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Abstract

Atomic operations (atomics) such as Compare-and-Swap or Fetch-
and-Add are ubiquitous in parallel programming for multi- and many-
core architectures. Yet, performance tradeoffs between these opera-
tions and various characteristics of such systems, such as the structure
of caches, are unclear and have not been thoroughly analyzed. In this
work we establish an evaluation methodology, develop a performance
model, and present a set of detailed benchmarks for latency and band-
width of different atomics. We consider various state-of-the-art x86
architectures, including Intel Haswell, Ivy Bridge, and AMD Bull-
dozer. The results illustrate surprising performance relationships be-
tween the considered atomics and architectural properties such as the
coherence state of the accessed cache lines. For example, we show that
the hardware implementation of atomics prevents any instruction-level
parallelism even if there are no dependencies between the issued oper-
ations. Our insights unveil undocumented performance properties of
the tested systems, enable more effective parallel programming, and
accelerate data processing on various architectures deployed in both
off-the-shelf machines and large compute systems.
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1 Introduction

Multi- and manycore architectures are established in both commodity off-
the-shelf desktop and server computers, as well as large-scale datacenters and
supercomputers. Example designs include Intel Haswell with up to 18 cores
on a chip installed in high-end servers [4], or AMD Bulldozer with 32 cores
per node deployed in Cray XE6 machines [26]. Moreover, the number of cores
on a chip is growing steadily and CPUs with hundreds and even thousands
of cores are predicted to be manufactured in the foreseeable future [5]. The
common feature of all these architectures is the increasing complexity of
the memory subsystems characterized by multiple cache levels with different
inclusion policies, various cache coherence protocols, and different on-chip
network topologies connecting the cores and the caches [9].

Virtually all such architectures provide atomic operations for synchro-
nization in parallel codes. Many of them (e.g., Test-and-Set) can be used
to implement locks [11]. Others, e.g., Fetch-and-Add and Compare-and-Swap,
enable constructing lock-free and wait-free algorithms and data structures
that have stronger progress guarantees than lock-based codes [11].

Despite their importance and widespread utilization, the performance of
atomic operations has not been thoroughly analyzed so far. For example,
according to the common view, Compare-and-Swap is slower than Fetch-and-
Add [21]. However, it was only shown that the semantics of Compare-and-
Swap introduce the notion of “wasted work” resulting in lower performance
of some codes [10, 21]. Yet, to the best of our knowledge, no detailed model
and benchmarks analyze the latency or bandwidth of the execution of the ac-
tual operations. Even more importantly, the performance tradeoffs between
atomics and various characteristics of multi- and manycore systems (cache
coherency protocol, number of memory hierarchy levels, etc.) have also not
been thoroughly studied so far. For example, a single node in popular Cray
XE6 cabinets provides two AMD Bulldozer sockets connected with a Hyper-
Transport (HT) link, each CPU consists of two dies, and each die provides
one L3 cache and four L2 caches shared by eight cores [26]. It is unclear
what the performance of different atomics is on such a system, what is the
influence of the cache coherency state of the accessed cache line, how does the
latency and bandwidth scale with the growing number of concurrent threads,
what is the performance impact of mechanisms such as adjacent cache line
prefetchers, and whether optimizations such as intruction-level parallelism
are available for atomics.

In this work, we introduce a performance model and establish a method-
ology for benchmarking atomics. Then, we use it to analyze the latency
and bandwidth of the most popular atomics (Compare-and-Swap, Fetch-and-
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Add, Swap). Our results unveil undocumented architectural properties of the
tested systems and can be used to design more performant codes in areas
such as graph analytics or concurrent data structures. The key contributions
of this work are:

• We introduce a performance model for the latency and bandwidth of
atomics. The model takes into account different cache coherency states
and the structure of the caching hierarchy.

• We establish a methodology for benchmarking atomic operations tar-
geting state-of-the-art multi- and manycore architectures with deep
memory hierarchies.

• We conduct a detailed performance analysis of Compare-and-Swap,
Fetch-and-Add, and Swap. We use the analysis to validate the model, to
illustrate undocumented architectural properties of the tested systems,
and to suggest several improvements in the hardware implementation
of respective atomics.
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2 Background

We now present a general approach for benchmarking memory accesses (§ 2.1);
we will later use and extend it to measure the performance of various syn-
chronization mechanisms. Then, we present the evaluated architectures and
synchronization mechanisms (§ 2.2, § 2.3). We finish with a discussion on
the related cache coherency protocols (§ 2.4).

2.1 Benchmarking Memory Accesses

In our analysis we use and extend the X86membench infrastructure for bench-
marking memory accesses [9], as well as the performance analysis tool Ben-
chIT [23]. We use both the latency and the bandwidth benchmarks. Each
benchmark consists of the following phases:

Preparation: A buffer of the selected size is allocated and filled with the data
specific to each benchmark (see more details in § 3). The TLB is warmed
up and the data is placed in caches in the selected coherency state.

Synchronization & coordination: This phase makes sure that all threads
finished the preparation phase and it defines a future moment in time when
all the threads will start the measurement phase.

Measurement: A time stamp t start is taken by each participating thread,
a measurement is done, and the other time stamp t end is taken.

Result collection: The timestamps of all participating cores are commu-
nicated and the total time of execution is calculated as max(t end) -
min(t start).

