
Performance Embeddings: A Similarity-Based Transfer Tuning
Approach to Performance Optimization

Lukas Trümper
lukashans.truemper@inf.ethz.ch

ETH Zurich
Switzerland

Tal Ben-Nun∗
talbn@llnl.gov

Lawrence Livermore National
Laboratory

USA

Philipp Schaad
philipp.schaad@inf.ethz.ch

ETH Zurich
Switzerland

Alexandru Calotoiu
alexandru.calotoiu@inf.ethz.ch

ETH Zurich
Switzerland

Torsten Hoefler
htor@inf.ethz.ch

ETH Zurich
Switzerland

ABSTRACT
Performance optimization is an increasingly challenging but often
repetitive task. While each platform has its quirks, the underlying
code transformations rely on data movement and computational
characteristics that recur across applications. This paper proposes
to leverage those similarities by constructing an embedding space
for subprograms. The continuous space captures both static and
dynamic properties of loop nests via symbolic code analysis and per-
formance profiling, respectively. Performance embeddings enable
direct knowledge transfer of performance tuning between applica-
tions, which can result from autotuning or tailored improvements.
We demonstrate this transfer tuning approach on case studies in
deep neural networks, dense and sparse linear algebra composi-
tions, and numerical weather prediction stencils. Transfer tuning
reduces the search complexity by up to four orders of magnitude
and outperforms the MKL library in sparse-dense matrix multipli-
cation. The results exhibit clear correspondences between program
characteristics and optimizations, outperforming prior specialized
state-of-the-art approaches and generalizing beyond their capabili-
ties.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computing
methodologies → Machine learning.

KEYWORDS
compilers, embeddings, transfer tuning, peephole optimization,
performance optimization, autotuning
ACM Reference Format:
Lukas Trümper, Tal Ben-Nun, Philipp Schaad, Alexandru Calotoiu, and Torsten
Hoefler. 2023. Performance Embeddings: A Similarity-Based Transfer Tun-
ing Approach to Performance Optimization. In 2023 International Conference

∗Work on this paper was done while at ETH Zurich.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06. . . $15.00
https://doi.org/10.1145/3577193.3593714

Figure 1: An overview of the similarity-based approach to
automatic performance optimization.

on Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3577193.3593714

1 INTRODUCTION
Automatic performance optimization of programs for modern com-
puting architectures is challenging. Even for smaller programs, the
possibilities to schedule the operations and the data movement be-
come infeasible to explore exhaustively. To efficiently navigate the
optimization space, a performance model could be constructed as a
surrogate to approximate the search; the searched parameters can
be limited to a small number for brute-force tuning; or, more often
than not, the program is optimized manually by a performance
engineer.

Several performance models have been developed for specific
program classes, notably Polyhedral subprograms [12]. The poly-
hedral model has helped develop several automated tuning meth-
ods based on integer-linear programming [4] and machine learn-
ing [1, 5, 18] as well. Such methods primarily target optimizations
on the loop level such as interchanging their order and tiling the
iteration space. However, these techniques are limited in represent-
ing real-world applications due to the need for expressing programs
with affine array accesses and simple loop bounds.

50

https://doi.org/10.1145/3577193.3593714
https://doi.org/10.1145/3577193.3593714
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577193.3593714&domain=pdf&date_stamp=2023-06-21

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

Methods for optimizing data-dependent applications, such as
sparse linear algebra routines, must rely on specialized, input-
specific models [27]. Because such models are hard to integrate
into a general tuning framework, performance engineers often fall
back to general profiling-based performance models, such as the
roofline model [61], for custom applications. Since profiling-based
models lack a connection to the algorithmic structure, their inter-
pretation requires significant experience [55], which makes the
search for optimizations hard to automate. Optimization efforts for
real-world applications are thus often resource-intensive manual
processes where the outcome strongly depends on the skill set of
the individual performance engineer [8, 16, 54].

In this paper, we present a similarity-based approach to the auto-
matic performance optimization of general loop nests, summarized
in Figure 1. We develop a method for encoding both static and
dynamic performance characteristics of loop nests and capturing
them as performance embeddings — a latent, continuous space in
which a multidimensional point represents a subprogram. Based on
these embeddings, which are trained separately, optimizations de-
rived from a variety of methods (such as brute force, manual tuning,
or state-of-the-art auto-schedulers) are stored in an optimization
database. This enables knowledge transfer of optimization between
different programs with similar static or runtime characteristics,
which we call transfer tuning.

During transfer tuning, loop nests are then optimized by fuzzy
matching the optimizations of the k-nearest neighbors from the
database according to their performance embeddings. We demon-
strate the effectiveness of our approach on a series of polyhedral
and non-polyhedral real-world applications, significantly reducing
the search complexity for performance optimizations and outper-
forming state-of-the-art auto-schedulers by reaching up to 92%
better runtime improvements.

In summary, this paper makes the following contributions:
• Methodology for encoding performance characteristics of
general loop nests in performance embeddings;

• Development of a general matching algorithm for loop nest
optimizations;

• Reduction of the optimization search space size by orders of
magnitude through transfer tuning;

• Demonstration of effectiveness compared with state-of-the-
art auto-optimizers and extension to tailored optimizations.

