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Abstract—The advent of non-volatile memory (NVM) technologies has added an interesting nuance to the node level memory

hierarchy. With modern 100 Gb/s networks, the NVM tier of storage can often be slower than the high performance network in the

system; thus, a new challenge arises in the datacenter. Whereas prior efforts have studied the impacts of multiple sources targeting

one node (i.e., incast) and have studied multiple flows causing congestion in inter-switch links, it is now possible for a single flow from a

single source to overwhelm the bandwidth of a key portion of the memory hierarchy. This can subsequently spread to the switches and

lead to congestion trees in a flow-controlled network or excessive packet drops without flow control. In this work we describe protocols

which avoid overwhelming the receiver in the case of a source/sink rate mismatch. We design our protocols on top of Portals 4, which

enables us to make use of network offload. Our protocol yields up to 4x higher throughput in a 5k node Dragonfly topology for a

permutation traffic pattern in which only 1% of all nodes have a memory write-bandwidth limitation of 1/8th of the network bandwidth.

✦

Non-Volatile Memory (NVM) provides a new tier in the

traditional system memory and storage hierarchies. NVM provides

higher density, lower cost, and lower power than conventional

DRAM and it is dramatically higher in performance than tra-

ditional storage devices. For example, recently released Intel R©

OptaneTM Solid State Drives (SSDs) that utilize 3D XPointTM

memory technology provide 5 GB/s read and 3 GB/s write

bandwidth [1]. This makes NVM beneficial for a wide range of

applications that process large data sets [2], [3], [4], as well as

for more general usage models such as checkpointing [5] and IO

staging [6].

Given the breadth of usage models, NVM is being deployed in

a variety of environments ranging from conventional datacenters

to high performance computing (HPC) systems. In many deploy-

ments, high performance datacenter networks and HPC fabrics

have now reached 100 Gb/s speeds (12.5 GB/s). This includes

100 Gigabit Ethernet⋆, EDR InfiniBand⋆, and Intel Omni-PathTM

Fabric [7]. Most of these technologies have options to enable

remote direct memory access (RDMA) to user memory. At the

same time, a popular usage model is to transparently map NVM

into an application’s address space [8], [9]. This leverages existing

mechanisms within operating systems and the cache hierarchy to

hide latencies.

The combination of the transparent mapping of NVM and

the potential a bandwidth mismatch between the network and

memory in a receiving node poses a challenge to communication

middleware: two processes exchanging large messages cannot

know the effective end-to-end bandwidth a priori. The sending

process is likely to inject data at the network line rate: freshly

generated data would be sent from an address range cached in

DRAM. However, the receiver may sink the data into a buffer that

is not cached in DRAM. Thus, the receiver cannot sink the data at

the same rate. We investigate this problem in the context of HPC

systems and middleware; however, the concepts are more broadly

applicable.

Instead of dropping packets in such situations, which requires

expensive retransmission protocols, HPC networks often utilize

credits to pace senders and avoid packet loss. At each network
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Fig. 1. Impact of slow memory nodes on average network throughput.

hop, packets are only forwarded if there is sufficient buffer space

at the receiver to store them. Thus, once the buffers residing

in switches along the path of the transferred data are full, the

sender will be back-pressured, since it is out of credits. While

this mechanism prevents packet loss, it potentially impacts other

messages utilizing the same network, as buffer space is occupied

by the DRAM-to-NVM transfer and is not available for other

transfers that might be able to progress at a much faster rate.

The magnitude of this problem — the overall system slow-

down caused by slow nodes — depends on the network topol-

ogy and routing mechanisms. Unfortunately, networks that are

regarded as highly efficient in terms of cost per bandwidth,

such as Dragonfly networks [10], are most susceptible to this

problem. This is highlighted in Figure 1, which shows normalized

average throughput in a 5,256 node balanced Dragonfly network

with adaptive non-minimal routing for a permutation traffic pat-

tern [11]. In the experiment, we vary the percentage of nodes

that are bandwidth mismatched. With no slow nodes, a Dragonfly

sustains nearly 60% of the injection rate. However, with as little

as 0.1% of transfers into NVM (write bandwidth 2x and 8x less

than network bandwidth), there is a dramatic decrease in average

throughput. Variability shown in Figure 1 is generated by different
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random traffic permutations. With only one or two slow nodes in

the system (i.e. 0.02% or 0.04% out of 5k), their impact depends

on the random traffic permutation. With more slow nodes (e.g.,

0.1%), overall throughput is repeatably poor for all permutations.

