in an LCN,
to encourage adjacent filters to learn similar weights; for an infinite regularization parameter, the
LCN converges to a convolutional layer. This helps avoid overfitting.

In order to remain computationally efficient, our best models first use a U-Net to perform
feature extraction and then apply an LCN to obtain our final output bias correction. As the U-Net
is able to learn long-range dependencies, a single LCN with 1× 1 kernels is sufficient to learn the
gridpoint-wise dependencies, and we observed no improvements by using larger filter sizes.

(c) Metrics
As our models solve different tasks, we need to use different metrics to evaluate them. When
training, we treat both uncertainty quantification and output bias correction as regression
problems, and aim to predict extreme cases (outliers). The ENS10 spread is used as ground truth
for the uncertainty network, while the ERA5 values are used for the bias correction. Initially,
we train both networks on the mean-squared error (MSE) and evaluate them with root mean-
squared error (RMSE). However, when predicting the spread, the results lack the sharp edges that
exist in the original forecasts. In computer vision, this problem is mitigated using the Structural
SIMilarity (SSIM) metric [45]. There can be infinitely many solutions to the task of minimising
RMSE. While remaining within the realm of these solutions, the SSIM measures the structural
similarity between two images, with 1.0 being a perfect match. Therefore, we switch to using the
negative mean SSIM of our prediction compared to the full ENS10 ensemble as our training loss
for the uncertainty quantification model.
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Figure 6: Visualisation of CRPS for a temperature
prediction. CRPS is calculated as the integral of
the square of the green area.

To then gain an understanding of the
forecast skill of our combined predictions and
of the ENS10 forecasts, we use the Continuous
Ranked Probability Score (CRPS) [46]. CRPS,
generally used to measure whether ensemble
methods represent uncertainty correctly, is
the integral of the square of the difference
between the Cumulative Distribution Function
(CDF) of the probabilistic predictions F and
the ground truth y (see Figure 6):

CRPS(F, y) =
∫∞
−∞

[F (x)− 1x>y]2dx

Here, 1x>y is the indicator function
(equivalent to the CDF of a deterministic
value). In the following, we do not only combine the uncertainty and bias correction networks to
calculate CRPS, but also perform PDF calibration by training a combination of both in a network
that is optimised to minimise the CRPS. We achieve this by replacing the labels of our uncertainty
quantification network, which were previously the spread values of the full ENS10 trajectories,
by the difference between the ground truth and the output bias corrected forecast ∆P . With
our assumption of the forecasts being of a Gaussian distribution, ∆P , the error function Φ and
standard deviation σ we then set the CRPS loss as follows (see Appendix A for full derivation):

∆P = Ground Truth− Prediction

Φ(x) =
2√
π

∫x
0
e−t

2

dt

CRPS(σ,∆P ) =∆PΦ

(
∆P√
2σ

)
+

σ√
π
(−1 +

√
2e−

∆P2

2σ2 ).
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Finally, the relative CRPS improvement of a prediction over the original raw ensemble is
defined as the Continuous Ranked Probability Skill Score (CRPSS):

CRPSS(CRPSpred,CRPSorig) = 1−
CRPSpred
CRPSorig

.

(d) Implementation
Our networks are implemented with the TensorFlow deep learning framework [47]. Layers are
initialised with a truncated normal distribution. We train with the Adam optimiser [48] with a
learning rate of 0.001 and `2 regularization. Our models have not been fine-tuned extensively,
and there is further potential for improvement. More implementation details can be found in our
GitHub repository.

The uncertainty networks are trained for 4,725 update steps with a batch size of 2, requiring
about four hours on one Nvidia V100 32 GB GPU. The bias correction networks are trained for
the same wall-clock time, taking about 25,000 update steps with a batch size of 2. We use early
stopping, i.e., ending the training process once the validation loss stops decreasing, to identify the
best parameters. Training can be done once and the resulting networks used until the ensemble
prediction system is upgraded. Using the same GPU, inference for one parameter and forecast on
a global grid takes approximately 0.31 seconds per network.

4. Results

Notation Description
B{n} Output bias correction NN trained with n trajectories
U{n} Spread prediction NN trained with n trajectories
E{n} Ensemble with n trajectories
Lin{n} Gridpoint-wise linear regression from n trajectories
C Uncertainty NN trained on CRPS
G Ground truth data from ERA5

Table 1: Notation for our model configurations and ground-truth data.

We primarily train our models to predict T850 but also evaluate their prediction capacity on
Z500. First, our uncertainty quantification and bias correction networks are evaluated separately
on the global RMSE for the spread of ENS10 forecasts or the ERA5 ground-truth respectively. All
results are for a forecast lead time of 48 hours. In addition to our DNNs, we train linear regression
models on ensemble trajectories as another baseline (see Table 1).

Figures 7 (a, b) show the improvement in spread prediction of our uncertainty network using
five ensemble trajectories, compared to simply using the five trajectories. There are significant
improvements for both temperature and geopotential. Figures 7 (c, d) show our output bias
correction for predicting deviating weather patterns given a forecast mean and no measure of
uncertainty. We see improvements for T850, but our network does not provide a strong global
improvement for Z500, which we analyze more thoroughly through case studies (see Section 4(a)).