2 SIMILARITY IN PERFORMANCE
OPTIMIZATION

Programs with different structural properties may still share similar
performance characteristics, which allow them to be optimized in
similar manners.

The following example shows a standard matrix multiplication
and a min-plus matrix multiplication commonly used for shortest-
path problems:

The loop nests are structurally identical, thus trivially sharing simi-
lar performance characteristics. Consequently, the min-plus matrix
multiplication can be optimized using the same tiling, buffering, and
vectorization strategies found in the literature for matrix-matrix
mutliplication [31]. Due to the structural similarity, existing auto-
schedulers based on the polyhedral model are able to detect this
reliably [1], reaching a significant speedup over the naïve version.

The same potential for optimizations can, however, also be ob-
served in a structurally different application, such as the sparse-
dense matrix multiplication shown below:

Compared to the regular, dense matrix multiplication from before,
this loop nest is no longer data-oblivious since the innermost loop
bounds are data-dependent. The sparsity pattern of the input thus
determines the workload’s characteristics (e.g., load balancing over
multiple threads). Regardless of those characteristics, both pro-
grams exhibit a strided memory access to the dense matrix B, which
can be resolved by interchanging the two innermost loops to im-
prove performance. Existing auto-schedulers [1, 5] can apply this
optimization to the original matrix multiplication, but can only
transfer these optimizations to the sparse multiplication if their
performance models indicate similar performance characteristics.
Such static models must, however, make simplifying assumptions
on the code, either assuming a fixed sparsity pattern and over-
approximating the loop bounds [10], or using an inspector-executor
model [53] to produce code conditionally. Both assumptions hinder
possible further optimizations with regard to load imbalance and
dynamic characteristics.

A casewhere the structural differences are evenmore pronounced
is shown below, where the first program computes a sparse matrix-
vector product, and the second program performs a prime number
check on an array of 20,000 numbers:

Despite their structural differences, both programs are inherently
prone to an imbalanced distribution ofwork among different threads
when parallelizing the outermost loop. In both cases, a dynamic
assignment of work to threads yields significantly better perfor-
mance for specific input distributions. While a purpose-built, data-
specific model [27] can address this problem for the sparse matrix-
vector product, the same model cannot directly be applied to the

51

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

Figure 2: An overview of the model architecture to construct loop nest embeddings.

structurally-different prime number filter. Hence, in order to iden-
tify similarities and transfer optimizations between data-dependent
applications, the integration of a larger number of specialized mod-
els would be necessary.

In contrast, performance engineers are able to identify similari-
ties between both data-oblivious and data-dependent applications
treating data-dependent aspects as gaps, which are inferred through
profiling. Performance embeddings adopt this observation by encod-
ing both static and dynamic performance characteristics of parallel
loop nests, enabling the transfer of optimizations across more gen-
eral problems.

3 EMBEDDING PARALLEL LOOP NESTS
The basis of the similarity search is a representation of parallel loop
nests which captures a rich set of performance-relevant properties.
This representation should encode static properties such as the
structure of loops, and the data accesses, but also reflect dynamic
properties such as the bandwidth utilization, the thread imbalance,
or the amount of mispredicted branches. In contrast to approaches
solely focusing on runtime prediction for data-oblivious applica-
tions [1, 5, 51], the purpose of this representation is to provide a
detailed description of performance for general parallel loop nests;
the runtime itself does not expose information about the potential
for optimization.

We compute the representation of parallel loop nests using neu-
ral networks based on both static and dynamic features, depicted
in Figure 2. Dynamic features (performance counters) measured
on representative inputs allow the model to treat input-specific
aspects of a parallel loop nest as gaps in the static analysis. These
features inform the model about the behavior of the loop nest via
hardware metrics. For example, the load imbalance between threads
is a direct result of a matrix’s sparsity pattern in a sparse matrix
multiplication.

3.1 Parallel Loop Nests
Before introducing the representation, the term parallel loop nest
shall be defined in detail. A parallel loop defines a parallel iteration
space and a (possibly empty) body of computations executed for

each iteration. A parallel loop nest is an ordered tree where each
node is a parallel loop nested inside the iteration space of the parent.

A program is considered a set of parallel loop nests, which are
optimized independently. This assumes that optimizations on the
full program have been determined beforehand, e.g., the identifica-
tion of parallelism and the fusion of parallel loop nests. A fusion
strategy based on similarity is briefly discussed in Section 8.

The computations and loop extents are not assumed to be known
at compile-time. In particular, the body may comprise sequential
loops and recursions whose function depends on input data. Com-
pared with other models [1, 5], this definition relaxes the require-
ments of compile-time known loop extents, operations, andmemory
access patterns.

3.2 Encoding
The encoding maps the parallel loop nest given in an intermediate
representation (IR) to a set of features, which can be processed by
a neural network. The encoding of parallel loop nests consists of
two parts: a graph encoding of the static IR and an encoding of the
dynamic profiling information in a single vector. A detailed list of
the used static and dynamic features is presented in Appendix A.

Static Encoding. The basis of the static encoding is a parallel
loop nest represented as a stateful dataflow multigraph (SDFG) [7].
SDFGs combine state machines with dataflow graphs to represent
complete programs, which makes them amenable for static analysis
and simplifies the mapping to a graph encoding. However, the
approach could equally be implemented with other IRs, e.g., LLVM
IR [41].