The simplest approach to avoiding such congestion is for the

receiver to notify the sender of the maximum bandwidth that it

can sink for a given transfer. This is only applicable for transfers

that are larger than the maximum transmission unit (MTU) of the

network, since it is not useful to throttle the transmission rate of

a single packet. The sender then self-throttles according to this

information. We consider this approach impractical; it requires

either that a rate negotiation step be performed prior to each

transfer, or that the sender maintains a large amount of knowledge

about the state of every receiver. In addition, a rate negotiation

step can negatively impact performance for transfers not involving

NVM and may also impact the ability to utilize existing offloaded

transfer methods. Storing bandwidth information at the sender

is also infeasible, because this information is changing rapidly

because of caching and buffering. Mis-predicting even a small

number of times can lead to large performance penalties, as

illustrated in Figure 1.

Thus we focus our investigation on the communication middle-

ware. First, we explore if known congestion control mechanisms,

such as Forward and Backward Explicit Congestion Notification

(FECN/BECN) can be used to solve this problem. Our results

indicate that this congestion management strategy does not im-

prove performance in most cases. The FECN/BECN mechanism

is unable to distinguish between individual transfers. As a result,

it often slows down transfers that do not actively contribute to

congestion, but happen to share resources with transfers that do.

To discern individual transfers we move further up the pro-

tocol stack and focus on the middleware. While we evaluate our

proposed enhancements in the context of the de facto standard for

HPC — the Message Passing Interface [12] (MPI), we expect the

concepts to be applicable to other middleware layers. We present a

novel, receiver-driven protocol for the exchange of large messages

that can leverage network offloading capabilities and automatically

paces data transfers at the rate of the lowest bandwidth step in

the flow. Instead of transferring the bulk of the message in a

single transfer, the receiver uses Remote Direct Memory Access

(RDMA) read operations to transfer the data in smaller chunks,

whose size is chosen to avoid overwhelming network buffers,

even in the presence of a bandwidth mismatch. We implement

our solution using the Portals 4 [13] interface, which defines a

networking layer with a rich set of primitives capable of hardware

offload [14]. We take advantage of these primitives to maximize

offload of our data transfer protocol and demonstrate that chunking

incurs a minimal performance penalty for transfers that do not

suffer from bandwidth mismatch.

In the course of this work, we identified a critical flaw in

a previously published [15] MPI large message protocol imple-

mented on top of Portals 4. We describe this error and further

prove that completely offloading an MPI rendezvous protocol is

impossible with the current Portals API. This impossibility result

in turn provides hints towards possible changes in the Portals 4

specification that can improve its ability to better support this

important communication protocol.

1 BACKGROUND

While our approach is broadly applicable, in this work we describe

its implementation and evaluate it in the context of MPI middle-

ware implemented using the Portals 4 networking interface. In this

section, we provide background information on the relevant MPI

and Portals semantics.

1.1 Message Passing Interface

The Message Passing Interface (MPI) [12] defines an application

programming interface (API) for exchanging data between parallel

processes, referred to as MPI ranks. MPI supports a number of

communication models; however, its point-to-point messaging is

its most popular feature. This interface is comprised of blocking

and nonblocking send and receiver routines. When implementing

low level protocols for these functions, it is crucial to know their

exact semantics (including unusual use cases) as defined by the

MPI standard.

The send and receive functions take a tag, an MPI communica-

tor handle, and arguments describing the location, size, and layout

of the buffer from or to which data is transferred. The tag argument

is a user-selected integer that the application can use to identify the

message. A send operation must specify a tag; however, receive

operations may ignore the tag by supplying MPI_ANY_TAG. The

communicator argument defines the communication environment

that is used; in particular, messages sent on a given communicator

can only be received by receive operations performed on the

same communicator. A peer rank argument is also provided

indicating the process to which data is sent, or from which data

is received. A send operation must also specify a valid peer rank;

however a receive operation may ignore the peer rank by supplying

MPI_ANY_SOURCE. Nonblocking versions of these routines also

take a request handle, which can be used to check for completion

of the operation. Finally, receive operations return the size of the

message, the tag, and the source rank through a status object that is

supplied directly to blocking receive operations or retrieved after

completion for nonblocking receive operations.