Repetition: The previous phases are repeated multiple times for each ana-
lyzed buffer size. The fastest execution per buffer size is retained since any
interference or overhead increases the execution time and thus the fastest
execution is the least affected by interference or overhead [9].
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2.2 Evaluated Architectures and Systems

In the analysis, we consider the following architectures and systems (consult
Figure 1 and Table 1 for more details):

Haswell is an Intel state-of-the-art microarchitecture that offers sophisti-
cated mechanisms such as hardware transactional memory (HTM) [28]. In
our benchmarks we use a quadcore Haswell chip included in a commodity
off-the-shelf server machine; see Figure 1c. The L1 and L2 caches are pri-
vate to each core and the L3 inclusive cache is shared by all the cores. We
select this configuration to analyze a simple commodity multicore system.

Ivy Bridge is an Intel microarchitecture used in various supercomputing sys-
tems such as Tianhe-2 [16] or NASA Pleiades [27]. Here, we evaluate an Ivy
Bridge configuration installed in the Euler computer cluster that contains
two 12-core CPUs connected with Quick Path Interconnect (QPI). The L1
and L2 caches are private to each core and the L3 inclusive cache is shared
by all the cores. We use this configuration to analyze the performance
characteristics of deep memory hierarchies with three cache levels.

Bulldozer is an AMD microarchitecture designed to improve power efficiency
for HPC applications [3]. Here, we evaluate a configuration included in
the Cray XE6 Monte Rosa supercomputer [26]; see Figure 1a. A compute
node contains two 16-core AMD Bulldozer Interlagos CPUs. Each CPU
contains two 8-core dies that are connected with HyperTransport [24]. We
selected this system to unveil differences between Intel and AMD systems
and to analyze the effects coming from a particularly complex design with
deep memory hierarchies with three cache levels, multiple CPUs, shared
L2 caches, and multiple dies per CPU.

An important difference between the Intel and AMD systems is the struc-
ture of L3; we will later show that it significantly influences the perfor-
mance of atomics. Ivy Bridge and Haswell deploy the inclusive L3 cache
where each cache entry contains a core valid bit for each core on the CPU.
If this bit is set then the related core may have the respective cache line
in its L1 or L2, possibly in a dirty state. If none of the core valid bits is
set (or if the cache line is not present in L3) then the respective cache line
is also not present in L1 and L2.

On the contrary, the L3 cache in AMD Bulldozer is neither exclusive nor
inclusive: the presence of a cache line in L2 does not determine its pres-
ence in higher level caches. This will have a detrimental effect on the
performance of atomics as we will illustrate in Section 5.
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(a) AMD Bulldozer.

(b) Intel Ivy Bridge.

(c) Intel Haswell.

Figure 1: (§ 2.2) The illustration of the analyzed architectures.
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Architecture: Haswell Ivy Bridge Bulldozer
P

ro
ce

ss
or

Manufacturer Intel Intel AMD
CPU model Core i7-4770 Xeon E5-2697v2 Opteron 6272
Cores/CPU 4 12 16(2x8)
CPUs 1 2 2
Design SMP ccNUMA ccNUMA
Core frequency 3400 MHz 2700 MHz 2100 MHz
Interconnect - 2x QPI (8.0 GT/s) 4x HT 3.1

(6.4 GT/s)

C
a

ch
es

Cache line size 64B 64B 64B
L1 cache 32KB per core 32KB per core 16KB per core
L1 Update policy write back write back write through
L2 cache 256KB per core 256KB per core 2MB per 2 cores
L2 Update policy write back write back write back
L2 incl/excl: neither neither neither
L3 cache 8MB fully shared 30MB fully shared 8MB per 8 cores
L3 Update policy write back write back write back
L3 incl/excl: inclusive* inclusive* non-inclusive
CC protocol MESIF MESIF MOESI

Memory

Main memory 8GB 64GB 32GB
Memory frequency 1600 MHz 1866 MHz 1600 MHz
memory channels/CPU 1x dual channel 2x dual channel 2x dual channel
Huge page size 2MB 2MB 2MB

Others
Linux kernel used 3.14-1 2.6.32 2.6.320
Compiler gcc 4.9.1 gcc 4.8.2 gcc 4.7.2

Assembly
instructions

CAS Cmpxchg Cmpxchg Cmpxchg
FAD Xadd Xadd Xadd
SWP Xchg Xchg Xchg

Table 1: The comparison of the tested systems. We denote the cache co-
herency protocol as CC protocol. “*” indicates that the shared inclusive
L3 cache in Intel Haswell and Ivy Bridge contains a core valid bit for each
core on the CPU that indicates whether a respective core may contain a
given cache line in its private higher level cache (the bit is set) or whether it
certainly does not contain this cache line (the bit is zeroed).

2.3 Evaluated Synchronization Mechanisms

We now present the evaluated synchronization mechanisms:

Compare-and-Swap(*mem, reg1, reg2) (CAS): it loads the value stored
in *mem into reg1. If the original value in reg1 is equal to *mem then it
writes reg2 into *mem. We select CAS because it is utilized in numerous
lock-free and wait-free data structures and algorithms [11] as well as various
graph processing codes such Graph500 [22].