At the outermost scope, the SDFG of a parallel loop nest is a
dataflow graph comprising at least a single parallel loop, calledmap.
As shown in Figure 3, the body of the map may comprise nested
maps, tasklets (operations), or nested SDFGs. The components of
an SDFG are mapped to a graph of nodes with features and edges
as follows:

• Access node: Access nodes represent data in the data-flow
graph and are mapped to corresponding nodes in the encod-
ing. These nodes are represented by features such as shape,
total size, data type, and data layout.

52

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

Figure 3: SDFG representation of a parallel loop nest.

• Map Entry: A map entry represents the start of the scope of
a parallel loop. The map entry is mapped to a node in the
encoding and featurized by properties such as the level in
the hierarchy, the map extent, and the step size. If the map
extent or step size cannot be inferred statically, a special flag
is set in the encoding which indicates a dynamic map.

• Map Exit: Amap exit defines the end of the scope of a parallel
loop and is mapped to a node in the encoding represented
by one-hot encoding.

• Body node: The computational nodes inside the body of a
parallel loop nest (namely, tasklets and nested SDFGs) are
summarized in a single body node. The body node is repre-
sented by one-hot encoding.

• Memlets: Memlets are directed edges of the dataflow graph
in an SDFG defining the structure of the data accesses. Ac-
cordingly, memlets also define the edges of the encoding. In
order to collect features for memlets, each edge is split into
two edges and an intermediate node encodes the memlet
itself. Data accesses are additionally encoded in an access
matrix following the format of the polyhedral model [28].
Non-affine accesses are represented by an empty access ma-
trix and a special flag indicating a non-affine access.

Dynamic Encoding. Processor hardware architectures provide
facilities called performance counters to collect detailed statistics
about the execution of a program. For example, counters for the
total number of executed instructions, or the number of bytes trans-
ferred between different levels of the memory hierarchy. We encode
the dynamic profile of a parallel loop nest in a single vector of per-
formance counters for the entire parallel loop nest. In total, 19
counters are selected from 8 different categories: instructions, FP32,
FP64, branching, main memory, L3 cache, L2 cache and DRAM con-
troller. A detailed list of the counters can be found in the appendix.
The selected counters are available on all modern high-performance
CPUs, ensuring the portability of the approach. Each counter is
measured for all threads during the profiling, and the statistics min,
max, mean, std. deviation, and sum are computed over all threads.
Hence, the resulting vector contains 95 different features.

3.3 Model
As illustrated in Figure 2, the two encodings are first processed in
separate branches of the neural network. A linear embedding layer
maps the dynamic encoding to a dynamic embedding. A graph neural

Performance Metric
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

Co
rre

la
tio

n
Co

ef
fic

ie
nt

In
st

ru
ct

io
ns

 P
er

 C
yc

le

L3
 R

eq
ue

st
 R

at
e

Lo
ad

 T
o

St
or

e
Ra

ti
o

L3
 M

is
s

Ra
te

Br
an

ch
 R

at
e

L2
 M

is
s

Ra
ti

o

L3
 M

is
s

Ra
ti

o

Ru
nt

im
e

L3
 M

em
 E

vi
ct

 B
an

dw
id

th

L2
 L

oa
d

Ba
nd

w
id

th

L2
 B

an
dw

id
th

L2
 E

vi
ct

 B
an

dw
id

th

M
em

or
y

W
ri

te
 B

an
dw

id
th

L3
 B

an
dw

id
th

L3
 L

oa
d

Ba
nd

w
id

th

L2
 R

eq
ue

st
 R

at
e

L2
 M

is
s

Ra
te

M
em

or
y

Ba
nd

w
id

th

M
em

or
y

Re
ad

 B
an

dw
id

th

D
ro

pp
ed

 C
ac

he
-L

in
es

 B
an

dw
id

th

Figure 4: Pearson correlation coefficient of targets and model
predictions.

network (GNN) based on the graph transformer operator [49] maps
the static encoding to node embeddings, which are summarized into
a graph embedding by an attentional pooling layer [43]. Finally, the
graph embedding is concatenated with the dynamic embedding and
mapped by another MLP to an embedding of the entire parallel loop
nest. The size of the embeddings is fixed to 128 for node and graph
embeddings. In total, the model comprises 44 layers and 862,000
trainable parameters. The implementation of the model is written
in PyTorch 1.13, using standard GNN layers from PyTorch Geometric.

Targets and Training. To train the model, we add another linear
layer to the model, which predicts a target vector based on the
embedding of the parallel loop nest. These targets comprise 20
standard performance metrics of the parallel loop nest summarized
in Figure 4. This includes the runtime, the instructions per cycle,
different bandwidths, cache miss ratios, and several rates of specific
operations per total instructions. We choose the mean absolute
error as the loss function and train the model for 20 epochs using
Adam at a learning rate of 1e−3. We do not specifically tune the
hyperparameters of the model beyond manually setting an initial
learning rate, and use an early stopping approach for the weights.

Dataset. We synthetically generate the training and validation
set from standard kernels such as maps, reductions, and stencils. In
particular, we include non-data-oblivious kernels such as boolean
masks. The test set is extracted from real-world applications imple-
mented in NPBench [63] by automatically cutting out each parallel
loop nest. The sizes of the training, validation, and test sets cover
approximately 6,500, 2,000, and 1,000 parallel loop nests, respec-
tively. In contrast to other models designed to predict the speedup of
different schedules, we consider a single canonical schedule, which
significantly reduces the input variation. The canonical schedule
executes the outermost loop of the loop nest in parallel.