MPI messages are matched by the receiver. A message

matches a given receive operation if the following three conditions

are met:

1) The operations occurred on the same communicator

2) The sender rank is equal to the rank specified at the

receiver or the receiver specified MPI_ANY_SOURCE

3) The sender’s tag is equal to the tag specified at the

receiver or the receiver specified MPI_ANY_TAG

MPI message matching is defined to be non-overtaking. Given

two processes, A and B, a receive operation posted by B that

can match multiple pending send operations performed by A must

match A’s oldest matching operation. Similarly, a send operation

performed by process A that can match multiple pending receive

operations performed by B must match B’s oldest matching

operation. Thus, even when MPI_ANY_TAG is used, MPI message

matching is deterministic. However, nondeterministic matching

can occur when MPI_ANY_SOURCE is used and messages from

multiple senders match the same receive operation.

Note that the message size is not part of the matching criteria.

If a message matches a receive and the receive buffer size is

smaller than the message, it is treated as an error. If the message

is smaller than the specified receive buffer, the receive buffer

is filled partially. The programmer can use the status handle to

check the size of the received message. As a consequence of these

semantics, the receiver does not know the message size at the time

the receive buffer is provided. Similarly, the receiver (i.e. MPI
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library) also does not know the tag argument if MPI_ANY_TAG

was used, nor do they know the source rank of the message

if MPI_ANY_SOURCE was used. This information gap has a

significant impact on protocol design for MPI messaging.

The fact that messages from the same source to the same

destination are not allowed to overtake each other might suggest

that sequence numbers can be used to match sends with receives;

however, as shown in Section 3.1, since MPI supports non-

blocking messages the sender and receiver can perform their

respective operations in different orders.

1.2 Portals 4

Portals offers two types of interfaces, matching and non-matching,

that support different receiver-side message processing models.

Both interfaces support RDMA put, get, and atomic operations

and allow the user to specify the target offset within the destination

memory region. Memory regions are exposed by appending list

entries to portal table entries. In the non-matching interface, the

first list entry on the given portal table entry is always selected,

whereas on the matching interface, a list walker traverses the list

and selects the first entry that matches the incoming message.

In the case of the matching interface, the initiator specifies a

64-bit match bits value that contains the user-supplied MPI tag and

an integer context ID that identifies the communicator. Receive

operations are implemented by appending match list entries to

the priority list of a given portal table entry. Match list entries

contain a peer ID (or PTL_RANK_ANY) and match bits similar

to those used by the sender. In addition, the match list entry also

specifies ignore bits, which can be used to ignore the tag portion

of the match bits. Before processing an incoming put, get, or

atomic operation, Portals must search the priority list to locate

a matching list entry. If a match is not found in the priority list,

an overflow list that is used for handling unexpected messages is

searched. These lists are searched in list order using the matching

rule, ((msg_bitsˆmatch_bits) & ˜ign_bits) == 0.

A match list entry can have a counter associated, which can be

configured to count different types of events, such as successful

transfers or transferred bytes. At the initiator, buffers used for put

or get must be registered before their usage. A registered buffer

is referenced by a memory descriptor. Similarly to a match list

entry, a memory descriptor can have a counter associated with

it that counts the number of communication operations or bytes

read/written. Counting events are meant to be lightweight events;

thus, they only carry a small amount of information. Alternatively,

full events can be used, which carry additional information such

as the size of the matched message, the match bits used by the

peer, the peer rank, and additional details. Full events are stored in

an event queue to be delivered to software and cannot be used to

trigger other operations; however, one operation can be configured

to deliver both a full event and a counting event.

One approach to offloading communications in Portals lever-

ages the counters attached to memory descriptors and match list

entries. Almost all of the Portals functions, such as put or get,

have a triggered variant that takes two additional arguments: a

counter handle and a threshold value. The triggered operation is

executed once the specified counter reaches (or is greater than)

the threshold. A high-performance implementation of the Portals

4 API can execute triggered operations without involvement of

the host CPU, and thereby guarantee asynchronous progress.

One important limitation of Portals 4 is that the arguments of

a triggered operation cannot be changed after the operation has

been posted.

A Portals match list entry can be configured to either match

and truncate a message that is larger than the targeted buffer, or

to mismatch and continue searching the match list. If a message

is truncated and generates a full event, this full event will carry

information about the total message length, as well as the amount

of data actually received.

2 RELATED WORK

Extensive research and implementation optimization has been

done for large MPI messages. In this work we will only discuss

RDMA based protocols. Rashti and Afsahi [16] propose a RDMA

based protocol that allows either the sender or the receiver to

initiate the transfer, depending on who arrives first. However, they

do not have mechanisms that would allow bandwidth metering.