Fetch-and-Add(*mem, reg) (FAD): it fetches the value from a memory
location *mem into a register reg and adds the previous value from reg to
*mem. We selected FAD because of its importance for implementing shared
counters and various data structures [21], and to analyze the performance
differences between FAD and CAS.
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Swap(*mem, reg) (SWP): it swaps the values in a memory location *mem
and a register reg. SWP can be used to implement simple spinlocks [11].

Here, we focus on benchmarking the atomic assembly operations and we
thus assume that each atomic fetches only one operand from the memory
subsystem. The remaining operands are assumed to be precomputed and
stored in respective registers. Our strategy reflects many parallel codes and
data structures where the arguments of the atomic function calls are con-
stants or precomputed values; for example BFS traversals [22] or distributed
hashtables [7].

The analyzed atomics have different consensus numbers, where consensus
is the problem of agreeing on one value in the presence of many parties [11].
The consensus number of an operation op, denoted as CN(op), is the maxi-
mum number of threads that can reach consensus with a wait-free algorithm
that only uses reads, writes, and op. In this evaluation, we select both the
operations that have smaller consensus numbers (CN(SWP) = CN(FAD) =
2) and the operation with a high consensus number (CN(CAS) = ∞) to
analyze whether it has any performance implications.

2.4 Related Cache Coherency Protocols

Here, we briefly discuss related cache coherency protocols.

MESI: This is the most common cache coherence protocol for write back
caches. It tries to minimize the number of required memory accesses. Each
cache line is in one of the following states: Modified, Exclusive, Shared,
Invalid. A Modified cache line is dirty ; it differs from the value in main
memory and any other cache. Before allowing another core to read this
cache line, it must be written back to memory. A Exclusive cache line is
only present in this cache and is clean meaning the data is identical to that
in memory. A Shared cache line might be present in many caches and is
clean. A Invalid cache line contains data which is inconsistent with the most
recent write and is thus useless.

MESIF: When a shared cache line is requested by a core, in the MESI proto-
col this request might either be serviced by main memory or all the caches
holding the data in Shared state. The MESIF protocol prevents such re-
dundant data transfers by adding the Forward state which indicates that
a cache should act as a designated responder for any requests for the given
line.
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MOESI: When a modified cache line is read by another core it needs to be
written back to memory before it transitions into the shared state in both
caches. The MOESI protocol prevents this write-back by introducing the
Owned state which allows a dirty cache line to be shared. A cache line can
only be owned by one cache and others might have that line in the shared
state. When a cache line in owned state is written it must be broadcast to
all caches containing it.
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3 Design of Benchmarks

Measuring the performance of atomics is non-trivial due to the growing com-
plexity of deep memory hierarchies, various types of workloads with different
caching patterns, and the richness of hardware mechanisms such as cache
prefetchers that may interfere with the performance results [9]. We now
present the methodology that overcomes these challenges. It will enable
gathering results that we will use to improve the performance of data analyt-
ics and to assess various types of CPU designs to indicate which one brings
the highest speedups in relevant workloads. We measure both the bandwidth
and the latency:

Latency benchmarks: Here, pointer chasing is used to obtain the average
latency of an atomic. This benchmark targets latency-constrained codes
such as shared counters or synchronization variables used in parallel data
structures.

Bandwidth benchmarks: Here, all the memory cells of a given buffer are
accessed sequentially and the bandwidth is measured. While this measure-
ment targets some bandwidth-intensive codes such as graph traversals [22],
it also shows that atomics provided by the tested architectures do not en-
able any instruction-level parallelism (ILP) even if there are no dependencies
between issued operations.

3.1 Relevant Parameters

The performance of atomics depends on many parameters. The most impor-
tant ones are as follows:

Cache coherency state (CC-state): we use cache lines in various CC states
to analyze the impact of the CC protocol on the performance of atomics.
We consider the states of the relevant cache coherency protocols (M,E,S,O,I)
but we skip F because our testbed configuration does not allow evaluating
its influence.

Cache proximity (cache-p): we place the accessed cache line in different
caches to evaluate the impact of deep cache hierarchies in state-of-the-art
architectures. The data accessed by a core can be in its local cache or in
another core’s cache that is located: on the same die, on a different die but
on the same CPU, and on a different CPU.

Memory proximity (memory-p): we use memories with different proximi-
ties to cover today’s NUMA memory hierarchies. We will refer to a memory
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that can be accessed by a core without using a processor-processor inter-
connection as the local memory and anything else as the remote memory.

Thread count (threads): we vary the number of threads accessing the same
cache line to illustrate the performance overheads which occur due to con-
tention and to find out whether the growing numbers of cores can be directly
translated to the higher performance of various types of codes.

Operand size (size): finally, we evaluate operations that modify operands
of various sizes to discover the most advantageous size to be used for various
use-cases such as shared counters or synchronization variables.

3.2 Structure of Benchmarks

The general structure of the benchmarks is similar to the structure described
in § 2.1 with the difference of measuring atomic instructions instead of reads
or writes. CAS however is a special case which needs further adjustments.
When the old value in the register (reg1) does not correspond to the value
in memory (*mem), CAS fails and no memory location will be modified.
However, when the old value reg1 is equal to *mem, CAS succeeds and there
will be a write to memory. We investigate if there is a difference in latency
and bandwidth of those two cases.