Target Architecture. The target architecture is an Intel Xeon Gold
6140 CPUwith a base clock rate of 2.3GHz and 768GB ofmainmem-
ory. The entire dataset is labeled automatically with LIKWID [55],
which defines groups of performance metrics that can be measured
simultaneously. Each group of metrics is measured in two phases:
In a warmup phase, the program is executed 𝑛𝑤 times, where 𝑛𝑤
is chosen such that the logical number of bytes moved corresponds
to twice the size of the L2 cache but clipped to a maximum of 1,000
repetitions. In the measurement phase, the program is executed ten
times and the median is taken over those measurements to convert

53

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

themeasurements into a single label. In general, most metrics report
the measured mean over all threads. However, global throughput
metrics such as bandwidths or the instruction per cycle are summed
over the threads; the runtime is considered as the maximum over
all threads.

3.4 Validation
Before evaluating the quality of embeddings on application-specific
tasks, we validate the model on the prediction of the performance
metrics. Figure 4 lists the Pearson correlation coefficient between
the targets and the model’s predictions on the test set for the differ-
ent performance metrics. In this figure, the performance metrics are
ranked by their difficulty of prediction by our model in descending
order. The minimum correlation of 0.60 is found for Instructions
Per Cycle and the maximum correlation of 0.98 for the metric of
Dropped Cache-Lines Bandwidth. For 17 out of 20 targets, the corre-
lation is at least 0.80, indicating a strong correlation between the
model prediction and the target labels. These results also correlate
with the difficulty of prediction in general, as, e.g., the Instructions
Per Cycle metric depends on multiple hardware and system factors.

4 PERFORMANCE SIMILARITY
A similarity search for performance optimization requires that sim-
ilar embeddings imply similar performance optimization potentials.
For instance, if a parallel loop nest has a low memory bandwidth
utilization, this loop nest should be mapped to an embedding that
is similar to the embeddings of other parallel loop nests with low
memory bandwidth utilization.

We evaluate this hypothesis based on the local variation of par-
allel loop nests under different performance metrics. Specifically,
for each parallel loop nest in the test set, we query the 3-nearest-
neighbors based on the embedding distance and compute the rela-
tive standard deviation among these four loop nests for a specific
performance metric. We define the mean of the local variations in
the test set as the performance similarity of the model.

Below, we discuss the similarity metrics we use for our evalua-
tion, the state-of-the-art baselines we compare with, and analyze
similarity on the NPBench dataset.

Assessing similarity. Since the cost for data movement is the
dominant factor in performance optimization [56, 57], we focus on
memory-specific performance metrics for evaluation. The memory
usage efficiency (MUE) [29] combines the following two perfor-
mance metrics to assess the optimization potential of a program:

• Main / L3 / L2 Memory Bandwidth: The attained memory
bandwidth on different levels of the memory hierarchy is a
standard metric to identify optimization potentials in typical
bound-and-bottleneck analyses (cf., Roofline model [35, 61]).

• Data Locality: Fuhrer et al. [29] point out that an analysis
based on solely the attained memory bandwidth ignores
the intrinsic limitations of the algorithm. For instance, a
loop nest with a strided memory access pattern and a loop
nest with a random memory access pattern may both yield
low memory bandwidths. However, the former may still be
optimized through a loop interchange, while the latter al-
ready achieves its maximal bandwidth utilization. The data
locality accounts for these algorithmic limitations and is

defined as the ratio of the I/O lower bound Q of the algo-
rithm and the measured transferred bytes from main mem-
ory D, in short, 𝑄

𝐷
. Q is estimated automatically by SOAP-

Analysis [40], which is based on the concept of the Red-Blue
Pebble Game [37].

Baselines. To assess the model’s performance, we compare the
similarity of our embeddings with three other models that map
parallel loop nests to embeddings, and perform ablation studies on
the input features.

The reuse distance analysis [11, 19, 48] is a traditional approach
to loop nest analysis, which simulates the execution of the loop for
a specified number of iterations on a simplified cache model. Using
this simulation-based analysis, we map each loop nest to a four-
dimensional vector of the cache miss ratio, the bytes read from and
written to the memory, and the arithmetic intensity. The movement
of bytes gives a strong indication of the efficiency of the memory
access patterns, and the arithmetic intensity is typically used to
estimate the performance of a program on a target architecture.
Since the simulation of loop nests is expensive, we only simulate
the first 500 iterations of the loop nest.

IR2Vec [60] provides embeddings of programs based on LLVM
IR. The embeddings are trained in an unsupervised manner and
can be used for various machine learning tasks related to program
properties and source code.

Baghdadi et al. [5] introduce a state-of-the-art performance
model for optimizing polyhedral programs. Themodel estimates the
speedup of a schedule and a loop nest based on static features and
a recurrent neural network. Since the model is designed to predict
the speedup of a certain schedule, we remove the linear prediction
layer and obtain the embedding of the parallel loop nest from the
input of this last layer.