Congestion control in HPC systems is widely available. In

InfiniBand (IB) [17], a switch detecting congestion sets a Forward

Explicit Congestion Notification (FECN) bit [18]. Upon receiving

this bit, the destination sends a backward ECN (BECN) bit to

the source, which will respond by temporarily throttling injection.

The problem with this approach is that it is reactive — it only

springs into action once congestion occurred. In addition, it takes

up to two round-trips to have any effect and it is probabilistic.

Once congestion is detected, the switch cannot know which

message transfer should be throttled, thus it randomly (based

on a configurable probability) selects packets to mark with the

FECN bit. Thus, in the presence of bandwidth imbalance it is

likely that flows which did not cause the congestion (but happen

to share a switch buffer with the flow at fault) are slowed down.

The shortcomings of IB congestion control are demonstrated by

Luo et al. [19], which shows that simply varying the number of

concurrent flows can lead to a 30% throughput difference for large

messages.

Barret et al. [15] proposed a fully offloaded rendezvous proto-

col implemented on top of Portals 4 triggered operations. They use

a single get operation to retrieve the data, so it is not adaptive to

bandwidth imbalance between the sender and receiver. In addition,

it does not conform to MPI semantics. The authors partially

acknowledge that — in the presence of MPI_ANY_SOURCE they

fall back to a different protocol that is not fully offloaded. Their

protocol attempts to deal with MPI_ANY_TAG by using sequence

numbers (between each pair of ranks). The sequence number is

subsequently used as match bits by the sender and the receiver.

However, this implies that the i-th send from rank a to rank b has

to match the i-th receive posted by rank b expecting a message

from rank a. As discussed in Section 1.1, the MPI standard

does not require processes to perform matching send and receive

operations in the same order. Thus, the proposed protocol does

not achieve the intended purpose across legal use models, and

designing an efficient, fully offloaded MPI rendezvous protocol

is still an open problem. Schneider et al. [20] proposed offloaded

protocols as well, however, the proposed protocols are intended to

implement collective operations, where MPI_ANY_SOURCE and

MPI_ANY_TAG can be avoided altogether and all send and receive

operations are known a priori.

MPI implementations such as Open MPI [21] and MPICH [22]

support Portals 4 as a back-end and thus implement protocols

for point-to-point messaging. The protocol [23] implemented by

MPICH is similar to ours — it is get based for large messages and
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initiated by the sender. However, it does not split large messages

into smaller transactions in order to account for bandwidth-

mismatch between sender and receiver. The protocol [24] im-

plemented by Open MPI is the same if one chooses to use the

eager/rendezvous version. Open MPI can be configured to use an

eager protocol for large messages as well [25].

3 RECEIVER-DRIVEN RENDEZVOUS PROTOCOL

We introduce a receiver-driven rendezvous protocol (RDRP) for

large message transfer that transparently throttles bandwidth mis-

matched transfers. The protocol is receiver-driven; that is, it

utilizes RDMA read operations (PtlGet in Portals 4) to transfer

most of the data. However, in contrast to previously described

protocols, we do not use a single RDMA read to transfer the

data. Instead, we break up the transfer into chunks and transfer

each chunk individually. The transfer of each chunk is scheduled

by the receiver to avoid overwhelming their available memory

bandwidth. When using a traditional network interface, this ap-

proach may degrade the potential for communication/computation

overlap or require additional service threads, as software interven-

tion would be required to initiate chunk transfers as bandwidth

becomes available. However, in Portals 4, we use triggered op-

erations to offload starting subsequent chunks as the transfer of

previous chunks is completed.

3.1 Impossibility of Full Rendezvous Offload in Portals

Ideally, the message transfer protocol should be fully offloaded;

i.e., all calls into the Portals interface occur in the send and receive

functions and asynchronous progress is thereafter provided by the

Portals 4 implementation. However, because of limitations in the

Portals 4 interface and the semantics of MPI messaging (even

for the case where we exclude the use of MPI_ANY_SOURCE),

full offload for MPI rendezvous protocols implemented on top of

Portals is not possible. Instead, a software bootstrapping step is

required, as described in Section 3.2.

We prove the impossibility of full offload in two steps. In the

first step, we establish that a fully offloaded protocol would require

the sender and receiver to choose the match bits used in each non-

blocking send/receive without exchanging any additional informa-

tion. In the second step, we show that no scheme exists which

assigns match bits to send/receives based on local information

only and adheres to MPI matching semantics.