CAS: Bandwidth Benchmarks In the bandwidth benchmarks for suc-
cessful CAS, we fill the buffer with zeros and use zero as the old value (reg1).
For unsuccessful CAS, we fill the buffer with the increasing byte values. When
a CAS fails, reg1 is updated to *mem. This value will differ from the next
one in the buffer, ensuring that all the issued CAS operations will fail.

CAS: Latency Benchmarks We measure the latency of the unsuccessful
CAS by filling the buffer with the increasing values and comparing each new
fetched value with the previous one. This ensures that each CAS fails. For
CAS to be successful it is necessary to know *mem in advance. With the
pseudo random addresses this cannot be achieved without some additional
memory accesses which would introduce unacceptable interference to the
benchmark. Instead we decided on another approach to create a pseudo ran-
dom accesses pattern where instructions are not executed in parallel. Here,
we prepare the buffer to contain only zero values, split it into equally sized
chunks and perform a predefined access pattern using the beginning of each
chunk as the base address. If we benchmarked reads with this approach they
would be executed in parallel because there is no data dependency between
the reads. For CAS however this is not a problem because CAS effects the
register containing the oldvalue and that value effects the outcome of the
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next operation so there is a data dependency and the instructions can not
be executed in parallel.

CAS vs FAD vs SWP: Instruction Level Parallelism On all the tested
systems the assembly instruction for CAS does not allow the programmer to
define the location of the first argument to CAS which is written by the in-
struction. For this reason the CPU cannot execute multiple CAS instructions
simultaneously because the result of one CAS affects the outcome of the next
CAS. FAD and SWP however have only one explicit argument. Our band-
width benchmarks avoid data dependencies between the instructions to allow
parallel execution of FAD and SWP. We will later illustrate that the hardware
implementation of each atomic still enforces fully serialized execution.

3.3 Interference from Hardware Mechanisms

We identified several hardware mechanisms that could introduce significant
noise in the benchmarks; we turned them off where possible. First, TLB
misses have a significant effect on the performance. We avoid them by using
hugepages (if available) and filling the TLB with the proper entries prior to
executing the measurements. Second, there exist several mechanisms that
affect the clock frequency; these are Turbo Boost, Enhanced Intel SpeedStep
(EIST), and CPU C-states. By turning those off, the frequency of each core
remains at the frequency specified in Table 1 at all times. Third, we turned off
various prefetchers (Hardware Prefetcher, Adjecent Cache Line Prefetch) to
prevent the CPU from prefetching cache lines and ultimately introducing false
speedups to the latency benchmarks. In some of the systems (Ivy Bridge,
Bulldozer) we could not influence the hardware configuration and we avoided
prefetching by applying sparser access patterns. Finally, by switching off
HyperThreading we make sure that any two cores visible to the programmer
are also two physical cores.
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4 Performance Model

We now introduce our performance model. We concretize the model by as-
suming that we model caching architectures that match the considered Intel
and AMD systems (cf. § 2.2 and Table 1). We will later (Section 5) vali-
date the model and explain several differences between the predictions and
the data that illustrate interesting architectural properties of the considered
systems.

4.1 Latency

Each atomic fetches and modifies a given cache line (“read-modify-write”).
We predict that an atomic first issues a read for ownership in order to fetch
the respective cache line and invalidate the cache line copies in other caches.
Then the operation is executed and the result is written in a modified state
to the local L1 cache. We thus model the latency L of an atomic operation
A executing with an operand from a cache line C in a coherency state S as:

L(A,C, S) = RO(C, S) + E(A,C) +O (1)

A denotes the analyzed atomic; A ∈ {CAS,FAD, SWP}. S denotes the
coherency state; S ∈ {E,M, S,O}. RO(C, S) is the latency of the read for
ownership (reading C in a coherency state S and invalidating other caches).
E(A,C) is the latency of: locking the cache line C, executing A by the CPU,
and writing the operation result into the cache line C in the coherency state
M. As all other copies of C are invalidated, this will be a write into L1 local
to the core executing the instruction. Finally, O denotes additional over-
heads related to various proprietary optimizations of the coherence protocols
that we describe in § 5. We conjecture that the most dominant element of
L(A,C, S) is RO(C, S); a prediction supported by several studies illustrating
high latencies of reads for ownership [9, 19,20].
RO(C, S) strongly depends on S and the location of C. We start with

modelling operations that access cache lines located on the same die as the
requesting core.

4.1.1 On-die Accesses: E/M states

If S is E or M then there exists only one copy of C and the underlying protocol
will not issue invalidations. Thus, RO(C,E) and RO(C,M) will be equal to
the latency of a simple read denoted as R:
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RO(C,E/M) = R(C,E/M) (2)

Private L1 and L2, shared L3 We first assume that each core has private
L1 and L2 caches and there is a shared L3 across all the cores. Examples of
such systems are the considered Intel Ivy Bridge and Intel Haswell configu-
rations. We first denote the latency of reading a cache line by a core from a
local L1, L2, and L3 cache as RL1,l, RL2,l, and RL3,l, respectively. Then, we
have:

R(C,E/M) = RL,l iff C is in L (3)

where L ∈ {L1, L2, L3}. We now model the latency of accessing a cache
line in L1 or L2 of a different core. Here, we assume that the latency of
transferring a cache line between L1 and L3 can be estimated asRL3,l−RL1,l.
The total latency is increased by an additional cache line transfer from L3
to the requesting core:

R(C,E/M) = RL3,l +RL3,l −RL1,l (4)

Private L1, shared L2 and L3 In some architectures (e.g., AMD Bull-
dozer) there exists a shared L2 cache. For such systems, if C is in the L1
owned by a core that shares L2 with the requesting core, then:

R(C,E/M) = RL2,l +RL2,l −RL1,l (5)

4.1.2 On-die Accesses: S/O states

If C is in S or O, then the read for ownership invalidates the copies of C in
other caches. Assuming there are N copies denoted as Ci (i ∈ {1, ..., N}),
we have:

RO(C, S/O) = R(C, S/O) + max
i∈{1,...,N}

Linv(Ci) (6)

where Linv(Ci) is the latency of invalidating Ci. Here, we assume that
multiple invalidations are executed in parallel, thus we take the maximum
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of the latencies. We also predict that Linv(Ci) should not significantly dif-
fer from R(Ci,E), because both require invalidating private caches indepen-
dent of data being cached there. Similarly, we approximate R(C, S/O) with
R(C,E). Finally, we have:

RO(C, S/O) = R(C,E) + max
i∈{1,...,N}

R(Ci,E) (7)

4.1.3 Off-die Accesses

The operations accessing cache lines located on a different die include an
additional penalty from the underlying network (QPI on Intel and HT on
AMD systems). Here, we assume a constant overhead H per one die-to-die
hop that we add to the respective latency expressions from § 4.1.2. The
latency of accesses to the main memory M is modeled as a sum of the L3
miss and the overhead introduced by processing the request by the IMC. In
case of NUMA systems we also addH if necessary for an additional die-to-die
hop. Finally, on Intel systems we also addM to each R(C,M) because such
accesses require writebacks to memory; AMD prevents it with the O state.

4.2 Bandwidth

Here, we utilize the notion that atomics provided by the analyzed systems
always flush the write buffers and do not allow for ILP [13, 14]. Thus, the
bandwidth B of an atomic A executing with an operand from a cache line C
in a coherency state S can be simply modeled as:

B(A,C, S) = 1/(L(A,C, S)) · Csize (8)

where Csize is the cache line size. This model assumes that each atomic
modifies a different cache line. In the case where the continuous memory
block is accessed sequentially and thus each cache line is hit mutiple times,
we have:

B(A,C, S) =
N

L(A,C, S) + (N − 1) · RL1,l

· Csize (9)

Where Osize is the operand size and N = Csize/Osize is the number of
operands that can be fitted into a cache line. Eq. (10) is valid for Intel
systems. On AMD L1 is write-through, in which case RL2,l would replace
RL1,l.
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5 Performance Analysis

We now illustrate the results and provide several surprising insights into
the performance characteristics of the tested atomics. Here, we exclude the
results that show similar performance trends; For completeness we include
all the relevant results in the Appendix. The latency results can be found in
Figures 10-19. The bandwidth results can be found in Figures 20-29. We use
the results to validate the model. Here, we first calculate the median values
of the parameters from Section 4. The obtained numbers can be found in
Table 2.

Parameter: Haswell Ivy Bridge Bulldozer

RL1,l 1.17 1.8 5.2
RL2,l 3.5 3.7 8.8
RL3,l 10.3 14.5 30
H - 66 62
M 65 80 75
E(CAS) 4.7 4.8 25
E(FAD) 5.6 5.9 25
E(SWP) 5.6 5.9 25

Table 2: The model parameters (all numbers are in nanoseconds).

5.1 Latency

First, we present a selection of the latency results. We compare CAS, FAD,
and SWP that access cache lines in the E, M, and S coherency states; the
O coherency state is also included for AMD. We exclude the F state from
the Intel analysis as it only starts to affect the performance when more than
two CPUs are used [19] while our tested systems host at most two CPUs.
We illustrate the results for unsuccessful CAS; successful CAS follows similar
performance patterns. Finally, the latency of reads (read) is also plotted for
a baseline comparison with a simple memory access.

5.1.1 Intel Haswell and Ivy Bridge

We illustrate the latency results of the Intel systems in Figures 2, 3, and 4.
The results indicate the correctness of the model predictions. We observe
that atomics are consistently slower than reads by ≈5-10ns on both systems
for the E and M states (cf. Figures 2a and 3a). From this we conjecture
that atomics trigger a read for ownership and the latency difference between
atomics and simple reads stems from E , as predicted by both Eq. (1) and (2).
The desired cache line is read into the private cache of the core and all its
copies are invalidated. For cache lines in the E and M states a read for
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ownership has the same latency as a read since the line is only present in
one cache, annihilating a need for invalidations. The difference in latency
impacts the performance of local L1 cache accesses where the read latency is
≈1-2ns (see Figure 3a). It does not significantly influence accesses to remote
caches or memory where latencies are well above 60ns. As predicted by
out model and contrary to the common view, CAS has the same latency as
FAD/SWP, except for the E and M states on Ivy Bridge, where the latency of
CAS accessing L1 is consistently (by ≈2-3ns) lower than that of FAD/SWP
(a similar latency jump between L1 and L2 is visible for reads; see Figures 4a-
4c). We attribute this effect to an optimization in the structure of L1 that
detects that no modification will be applied to a cache line, reducing the
latency.