Bandwidth Data

Main L3 L2 Locality

Reuse Distance [11, 19] 0.78 1.02 0.82 0.87
IR2Vec [60] 0.47 0.66 0.45 0.41
Baghdadi et al. [5] 0.32 0.41 0.35 0.35
Our Model 0.25 0.30 0.28 0.31
Dynamic Features 0.26 0.33 0.25 0.45
Static Features 0.28 0.42 0.33 0.33

Table 1: The mean coefficient-of-variation of different fea-
ture extractors on the test set. A lower value means higher
similarity among the three closest neighbors.

Results. Table 1 summarizes the performance similarity of the
baseline feature extractors and our model. Our model has a strictly
lower local variation for all performance metrics and thus yields a
higher performance similarity. Hence, the performance optimiza-
tion based on the local neighbors in our embedding space is more
likely to resolve the actual performance bottlenecks of a parallel
loop nest. Furthermore, we run ablation studies using only one
set of the static/dynamic features. The studies show that the se-
lected dynamic features are sufficient for reasoning over bandwidth.

54

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

(a) Our Model (b) Baghdadi et al. [5]

Figure 5: t-SNE plots of the embedding space generated by
ourmodel and Baghdadi et al. [5] for the test set. Each sample
is colored by the Data Locality MUE metric. The colors are
based on binning the range to account for outliers.

However, static features (such as array accesses) are crucial to under-
stand memory access patterns for data locality and I/O complexity.

Similarly to text analogies for word embeddings, we additionally
verify our representation through the use of several distance tests.
For example, one of our tests implements three operations: linear
copy of two arrays (denoted as 𝑎), indirect copy with a random
permutation on the indices (𝑏), and indirect copy with the identity
index permutation (𝑐). In all of our learned embeddings, 𝑑 (𝑎, 𝑐) <
𝑑 (𝑎, 𝑏) for the cosine distance 𝑑 .

To further understand the similarity induced by our model, Fig-
ure 5 visualizes the embeddings of the test set in a t-SNE plot [58].
A t-SNE plot reduces high-dimensional data onto a 2D plane based
on neighborhood minimization. In the figure, each sample is a point
colored by its data locality; a plot that is separable by color, as our
model’s embedding space is (Figure 5a), indicates a strong influ-
ence of the performance metric in the representation of the sample.
For comparison, Figure 5b shows that the data locality is not an
important factor for the representation of the sample, depicted by
scattered clusters.

Evaluating importance of static features. Since the model has a
rich set of dynamic features available, the question arises whether
the static encoding is used by the model. To analyze this question,
we analyze the structure of the node embeddings for the input
array access nodes of a parallel loop nest. We extract the node em-
beddings of input arrays from 350 synthetically generated parallel
loop nests. For each array, we measure the L2 load bandwidth of
the isolated access to the array.

We programmatically isolate the access by modifying the parallel
loop nests. For example, the isolated access to a matrix 𝐵 in a matrix-
matrix multiplication is shown below:

The resulting t-SNE plot of the node embeddings of input nodes
is depicted in Figure 6. The samples are colored by the measured
L2 load bandwidth showing that local groups of node embeddings
are similar in the bandwidth of their access. This indicates that the
model generates meaningful embeddings for these nodes based on
static features such as the access’s stride and the array’s size.

Figure 6: t-SNE plot of the node embeddings of input nodes
colored by the L2 load bandwidth. The similarity of local
groups indicates that the model utilizes static features of the
encoding. The colors are based on binning the range of the
bandwidths to account for outliers.

5 TRANSFER TUNING
Peephole optimization is a compiler technique that replaces a local
window of instructions with an equivalent set. Such local windows
are usually found using a pattern-matching algorithm. However,
since the replacement rules of peephole optimizations are designed
for bit-exactness, the applicability of the optimization is limited to
small windows of a few instructions. Our transfer tuning algorithm
extends the idea of peephole optimizations to larger loop nests by
fuzzy matching program transformations from one loop nest to
another via similar node embeddings.

5.1 A Matching Problem for Program
Transformations

Transferring a transformation from a source loop nest to a target
loop nest requires identifying the corresponding instructions, to
which the transformation shall be applied in the target. As an exam-
ple, consider the pair of loop nests in Figure 7 and a transformation
that marks a loop for parallel execution. To transfer it to the target
loop nest, the corresponding loop must be identified. Since parallel

for (int i=1; i < 10000; i++)
A[i] = B[i-1] + B[i] + B[i+1];

#pragma omp parallel for
for (int i=1; i < 10000; i++)

A[i] = B[i-1] + B[i] + B[i+1];

for (int i=1; i < 10000; i++) {
A[i] = 0;
for (int j=-1; j <= 1; j++)

A[i] += B[i+j];
}

#pragma omp parallel for
for (int i=1; i < 10000; i++) {

A[i] = 0;

for (int j=-1; j <= 1; j++)
A[i] += B[i+j];

}

TransformationSource Loop Nest

Target Loop Nest

Fuzzy match similar
loop nest

Figure 7: Fuzzy matching similar loop nests allows transfer-
ring program transformations, such as loop parallelizations.

loop nests are represented by graphs in our model, instructions
correspond to nodes and edges of the graph. Furthermore, since
the node embeddings generated by the model have a one-to-one
correspondence with the nodes in the IR, transformations shall
be transferred from the source to the target parallel loop nest by

55

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

Figure 8: Matching the subgraph of a transformation to an-
other parallel loop nest based on the distances of the node
embeddings.

a matching of the node embeddings, as illustrated in Figure 8. In
detail, the transfer tuning algorithm consists of four steps:

(1) Let 𝐺𝐿 = (𝑉𝐿, 𝐸𝐿) be the source parallel loop nest and let
𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) be the induced subgraph for a transformation
𝑇 . We compute the source node embeddings 𝑒𝑚𝑏𝑠𝑆 for each
𝑣 ∈ 𝑉𝑇 .