Theorem 1. In a fully offloaded receiver-driven rendezvous pro-
tocol over Portals 4, the sender and receiver need to choose
match bits based on local information only.

A receiver-driven rendezvous protocol satisfying MPI seman-

tics must contain (at least) two messages. First, the sender must

indicate that the data is available, and also specify the total size of

the message, as well as the match bits used. The receiver cannot

have this information a priori since MPI allows the receiver to

specify a larger buffer as well as using MPI_ANY_TAG. We refer

to this initial message as ready-to-send (RTS) in the following.

After the receiver has performed the matching and has knowledge

that the sender’s data is available, it can issue a second message

to perform an RDMA read operation to receive the data. Other

protocols — where the sender transfers the whole message to the

receiver, or protocols that poll for data at the sender — are not

classified as rendezvous protocols.

When considering the expected message case, we can identify

several crucial points in time: at t1 the sender posts the send, at

Fig. 2. Sequence of operations performed by sender and receiver during
a rendezvous protocol message transfer.

t2 the receiver posts the matching receive. We assume this receive

is non-blocking. At t3 the receive finishes. The RTS arrives at

the receiver at t4, the get starts at t5. We denote the point at

which the get operation is offloaded at tx. We show a graphical

representation of this in Figure 2. We use the notation a → b to

express a has to happen before b.

We require t3 → t4 because we restrict our discussion to

expected messages and non-blocking receives. Thus the receive

must be able to return independently of the sender. Also we

require that tx → t3, otherwise we do not have full offload

and asynchronous progress; all calls into the Portals API (except

checking for completion) must be made before t3. If we obtain the

match bits to use for the get from the RTS message t4 → tx which

leads to a cycle. Since we cannot modify other edges constituting

this cycle, we need to remove t4 → tx, by choosing the match

bits without involving the sender. �

It was suggested previously [15] to utilize sequence numbers

for this purpose. However:

Theorem 2. Any scheme in which the sender and receiver select
match bits independently from each other, based on local
information only, cannot implement MPI semantics.

The sender has no information about the ordering or tags

of receives the receiver will post; thus, the sender’s sequence

of match list entries posted for RDMA read by the receiver is

invariant of what the receiver does. Thus, for the purpose of

analysis we can assume the sends are posted first without loss

of generality. Similarly, the receiver also has no information about

the order in which send operations are performed by the sender

and in the case of MPI_ANY_TAG, also has no knowledge of the

tag that will be used by the sender. This suggests that neither the

order in which operations are performed, nor the tag can be used

by sender and receiver to independently select match bits.

We construct an example with two sends, each using a different

tag, t1 and t2, which will lead to two match list entries, each

consisting of (potentially different) match bits and ignore bits. On

the receiver side, there are now seven ways to post receives (∗
represents MPI_ANY_TAG), as shown in Table 3.1. We indicate

the matching behavior that is required by MPI next to each case,

sx ↔ ry means the x-th send matches the y-th receive. Note

that there is one case where the second receive does not match

anything, which can result in deadlock in the application.

For each of these receives, the match bits can be chosen

according to the following criteria: tag ∈ {t1, t2, ∗}× position

∈ {1, 2}× tag-before ∈ {none, t1, t2, ∗}, where tag-before

denotes which tag was seen before the current recv. To reduce the

size of the search space from the full 64-bit match bits available in

Portals, we encode the matching criteria as a 9-bit match bit string

using a bit position for each sub-state value, allowing ignore bits to

mask any subspace. Since we now determined the match bits the
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TABLE 1
Possible send and receive orderings for two messages transmitted with

tags t1 and t2. Receive operations with tag ∗ can match any tag.

Sender Receiver Matching
recv(t1); recv(t2) s1↔r1; s2↔r2
recv(t2); recv(t1) s1↔r2; s2↔r1
recv(∗); recv(∗) s1↔r1; s2↔r2

send(t1); send(t2) recv(∗); recv(t2) s1↔r1; s2↔r2
recv(∗); recv(t1) s1↔r1; no match
recv(t1); recv(∗) s1↔r1; s2↔r2
recv(t2); recv(∗) s1↔r1; s2↔r2

receiver will use to fetch data during the RDMA read operation,

we can search all possible combinations for the match and ignore

bits in both sends for a combination that obeys MPI matching and

non-overtaking semantics. A search of the resulting 36-bit search

space yields no viable combination of match/ignore bits. �

3.2 Chunked Receiver-Driven Rendezvous Protocol

We have established that a fully offloaded receiver driven protocol

cannot be implemented over Portals 4 because current triggered

operations semantics force sender and receiver to choose match

bits independently. We now present the design of our protocol,

which uses full events to retrieve match bits that are chosen by the

sender prior to posting triggered get operations.