Table 2 shows our analysis of the final results for the uncertainty quantification network
using different numbers of trajectories on T850. With a low number of trajectories we can see
that our model is already able to predict uncertainty to some degree. We observe diminishing
returns in the relative performance as the number of trajectories increases, due to the rapidly
growing proportion of trajectories out of the full ensemble that is used. However, the networks
still consistently outperform the reduced ensemble baselines. This is even the case for a relatively
high number of trajectories (half). We also present the results of an ablation study — exploring
the impact of different structures and features — on the output bias correction networks in Table
3. The results show that T850 correction benefits from convolution operations, whereas Z500
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Figure 7: Notched boxplots for the global RMSE of the Uncertainty Quantification and Output
Bias Correction Networks each day of our test set (2016-17). For the x-axis "A− B" =̂ RMSE(A,B).

T850 E3 E4 E5 E6 E7 E8 E9 Lin5 U3 U4 U5
Abs. 0.35 0.28 0.23 0.19 0.15 0.11 0.07 0.21 0.26 0.23 0.19
Rel. - - - - - - - 8.9% 26.6% 18.7% 16.4%

Table 2: T850 average RMSE towards E10 spread for different ensemble sizes and models for the
test set (2016-17). Abs.: Absolute rounded values. Rel.: Relative improvement over the original
forecast.

Parameter Lin10 UN0 UN1 UN2 UN0-LCN UN1-LCN UN2-LCN UN1-LCN-reg
T850 4.8% 6.3% 7.1% 6.7% 7.6% 7.7% 7.6% 7.9%
Z500 2.1% 1.2% 1.6% 1.0% 2.6% 2.5% 2.4% 2.3%

Table 3: Ablation study of output bias correction, measured by the relative RMSE improvement
over the ensemble mean forecast on the test set. UNi: U-Net with i-levels. UNi-LCN: U-Net with
i-levels followed by an LCN. *-reg: with `1 regularization (λ= 10) on the LCN.

correction benefits most from using a locally connected structure. Further supporting this, we
observe that `1 regularization does not have as significant an impact for Z500, suggesting that
local, independent filters are important for prediction.

To understand the contribution of the input fields to the result, we perform another ablation
study, training networks with the predicted field as the only input. The results are listed in Table
4, confirming the importance of using multiple input fields to provide more accurate predictions.

Network Predicted Input Fields
Parameter Predicted Only All Fields

Uncertainty Quantification T850 12.3% 16.4%
Z500 12.8% 12.9%

Bias Correction T850 6.90% 7.59%
Z500 2.06% 2.37%

Table 4: Ablation study of input fields and the resulting relative improvement for the uncertainty
quantification and bias correction (UN1-LCN) networks.

RMSE is insufficient to measure probabilistic forecast skill, as it does not encompass both mean
and spread. We therefore also consider CRPS (lower scores are better). We use E5 and E10, the
raw five- and ten-member ensembles, as our baselines. The results are presented in Figure 8.
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Figure 8: Notched boxplots for the global average CRPS values for each day in our test set (2016-
17), for all our networks and raw ensemble combinations.

CRPSS Z500 T850
B5U5C towards E10 0.0756 0.1098
B5U5C towards E5 0.1074 0.1458

Table 5: Continuous Ranked Probability
Skill Scores over our test set (2016-17).

To measure our improvements, we specifically
focus on the CRPSS of our PDF calibration network
trained on CRPS, as compared to the raw ensemble
outputs in Table 5. However, both of the models,
trained on CRPS and SSIM, outperform the full
ensemble forecast CRPS for both T850 and Z500,
despite the smaller number of ensemble members that are used. The major source of improvement
for our DNNs, especially for T850, is a reduction in extreme values (outliers), which are indicative
of forecast busts. We are probably able to achieve better improvements for T850 when compared
to Z500 as the temperature field is likely to show more significant biases.

As another baseline comparison, we run EMOS [27] with the first 5 ensemble members of
ENS10 as input. There are 8 parameters in this formulation, and they are trained to minimise
CRPS using the ERA5 dataset as the ground truth. We use the same training/validation/test set
split and training algorithm (Adam with early stopping) as our DNNs. For T850, we observe
a resulting CRPS improvement of 5.5% with EMOS over the test set, compared with 14.5% for
B5U5C.

(a) Extreme Weather Forecasts
Thus far, our results have only demonstrated improvements on average values. They do not cover
the performance for uncertainty quantification of extreme events, where forecast reliability is
essential. In the following, we present three cases of extreme weather phenomena within our
test set, selected from across the world, to demonstrate the networks’ improvements for specific
predictions. However, we would like to warn the reader that the interpretation of the probabilistic
scores for specific events is difficult, as improvement or degradation for a single event are not
sufficient to conclude that a method is better or worse in general. This limitation is visible in the
following examples, as the E5 ensemble is able to outperform the E10 ensemble for specific events
and locations. This can be explained by the limited number of ensemble members that have been
used, and insufficient sampling of the probability distribution. Furthermore, the interpretation of
predictions of extreme events by the end-user needs to be considered as well (see for example
Lerch et al. [49]). Figures 9 to 11 show our CRPS improvements for tropical cyclone Winston,



12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.0000000
..................................................................