In the S/E states executing an atomic on the data held by a different core
(on the same CPU) is not influenced by the data location (L1, L2 or L3); see
Fig. 2a, 2c, 3a, 4a-4c. The data is evicted silently, with neither writebacks
nor updating the core valid bit in L3. Thus, all the accesses snoop L1/L2,
making the latency identical (as modeled by Eq. (7)).

Cache lines in the M state are written back when evicted updating the
core valid bits. Thus, there is no invalidation latency when reading an M line
in L3 that is not present in any local cache. This explains why M lines have
lower latency in L3 than E lines; cf. Figures 2a and 2b.

Remote accesses in the M and E states have ≈50ns higher latency than
that of another core on the same CPU; see Figures 4a-4c. This is due to
H. For cache lines in the M state the latency is different for L3 because
the MESIF protocol does not allow for dirty sharing so the data has to be
written to memory incurring M.

In our latency benchmarks CAS does not write to L1. It is not necessary
to invalidate cache lines sharing the data when performing unsuccessful CAS.
The results indicate that the Intel architectures do not take advantage of that
because a read for ownership might be issued in any case.

5.1.2 AMD Bulldozer

We illustrate the latency results of AMD Bulldozer in Figure 5. The results
mostly match the model predictions. Atomics are again slower than reads
in each case. However, the difference between the read latency and that of
CAS/FAD is not the same for all the cache levels. CAS and FAD take ≈8ns
longer than reads into the cache of a different core. Yet, for the local cache
they consistently take ≈20ns longer than respective reads (cf. Figures 5a/5b
and 5c). We attribute this surprising result to variable overheads related to
locking a cache line.
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The L3 results indicate that the latency is growing with the increasing
data block size. We conjecture that this effect is caused by the HT Assist
module, a special unit that uses a part of L3 and works as a filter for accesses
to remote cores [1]. The HT Assist module causes some accesses to L3 miss
and thus to incur higher latencies.

Both the S and the O states follow similar performance patterns (we
exclude the plots due to space constraints). The latencies of atomics to
shared data in the L1 or L2 of the requesting core are similar independent of
which cores contain the data; they are dominated by H (additional ≈62ns).
Bulldozer’s L3 is not inclusive and does not have core valid bits. Thus, L3
cannot determine whether the data is in the L1 or L2 of a different core
entailing an invalidation broadcast. This broadcast has to reach caches on a
remote CPU, generating very high latencies.

5.1.3 Discussion & Insights

The latency evaluation illustrates novel insights. It turns out that, contrary
to the common view [21], the latency of CAS, FAD, and SWP is in most cases
identical and sometimes (L1 on Haswell and L3/memory on AMD) CAS
is faster than FAD. This illustrates that atomics with different consensus
numbers may still entail similar overheads. Additional overheads in CAS are
due to fetching an additional argument from caches or memory.

The analysis also suggests several potential improvements for the hard-
ware implementation of atomics. For example, we illustrate that unsuccessful
CASes invalidate the copies of fetched cache lines entailing significant over-
heads. Yet, such operations do not modify the fetched cache line, making
the invalidations unnecessary. We conjecture that this strategy incorporates
the pipelining of issued CASes, thus requiring the invalidations. Another po-
tential strategy would not utilize invalidations before executing CASes. As
unsuccessful CASes usually constitute a crucial part of all the issued CASes
in various parallel designs [21], this might accelerate some workloads.

5.2 Bandwidth

We now analyze a selection of bandwidth results. Due to space constraints
we illustrate the Haswell results for the M state (see Figure 6) and only briefly
discuss Ivy Bridge and Bulldozer. Here, we compare atomics to writes.

Similarly to latency and again surprisingly, the bandwidth results for
Haswell indicate that CAS is comparable or faster than FAD (≈0.04 GB/s).
Moreover, the bandwidth of atomics is higher in higher level caches (for E/M
cache lines). Yet, the differences between the levels are not significant (≈0.05
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GB/s) as only the first access to each line is affected by cache proximity.
Bandwidth (to L3) for the E lines is lower than for the M lines due to to the
silent eviction of the former.

On both Intel architectures and the AMD system the bandwidth of atom-
ics is significantly (≈5-30 times) lower than that of writes because the latter
utilize ILP. However, in our benchmark design (see § 3.2) we specifically en-
abled the possibility of parallel execution of FAD/SWP. We conjecture that
the hardware implementation of atomics prevents such parallelism, limiting
performance.

5.2.1 Discussion & Insights

Significantly lower bandwidth of atomics (in comparison to writes) is caused
by the differences in the utilization of write buffers. Cores write to their
buffers and can continue executing further instructions before the previous
writes actually reach cache (which can take more than 100ns as our latency
results indicate). The buffer might merge multiple consecutive writes increas-
ing bandwidth. On the contrary, atomic operations cause the write buffers to
be drained. That means that every atomic is effecting cache directly without
being merged or buffered.

Another reason for the low bandwidths is that the caches are organized
in cache lines of 64 byte size on all the tested systems. At most one access
to each cache line cannot be executed in L1 in our bandwidth benchmarks.
Therefore the bandwidth to L1 is an important performance factor. On all
the tested systems the bandwidth and the latency of atomics to the L1 cache
are however significantly lower than these of writes.