(2) Let 𝐺𝐿′ = (𝑉𝐿′ , 𝐸𝐿′) be the target parallel loop nest. We
compute the target node embeddings 𝑒𝑚𝑏𝑠𝑇 for each 𝑣 ∈ 𝑉𝐿′ .

(3) Let 𝑀 = (𝑉𝐿′ ,𝑉𝑇 ;𝐸,𝐶) be a complete, bi-partite graph be-
tween the source subgraph’s nodes 𝑉𝑇 and the target nodes
𝑉𝐿′ , where 𝐶 is the cost matrix of the pair-wise ℓ2 distances
between 𝑒𝑚𝑏𝑠𝑇 and 𝑒𝑚𝑏𝑠𝑆 . We solve the matching problem
𝑀 using the Hungarian method [38] obtaining the mapping
between source subgraph’s nodes 𝑉𝑇 and the target sub-
graph’s nodes 𝑉 ′

𝑇
⊆ 𝑉𝐿′ .

(4) The transformation 𝑇 ′ can now be instantiated from 𝑉 ′
𝑇
and

be applied on 𝐺𝐿′ accordingly .
A program transformation can thereby range from a simple change
of a node’s property to a complex rewrite of a subgraph. For in-
stance, a tiling transformation may split the nodes of a map into a
pair of maps with corresponding edges. For sequences of transfor-
mations, the four steps are repeated for every new source and target
parallel loop nest of each step. If the matching problem cannot be
solved or the resulting matching does not yield a valid subgraph
for the specific transformation, the transformation is skipped. In
practice, we add further constraints to the cost matrix, e.g., setting
the cost to infinity for pairs of nodes that do not have the same type.
Furthermore, each transformation requires specific handling of its
properties. For instance, a tiling transformation may not evenly
divide the target loop extents.

6 EVALUATION
We now evaluate transfer tuning in two case studies: In the first case
study, the optimizations found by a state-of-the-art auto-scheduler
for polyhedral applications [5] are transfer tuned between applica-
tions from different domains such as image processing, numer-
ical weather prediction, and linear algebra. In the second case
study, dynamic scheduling decisions are transfer tuned between

sparse matrix-matrix multiplication (SpMM) for matrices from
suitesparse [23].

6.1 Case Study: Auto-Scheduler
Baghdadi et. al. [5] train a speedup prediction model and use this
model to guide the search of the Tiramisu auto-scheduler in a large
scheduling space consisting of typical loop transformations such
as loop interchange, tiling, parallelization, and vectorization. We
show that transfer tuning the discovered optimizations between
applications based on the performance embeddings reduces perfor-
mance optimization to a local search. The evaluation set consists
of 12 applications comprising approximately one hundred parallel
loop nests.

Experimental Setup. To find a strong reference optimization for
each parallel loop nest, we run the Tiramisu auto-scheduler’sMonte-
Carlo Tree Search (MCTS) for a larger number of epochs. Addi-
tionally, we test the 100 best hypotheses found by the search on
the target architecture to determine the overall best-performing
configuration. Hence, the optimization database comprises approx-
imately one hundred schedules corresponding to the total number
of parallel loop nests. The transfer tuned optimization for a parallel
loop nest is found by a 𝑘-nearest-neighbor search in the embedding
space of all parallel loop nests except for the parallel loop nest to
be tuned (leave-one-out). To apply the Tiramisu auto-scheduler
to our graph IR, we implement a converter from SDFGs to the
representation of programs used by this model.

Results. Table 2 lists the results of the Tiramisu auto-scheduler’s
optimization of each application as well as the results obtained by
transfer tuning for 𝑘 = 5 and 𝑘 = 10 neighbors. For the majority of
applications, the transfer-tuned runtime is within 5% of the refer-
ence at a fraction of the search complexity, seeMCTS Space column
for the number of configurations tested by the auto-scheduler. Since
the reference optimizations are found once and then stored in the
database, transfer tuning enables exhaustive offline optimization of
applications with a large scheduling space.

Daubechies Wavelet. In the embedding space, the neighbors of
a parallel loop nest act as a collection of explored search paths
based on slightly varied input conditions. The Daubechies wavelet
benchmark is an example where this neighborhood yields a consid-
erable speedup. The application consists of a single parallel loop
nest, where the outermost loop iterates over the 3 channels of an
image. Parallelizing over this loop induces a major performance
bottleneck on a CPU with 36 cores since most cores are idling.

Upon inspecting the transferred transfer tuning results, we see
that it optimized according to the Haar wavelet: MCTS fails to find
an optimization maximizing the parallelism for the Daubechies
wavelet, but succeeds in finding an optimization for the almost
identical Haar wavelet. This also showcases an important feature
of performance embeddings — as opposed to end-to-end neural
networks, transfer tuning provides explainability for its opti-
mization decisions.