The timing diagram in Figure 3 shows the flow of messages

in the unexpected and expected cases. The sender sends the first

chunk of the message to the receiver, this chunk includes header

data (match bits, message size, and sender rank). Upon receiving

the first message and matching it against local receives, once a

matching receive is found, the receiver posts a series of gets of a

limited size, ensuring there are no more than c outstanding gets.

Doing so ensures that the network is not flooded with gets that

cannot complete due to insufficient write bandwidth at the receiver

(the chunksize and c need to be chosen according to the buffer

space available in switches, we show their impact on performance

in Section 4).

3.3 Implementation

In the following we describe the implementation of non-blocking

send, receive and test functions that realize the protocol described

above. Blocking versions can easily be implemented using wrap-

per functions that first execute the non-blocking functions, then

wait until they complete before returning.

Non-Blocking Send: A send operation will perform a PtlPut

on the matching interface using a concatenation of tag and com-

municator id as match bits. A sender-selected matching nonce can

also be incorporated into the match bits to distinguish messages

with identical matching criteria, allowing them to be retrieved con-

currently. These nonce bits must uniquely distinguish a pending

send operation from other pending sends with identical matching

criteria; thus, a small number of bits is sufficient. A special nonce

value can be reserved to inform the receiver to fall back to an

in-order retrieval protocol when all nonce bit values are already in

use. If nonce bits numbers are used, the corresponding bits must

be masked by ignore bits at the receiver.

It is important that the send message includes the total size of

the message in its header (this is done automatically by Portals).

The sender performs the initial Put with the full message size,

but posts a truncating match list entry (ME) at the receiver side

to truncate to receive only the first chunk; a high-quality Portals

implementation will ensure no excess data is transmitted. Before

the put is sent, MEs for the subsequent gets (using the same match

bits) need to be set up. The sender sets the ignore bits to zero for

all MEs posted by the sender. If the message size is below the

eager/rendezvous threshold, the sender does not post any MEs,

since there will be no subsequent gets. In this case, the state of the

request associated with the send is set to done once the put has

completed. If the message size is larger than the eager threshold,

the sender appends the ME with a counter attached configured

to count successful gets. The state of the send request is set to

send_wait; in a subsequent wait call the sender compares the

counter value to the expected value and sets the request to done

when they match. This comparison and local update can also be

performed using a triggered operation that targets local memory.

Non-Blocking Receive: The implementation of the receive is

more complex; upon initializing MPI each rank appends a number

of truncating MEs to its overflow list. These MEs will receive

the first chunk of unexpected messages into bounce buffers.

Furthermore, if we attempt to append an ME into the priority list,

Portals will first search the unexpected headers associated with

this overflow list for an ME that has already matched a message

with compatible match bits. Thus, when we enter receive, we

construct an appropriate ME (using the ignore bits to mask out

the part of the match bits corresponding to nonce bits and the tag

if MPI_ANY_TAG is used, and setting peer to PTL_RANK_ANY

in case of MPI_ANY_SOURCE).

Next, the receiver attempts to append the ME to the priority

list. If the append matches an unexpected message, the receiver

captures a full event, indicating the match bits, message size, and

overflow list entry that was used to buffer the eager data chunk.

Thus we copy the first chunk of the message from the bounce

buffer into the receive buffer and post the get sequence. The

state of the receive request is set to wait_gets until all chunk

gets have completed. If appending the ME does not match an

unexpected message, the receiver knows that it is in the expected

message case. At some point an incoming message will match

the posted ME, which will also generate a full event, containing

the match bits, total message size, and local location of the data.

We cannot wait for this event in the receive itself, thus we set

the request state to wait_match and poll the event queue for

the match event in the MPI progress engine (e.g., in a call to the

MPI_Test function).

Progress Engine: In the MPI progress engine we first check the

state of the tested request: if it is send_wait, we check if the

successful number of gets has reached the expected value (based

on the message size and chunk size). If it has, we set the request

state to done. If the request is in state wait_match, we check

if there is a put event in the event queue, if an event is present, we

copy the first chunk of the message from the bounce buffer into

the receive buffer, retrieve the match bits and message size from

the event. If the message size is below the rendezvous threshold

we set the request state to done, otherwise we post a sequence

of gets and set the request state to wait_gets. A request in

the wait_gets state is progressed by checking if all gets have

completed (the memory descriptor used as a target for the get has

a counter attached to it), if this is the case the request state is set

to done.