Finally, our results indicate that atomics do not allow for ILP whatsoever.
Relaxing this restriction in some cases (e.g., for the independent executions
of FAD or SWP) could significantly improve the bandwidth.

5.3 Operand Size

CAS comes with several flavors that differ in the size of the operands. We
analyze variants that use 64 and 128 bits. Both tested Intel systems pro-
vide identical latency in each case. On the contrary, AMD Bulldozer has
lower latency when using 64 bits, see Figure 7. The latency difference is
insignificant (≈5ns) when accessing cache of a core that does not share L2
with the requesting core and close to 20ns for other caches and memory.
Using CAS that operates on 64bit operands would thus be desirable in the
latency-constrained applications running on AMD Bulldozer.
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5.4 Contention

We now evaluate the effect of many threads accessing the same cache line
with atomics; see Figure 8. This benchmark targets the codes with highly
contended shared counters and synchronization variables. Here, a selected
number of threads issues atomics targeted at the same cache line.

Intel Haswell reaches the accumulated contended bandwidth of over 100GB/s
with four cores, Ivy Bridge has almost 80GB/s with three cores on two CPUs.
These numbers are very close to the accumulated non-contended bandwidth.
We conjecture that both Intel architectures detect that issued operations ac-
cess the same cache line in an arbitrary order, annihilating the need for the
actual execution of all the writes.

Bulldozer on the other hand suffers from the contention significantly when
writing to the same cache line concurrently. The accumulated contended
bandwidth of three cores on two CPUs is between 500 and 600 MB/s for
writes. That bandwidth is lower than that of a single core writing to L1 and
five times higher than that of FAD or CAS.

We conclude that all the considered architectures have significantly lower
bandwidth in a contended execution of atomic operations than in a non-
contended case. This may constitute a performance limitation in state-of-
the-art multi- and manycore designs with massive thread-level parallelism.

5.5 Prefetchers and Other Mechanisms

State-of-the-art architectures host different mechanisms that impact the
CPU performance. For example, Intel Haswell deploys Hardware Prefetcher
(prefetching data/instructions after successive L3 misses or after detecting
cache hit patterns), Adjacent Cache Line Prefetcher (unconditional prefetch-
ing of two additional cache lines), and several mechanisms that may affect
the clock frequency and power efficiency (Turbo Boost, EIST, and C States).
We now illustrate how these mechanisms impact the latency and bandwidth
of atomic operations. We select Intel Haswell as the testbed and we skip
the latency results because they are only marginally (≈1% of difference)
affected. The bandwidth results are illustrated in Figure 9. Any of the
prefetchers improves bandwidth for L3 cache accesses by reducing the effect
of snooping (improvement up to ≈0.3 GB/s). Interestingly, if both are en-
abled, they negligibly conflict with each other reducing bandwidth to L3.
Adjacent Cache Line Prefetcher additionally accelerates atomics to L1/L2
(up to ≈0.135 GB/s). Turbo Boost, EIST, and C States impact the clock
frequency and thus both introduce irregularities in the results and improve
the bandwidth of L3, RAM, and remote L1/L2 accesses by ≈0.15 GB/s.
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lines of a different core from the same chip (on chip).

20



0

20

40

60

80

100

1e+04 1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another core (on chip)
local core

L2L1 L3

RAM

Latency lower
than that of atomics

(by a constant factor)
due to the lack of
writes to local L1

Accesses to L3
expensive due to
L1/L2 snooping

(a) read, Exclusive state

0

20

40

60

80

100

1e+04 1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another core (on chip)
local core

L2L1 L3

RAM

Latency lower
than that of atomics

(by a constant factor)
due to the lack of
writes to local L1

Core valid bits in L3
prevent from snooping
another core's L1/L2

(b) read, Modified state

0

20

40

60

80

100

1e+04 1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another core (on chip)
local core

L2L1 L3

RAM

Latency lower
than that of atomics

due to the lack of
writes to local L1
and invalidations

(c) read, Shared state

Figure 3: The comparison of the latency of CAS, FAD, SWP, and read on
Haswell. The requesting core accesses its own cache lines (local) and cache
lines of a different core from the same chip (on chip).

21



0

50

100

150

200

1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another socket
another core (on chip)
local core

L2L1 L3

RAM

CAS faster than
FAD/SWP

NUMA
e ects

(a) CAS, Exclusive state

0

50

100

150

200

1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another socket
another core (on chip)
local core

L2L1 L3

RAM

FAD/SWP slower
than CAS

NUMA
e ects

(b) SWP/FAD, Exclusive state

0

50

100

150

200

1e+05 1e+06 1e+07 1e+08

Data set size [bytes]

L
a
te

n
c
y
 [
n
s
]

Data owned by:

another socket
another core (on chip)
local core

L2L1 L3

RAM

similar e ect
as in CAS

NUMA
e ects

Faster remote accesses
for reads than atomics

(c) read, Exclusive state
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Figure 9: The effect on the bandwidth of FAD (accessing cache lines in the
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acceleration mechanisms (Turbo Boost, EIST, C States) deployed in Intel
Haswell.
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6 Related Work

To the best of our knowledge, there exists no detailed performance analysis
of atomic operations. A brief discussion that compares the contention of
Compare-And-Swap and Fetch-And-Add can be found in the first part of the
work by Morrison et al. [21]. This work uses the comparison to motivate the
proposed parallel queue that extensively utilizes Fetch-And-Add. It differs
from the study in this work as it only illustrates the lower performance of
CAS caused by the semantics that introduce wasted work.