Other examples are the Harris filter and the histogram filter, in
which transfer tuning finds additional potential for applying the
optimization found within the same benchmark.

56

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

Baghdadi et al. [5] Transfer Tuning

MCTS Space Runtime [ms] k=5 k=10

Deep Learning
mlp 111,508 1.47 +38.8% +37.4%
softmax 183,427 110.40 +0.6% +0.5%
Image Processing
blur filter 1,342 1.03 0.0% 0.0%
daubechies wavelet 9,101 8.73 -3.7% -92.0%
haar wavelet 8,639 0.22 0.0% 0.0%
harris filter 1,651 9.06 +0.2% -4.0%
histogram filter 147,438 32.51 +1.2% -4.9%
unsharpening filter 25,080 29.66 +3.1% +0.5%
Weather Stencils
heat 3D 69,080 13428.98 +3.6% +2.8%
horizontal diffusion 34,534 7.00 +4.8% +4.8%
Linear Algebra
matmul 65,986 14,17 +5.3% +4.1%
Graphs
min-plus mm 65,999 24.76 +9.0% +8.5%

Table 2: The runtime difference of transfer tuning for five and ten neighbors relative to the runtime of the Tiramisu auto-
scheduler [5] for polyhedral applications. The auto-scheduler uses Monte-Carlo Tree Search (MCTS) to explore a large schedule
space, whereas transfer tuning is a local search based on a few nearest neighbors.

Multi-Layer Perceptron (MLP). Although matmul and min-plus
matrix multiplication are potential candidates for optimizing the
layers in mlp, we see that transfer tuning performs worse for this
particular benchmark. The matrix multiplications of matmul and
mlp differ significantly in the dimensions of the matrices: while
matmul multiplies a 1024× 2048 and a 2048× 1024matrix, mlp mul-
tiplies weight matrices, which have a small leading dimension of 64
corresponding to the batch size. Hence, the matrix multiplications
define different trade-offs of data locality and parallelization. This
shows that the optimization database’s density (i.e., the availability
of similar neighbors) is an important hyperparameter of transfer
tuning.

6.2 Case Study: Tailored Optimization
In the second case study, we demonstrate the extensibility of trans-
fer tuning to custom optimizations by dynamically scheduling Sp-
MMs for matrices from suitesparse [23]. A typical performance
bottleneck of SpMM is an imbalanced distribution of work among
the threads, resulting from the distribution of the non-zero elements.
The standard optimization is then to change the scheduling from
a static assignment of work to threads to a dynamic assignment,
which incurs some overhead for the execution.

Experimental Setup. To define an optimization database for the
scheduling decision, we determine the optimal schedule for 42
sparse matrices from suitesparse [23] by benchmarking OpenMP’s
default static schedule and a dynamic schedule of chunk size 8. The
matrices are multiplied by a dense matrix of 512 columns filled with
random values. We evaluate whether transfer tuning can decide
the optimal schedule by splitting this set of matrices into a set that
is stored in the optimization database and a test set. The scheduling

of the test set matrices is then determined by a 1-nearest neighbor
query to the database. The resulting runtime of the matrices is
compared with the Intel MKL 2021.3 implementation of SpMM.

Figure 9: t-SNE plot of the SpMM embeddings for 42 suites-
parsematrices. Embeddings are colored by the optimal sched-
uling type, i.e., static (purple) and dynamic (orange).

Results. The t-SNE plot of the SpMM embeddings of all matri-
ces is depicted in Figure 9, where the embeddings of the different
matrices are colored by their optimal schedule. The separation of
groups by colors already indicates the applicability of the 1-nearest-
neighbor approach to dynamic scheduling. Table 3 summarizes the
runtimes of both schedules, the runtime after transfer tuning as well
as the Intel MKL baseline. Transfer tuning picks the correct sched-
uling decision for 8 out of the 10 test benchmarks. Furthermore,
the comparison with the Intel MKL baseline shows a significant

57

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

Sparse Matrix Static Dynamic Transfer MKL

as-Skitter 2574.19 719.31 719.31 1264.84
delaunay_n19 132.46 111.78 111.78 101.59
poisson3Db 157.94 86.00 86.00 112.79
citationCiteseer 135.59 125.43 135.59 134.23
FullChip 4081.38 3028.05 3028.05 3863.76
belgium_osm 180.88 206.83 180.88 240.03
com-YouTube 911.14 286.34 286.34 392.93
bcsstk13 2.90 1.82 1.82 0.62
bundle_adj 4395.73 437.39 437.39 840.43
SiO2 450.68 174.84 450.68 263.09

Table 3: Runtime of SpMM for the static and the dynamic
scheduling in the left part of the table and the runtime of
transfer tuning and Intel MKL in the right part of the table.

speedup of the optimal scheduling for a different subset of 8 out of
10 benchmarks.

BERT. The BERT transformer [25] is a standard neural network
architecture in natural language processing. The sparsification of
the dense layers is a common technique to enable efficient inference
by sacrificing a reasonable amount of accuracy [34]. In order to
show the cross-domain transfer of this knowledge, we repeat the
above experiment for the sparse weights of a sparsified model [39],
yielding a similarly separable embedding space for transfer tuning.
The tSNE plot of the sparse weights is depicted in Figure 10.