Get Sequence: The receiver’s chunk gets utilize triggered get

operations that trigger on a counter associated with the memory
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Fig. 3. Timing diagram of the proposed protocol for large MPI messages, for (left) unexpected and (right) expected message cases.

descriptor of the destination buffer. The first c gets are configured

to trigger on a value of zero. Each subsequent get c+i is triggered

by a counter value of i or more. The value c is thus equivalent to

a credit, and there can be no more than c outstanding gets. A c

value greater than 1 allows multiple chunk transfers to pipeline

and hides the latency of initiating each chunk transfer.

4 EVALUATION

Since we do not have access to a hardware implementation of

Portals 4, or a large machine with a fat network and NVRAM,

we used simulation and emulation to evaluate our protocol. We

used Booksim [26] to simulate a cluster with a varying number of

slow receivers, and we also implemented the protocol described

in Section 3 on top of the Portals 4 reference implementation,

running on a dedicated CPU core to simulate hardware offload,

similarly to other works evaluating Portals based protocols [20].

4.1 Simulations

We simulate a Dragonfly topology with 5,256 nodes, configured

as 73 groups of 72 nodes in Booksim. The simulations use an

input queued router model with 2.4x internal speedup and buffer

sizes of 256 flits per virtual channel. Latency of a local link is

set to 2 cycles, and global link latency is 10 cycles. We use

Progressive Adaptive Routing [10] with minimal bias of 2x and

threshold of 30 flits. The size of a packet is limited to 16 flits,

and larger messages are split into 16 flit MTUs. Relative ratios of

buffer size, link latency and packet size are representative of real

networks, the chosen absolute values are small to keep simulation

times manageable. The simulations run until convergence, i.e.,

until variation in throughput between successive iterations is less

than 5%.

The simulated traffic pattern is a static permutation pattern,

where node A sends all of its traffic to a randomly chosen

node B, which sends all of its traffic back to A (cf. Effective

Bisection Bandwidth metric used in [27], [28]). This permutation

pattern is representative of the large message workload (e.g.,

check-pointing) that is particularly susceptible to the slow node

vulnerability.

Results in Figure 1 show the baseline throughput of 0.59

without any slow nodes. However, even with a very small number

of nodes sinking traffic at a slower rate (2x slower, or 8x slower),

the average network throughput drops dramatically. The drop is

the result of the adaptive non-minimal routing algorithm spreading

the congestion tree across the entire network in the attempt to

route around the congestion caused by the slow nodes. Relying on

adaptive routing in this case only makes the situation worse, and

instead we need to throttle the injection of the traffic targeting the

slow nodes.

A known mechanism that detects and throttles the congestion

causing traffic is the explicit congestion notification mechanism,

also known as FECN/BECN mechanism [29]. In this mechanism,

when congestion is detected in a switch, the packet is marked with

the FECN (Forward Explicit Congestion Notification) bit with

some probability, depending on the configured marking rate and

the level of congestion. When the target node notices a FECN bit

set on a packet from node A, it sets the BECN (Backward Explicit

Congestion Notification) bit on a packet that it sends back to the

same node A (e.g., on the acknowledgment packet). The original

node A receives this packet with a BECN bit set, and as a result

it throttles its injection. The intent is to throttle the nodes that

contribute to congestion in the switches in order to alleviate that

congestion.

We implemented the FECN/BECN mechanism in Booksim.

Occupancy of the output link’s remote queue is used as the

congestion metric. Packets can only be marked with the FECN

bit if the remote queue is more than 50% full. The probability

of marking a packet linearly increases from 0 to 1, as the remote

queue occupancy increases from 50% to 100% full. We do not

send acknowledgment packets, but instead for every received

packet with a FECN bit set, we set the BECN bit on one of the

packets that is sent back. This works due to the pairwise nature

of our permutation traffic. When a node receives a packet with

the BECN bit set, it increments a counter by a value of 8. If

the received packet does not have the BECN bit set, the same

counter is decremented by a value of 1. This BECN counter is

limited to be between 0 and 20, and it is used to determine if,

and by how much, to throttle the traffic injection. Injection is

throttled linearly with the BECN counter, with no throttling when

the counter is at 0, and maximum throttling when the counter is

at its maximum value. To avoid converging into a state where

nobody sends anything, the BECN counter is also automatically

decremented by one every 4 cycles. The counter change values
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were tuned by trial and error, and while our parameters might not

be optimal, they are reasonable for our network configuration. We

also present simulation results for more aggressive FECN/BECN

parameters with 2x higher FECN marking rate probability, and

auto decrementing the BECN counter only every 50 cycles.