A methodology for benchmarking the latency and bandwidth of reads
and writes accessing different levels of the caching hierarchy in the NUMA
systems was conducted by Molka et al. [20]. A comparison of the performance
of memory accesses on Intel Nehalem and AMD Shanghai was performed by
Molka et al. [9]; a similar study targets the AMD Bulldozer and Intel Sandy
Bridge microarchitectures [19]. Other analyses on the performance of the
memory subsystems include the work by Babka et al. [2], Pend et al. [23],
and Hristea et al. [12]. Our works differs from these studies as it specifically
targets atomic operations, providing several insights into the performance
relationships between atomics and the utilized caching hierarchy.

There exist numerous works proposing concurrent codes and data struc-
tures that use atomics for synchronization. Examples include a queue by
Morrison at el. [21], a hierarchical lock by Luchangco et al. [17], and a queue
by Michael and Scott [18]. Many fundamental structures and designs can be
found in a book by Herlihy and Shavit [11].

Finally, the considered architectures and cache coherency protocols are
extensively described in various manuals and papers [1,8,13–15,25]. Several
performance models targeting on-chip communication have been introduced,
for example a model by Garea and Hoefler [6]. The model proposed in
this work differs from that work because it specifically targets latency and
bandwidth of atomic operations in the onnode environment.
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7 Conclusion

Atomic operations are used in numerous parallel data structures, applica-
tions, and libraries. Yet, there exists no evaluation that would illustrate
tradeoffs and relationships between the performance of atomics and various
characteristics of multi- and manycore environments.

In this work we propose a performance model and provide a detailed eval-
uation of the latency and bandwidth of several atomic operations (Compare-
And-Swap, Fetch-And-Add, Swap) that validates the model. The selected
atomics are widely utilized in various parallel codes such as graph traversals,
shared counters, spinlocks, and numerous data structures. Our performance
insights include the observation that CAS and FAD have in principle identical
latency and the only difference is related to the number of operands to be
fetched and the semantics of CAS that introduce the notion of the “wasted
work”. Another insight is that all the atomics flush write buffers and prevent
from instruction level parallelism, significantly limiting the bandwidth (up
to 20x in comparison with simple writes). Our analysis can thus be used for
designing more performant parallel systems.

The results also indicate several potential improvements in the design of
the caching hierarchy. For example, the AMD Bulldozer architecture lim-
its performance with useless invalidations issued to remote CPUs even if the
respective cache line is stored only in local caches. Eliminating such invalida-
tions would significantly accelerate atomic operations accessing cache lines in
the shared state. We believe our analysis and data can be used by architects
and engineers to develop more performant memory subsystems that would
offer even higher speedups for parallel workloads.
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Figure 10: Latency of CAS, FAD, SWP, and read on Haswell
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Figure 11: Latency of CAS, FAD, SWP, and read on Haswell
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Figure 12: Latency of CAS, FAD, SWP, and read on Haswell
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Figure 13: Latency of CAS, FAD, SWP, and read on Ivy bridge
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Figure 14: Latency of CAS, FAD, SWP, and read on Ivy bridge
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Figure 15: Latency of CAS, FAD, SWP, and read on Ivy bridge
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Figure 16: Latency of CAS, FAD/SPW, SWP, and read on AMD Bulldozer
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Figure 17: Latency of CAS, FAD/SPW, SWP, and read on AMD Bulldozer
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Figure 18: Latency of CAS, FAD/SPW, SWP, and read on AMD Bulldozer
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Figure 19: Latency of CAS, FAD/SPW, SWP, and read on AMD Bulldozer
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Haswell

40



950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
M

B
/s

]

data set size [Byte]

Local
On chip

(a) CAS, Modified

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
M

B
/s

]

data set size [Byte]

Local
On chip

(b) FAD, Modified

5 

7.5 

10 

12.5 

15 

17.5 

20 

22.5 

25 

27.5 

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
G

B
/s

]

data set size [Byte]

Local
On chip

(c) write, Modified

Figure 21: Bandwidth of Compare-and-Swap, Fetch-and-Add, and writes on
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Figure 23: Bandwidth of Compare-and-Swap, Fetch-and-Add, and writes on
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Figure 24: Bandwidth of Compare-and-Swap, Fetch-and-Add, and writes on
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Figure 27: Bandwidth of Compare-and-Swap, Fetch-and-Add, Swap, and
writes on Bulldozer

47



175

200

225

250

275

300

325

350

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
M

B
/s

]

data set size [Byte]

Local
Other socket

(a) CAS, Owned

175

200

225

250

275

300

325

350

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
M

B
/s

]

data set size [Byte]

Local
Other socket

(b) FAD/SWP, Owned

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

10k 100k 1M 10M 100M 1G

b
a
n
d
w

id
th

 [
G

B
/s

]

data set size [Byte]

Local
Other socket

(c) write, Owned
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