(a) E10 (b) E5-E10 (c) B5U5-E10 (d) B5U5C-E10

Figure 9: Tropical cyclone Winston, raging from February until March 2016 over Fiji, has been
classified as the most intense cyclone in the southern hemisphere ever recorded, according to the
Southwest Pacific Enhanced Archive for Tropical Cyclones. It reached category five on February
20. We present the prediction for Z500 as forecast on February 19 for February 21, and differences
in CRPS. (a) The CRPS for the ten-member ensemble. The centre of the cyclone is clearly visible.
(b)-(d) The difference in CRPS between the ten-member ensemble and five-member ensembles
with and without post-processing. Our CRPS-trained network shows improvement over E10.
It also demonstrates similar confidence in the southern area where the cyclone is moving,
while being worse where the cyclone has already passed. This results in a large forecast skill
improvement in the selected area, with a CRPSS of 0.261 (26.1% improvement over E10).

(a) E10 (b) E5-E10 (c) B5U5-E10 (d) B5U5C-E10

Figure 10: Hurricane Matthew, a category five hurricane brought severe destruction to the
Carribean and southeastern United States during September and October of 2016. We look at
the Z500 forecast for the third of October. Again we see large improvements over the centre of the
hurricane, as well as in the northern regions the hurricane will later progress over, with slightly
reduced skill for outer regions.

hurricane Matthew, and a cold wave over Asia, respectively. Blue colour indicates that the (post-
processed) five member ensemble has more skill when compared to the ten member ensemble.
All times are 00:00 UTC. We also present global CRPS plots in Figure 12.

5. Conclusion
We show that using informed model construction, deep learning can indeed improve the skill
of global ensemble weather predictions. In particular, since we do not only predict an ensemble
spread, but also perform a locally-adaptive output bias correction, we improve the results of a
five-member ensemble to even surpass the forecast skill of a ten-member ensemble in terms of
CRPS. When tasked with hard-to-predict extreme weather cases, such as tropical cyclone Winston,
the combined models exhibit especially pronounced forecast skill improvements. Through the use
of heterogeneous hardware, they are able to run these global post-processing steps within tenths
of a second. In the future, such deep learning tools could allow for reduced ensembles to be run
at higher resolutions, providing cheaper and more informed predictions.
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(a) E10 (b) E5-E10

(c) B5U5-E10 (d) B5U5C-E10

Figure 11: Cold Wave over Asia: During January 2016 an unprecedented cold wave rushed over
East and South Asia, leading to record lows. We focus on a forecast for January 24 where T850
forecast CRPS has its worst spike. In this case our CRPS trained model brings a large improvement
of more than 25.5% (CRPSS), compared to the 10 member ensemble, over the most affected region,
while keeping regions of low CRPS fairly close to their original values, resulting in a total forecast
improvement of around 19.5% for the selected region.

The network structures used in this paper should also be tested for other applications of deep
learning in NWP, such as the learning of model error in data-assimilation systems or the learning
of the global equations of motion. Future research could be conducted into whether the networks
need to be re-trained to process other physical fields and forecast lead times or whether the
normalisation of spread values could allow the same network to also be applied to these tasks
through transfer learning. Recurrent networks that encompass more time steps, as well as deep
learning models that are capable of working on the native unstructured grid of the prediction
model (e.g., graph neural networks [50]), can also be investigated in this context. Furthermore,
the presented improvements would need to be studied when applied to ensembles with more
members, such as the operational 50-member ensemble system of the ECMWF. Lastly, while the
fields that are investigated in this paper (Z500 and T850) are important to explore the potential
capabilities of deep learning for this study, other fields that have more local dependence and
output three-dimensional representations of the atmosphere, should be investigated in future
work.

We encourage researchers to make use of the ERA5 and ENS10 datasets as well as our code,
to apply new deep learning methods and expand on our initial architectures, helping weather
forecast centres worldwide.
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(a) E10 (b) E5

(c) B5U5 (d) B5U5C

Figure 12: Global T850 CRPS plots for our models and the ENS10 forecast for January 24 2016
during the cold wave over East and South Asia (lower values are better).
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A. CRPS derivation
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with Φ being the error function. The CRPS is then defined as:

CRPS(F, y) =
∫∞
−∞

[F (x)− 1x>y]2dx , (A 1)

which can be written as: ∫y
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from (A 3). If we now place in the bounds and sum (A 4) and (A 5) up we arrive at:
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from inserting the y bounds, and
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from inserting the∞ bounds, resulting in:

∆P = y − µ= Ground_Truth− Prediction (A 8)
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