The results of the FECN/BECN simulation are shown in

Figure 4. We show normalized throughput of a permutation traffic

pattern, depending on the number of slow receivers. Throughput

is shown for the case of slow nodes sinking traffic at 2x (left),

4x (middle), and 8x (right) lower rate than injection bandwidth.

We compare the baseline with two sets of parameters for the

FECN/BECN mechanism, the default one and a more aggressive

version with higher FECN marking rate. The FECN/BECN mech-

anism is capable of improving the baseline throughput only in the

2x slowdown case, and only for a small number of slow receivers.

However, even that limited improvement comes with a penalty in

the well-behaved case with no slow receivers, particularly with

the aggressive parameter set where the throughput is reduced by

40% in the well-behaved scenario. With higher slowdown of slow

receivers (e.g., 8x slowdown), the FECN/BECN mechanism is not

only ineffective, but it additionally reduces throughput by up to

50%.

Our RDRP protocol was also implemented in Booksim. In our

protocol, each node can only have a limited number of outstanding

get requests. To simplify the simulation, instead of generating get

requests, we use the original static permutation traffic pattern but
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Fig. 6. A comparison between our RDRP protocol and the Portals 4
back-end in MPICH.

we limit the number of outstanding packets for each node. Each

node maintains a number of credits, where each credit corresponds

to one outstanding packet. As the packets reach their destination,

the credits are returned to the sender explicitly by piggy-backing

them onto regular traffic. This approach simplifies the simulation,

while maintaining the functionality and the round-trip latency

nature of get requests.

The results of simulations with our RDRP protocol are shown

in Figure 5. We plot normalized throughput versus the maximum

number of parallel transfers (i.e. maximum number of concurrent

get requests for each node). Each get request transfers 16 flits of

data. If the number of parallel transfers is too small, bandwidth

is wasted waiting for get-requests/acks, if too many transfers are

allowed in parallel, congestion occurs. For the case with 8x slower

receivers, 30 outstanding transfers gives the best performance.

Using this value will give a performance improvement over the

best possible configuration using FECN/BECN and a single big

transfer of 1.7x, 3.3x, and 4.3x for 2x, 4x, and 8x slower nodes.

4.2 Implementation in Portals

We implemented our protocol using the Portals 4 reference im-

plementation. We compared our implementation to MPICH 3.2,

which also has a Portals 4 transport. Figure 6 shows the result

of a simple ping-pong benchmark, which was repeated 25 times

for each reported data size, the error bars show the 25th and

75th percentile of the data, the median is shown as well. The
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test system used consists of Intel E5-2699v3 Xeons, clocked

at 2.30GHz. All nodes are connected to a single switch, using

Mellanox Technologies MT27500 InfiniBand cards. This system

does not contain NVRAM, we perform this experiment only to

verify that using multiple small gets (we use 128k sized gets

in this experiment) does not degrade performance excessively

for transfers that do not target slower elements of the memory

hierarchy. We can see that we almost achieve MPICHs point-to-

point performance for large messages, we are slightly faster for

small messages, since our prototype implementation has fewer

overhead, i.e., only supports one transport layer, no argument

checking, etc.

5 CONCLUSIONS

We have shown that a small number of nodes sinking traffic into

a slow tier of the receiver’s memory hierarchy can lead to conges-

tion and widespread network performance impacts. We proposed

a receiver-driven, bandwidth oblivious rendezvous protocol that

transparently adapts to bandwidth mismatch and demonstrated

that this approach can successfully prevent congestion caused by

bandwidth mismatch. We demonstrate our approach in the context

of MPI, the de facto standard for HPC messaging. MPI presents

significant challenges because of its strict message ordering and

matching semantics; thus, while our evaluation has focused on

the HPC domain, we are confident that our approach can also

benefit other communication models. We compared our high-

level solution to different configurations of the FECN/BECN

congestion management mechanism and demonstrate much better

performance. We show that the overhead (in the absence of slow

receivers) of our adaptive protocol are negligible compared to the

non-adaptive protocol implemented in MPICH.

⋆Other names and brands may be claimed as the property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Soft-
ware and workloads used in performance tests may have been optimized for performance
only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with
other products. For more information go to http://www.intel.com/performance.
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