In conclusion, transfer tuning yields comparable performance
speedups on all tested cases, at times outperforming existing tools
and libraries by inferring cross-application optimizations. It can
adapt to additional insights gained by automated tools and tailored
optimizations and can be inspected to explain its reasoning behind
certain optimizations via the chosen neighbor.

7 RELATEDWORK
Automatic performance optimization and performancemodeling for
optimization has been studied by a variety of works. The following
section summarizes prior related research.

Performance Modeling and Extrapolation. Several wo-rks focused
on the automatic prediction of program and subprogram perfor-
mance. One of the earlier instances of using machine learning for
performance modeling was performed by Ipek et al. [36], who use
an MLP to predict application performance. Carrington et al. [17]
and Siegmund et al. [50] also provide performance prediction for
tuning via heuristic means on an application-level, and Calotoiu
et al. [15] model and extrapolate runtime dependency on param-
eters of general codes via time measurement of multiple small
experiments. Most such works do not focus on the optimization
transformations and their choice, but rather on accurate execution
time prediction.

Application-specific performance models [33, 42, 62] introduce
domain knowledge into the prediction and often use the generated
communication or performance model to inform an optimization
search without executing the program, which might be expensive
due to running on distributed environments.

Figure 10: t-SNE plot of the SpMM embeddings for the sparse
weights of a BERT model [39]. The embeddings are colored
by the optimal scheduling type, i.e., static (purple) and
dynamic (orange).

Polyhedral Compilers. The Pluto [13], PENCIL [3], and LLVM
Polly [32] compilers express performance optimizations as the solu-
tion of an integer linear program (ILP)with respect to a hand-crafted
cost model of the target architecture. For reasons of tractability
of the ILP, the cost model makes strong simplifying assumptions,
often yielding sub-optimal results on complex architectures [4].

Deep Code Representations. inst2vec [9], GNN-CDFG [14], Pro-
GraML [21], and IR2Vec [60] are examples of neural code represen-
tations that map static code to embeddings. The embeddings are
designed to solve typical compiler tasks and classify applications
according to their semantics. In contrast, performance embeddings
encode static and dynamic properties, aiming to capture perfor-
mance aspects regardless of the underlying algorithm.

Optimizing Compilers. Optimizing compilers are subject to ex-
tensive research. Tiramisu [6], Halide [47] and TVM [18] introduce
deep learning performance models [1, 5, 18] based on static features,
which guide the search in the scheduling space. Singh et al. [51]
extends these performance models to graph neural networks, im-
proving the prediction’s accuracy. Steiner et al. [52] re-formulate the
search problem as a Markov Decision Problem, which can be solved
using reinforcement learning. Other works utilize input-specific
and profiling features to optimize programs based on classification
problems: For instance, Elafrou et al. [27] train a neural network
to choose between classes of optimizations for sparse linear al-
gebra routines. Dutta et al. [26] combine a pattern classifier and
performance counters for selecting OpenMP configurations. Our
approach separates the performance model from the optimization
by introducing an offline optimization database. This allows the
local search in the application space, which significantly reduces
the complexity of the search and allows for the extension of the
optimization space without re-training the model. In particular, our

58

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

database-based approach is not limited to a fixed set of optimiza-
tions.

Transfer Tuning. Martins et al. [44] cluster C functions based on
static features to select the optimal compiler passes according to
the cluster assignment. Gibson and Cano [30] provide a constrained
definition of the term transfer tuning as the reuse of optimizations
found by auto-schedulers for specific operations in tensor pro-
grams. The discovered optimizations are matched by hand-crafted
heuristics to other operations. Our approach extends this concept
to intermediate representations and optimizations based on a fuzzy
matching of node embeddings. The similarity of performance em-
beddings thereby generalizes hand-crafted transfer rules.

8 DISCUSSION
The following section briefly discusses possible extensions of the
presented similarity-based framework.

Scalability. The density of the optimization database is a crucial
hyperparameter for the validity of the similarity-based approach.
However, the separation of the model and the transformations
enables offline search for further optimizations. This allows to
continuously improve the quality of the search by extending the
database (i.e., online learning) with suboptimal examples. For ex-
isting auto-schedulers, a corresponding extension of the approach
means expensive re-training and a significant increase in the sched-
uling space for all applications. This is a practical problem since
current auto-schedulers often fail for basic applications, such as the
jacobi2d benchmark on the model of Baghdadi et al. [5] or the max
filter on Adams et al. [1]. A possible next step for the approach is
to evaluate transfer tuning with larger databases.

Transformation Alignment. The matching algorithm matches a
transformation to a parallel loop nest using the Hungarian method.
However, the matching of a sequence of transformations is mod-
eled greedily, which means that a database is required that covers
symmetric cases as separate entries. However, such cases typically
require a simple modification of the transformation sequence. For
instance, a loop interchange, which is a common infix in transfor-
mation sequences, may often be skipped or replaced by a similar
interchange for specific pairs of loop nests. This problem could
be modeled as a sequence alignment problem, where the skipping
or insertion of specific transformations are latent decisions (repre-
sented by, e.g., a Hidden Markov Model). Sequence alignments are
well-known in the field of machine translation [46, 59]. Understand-
ing performance optimization as a sequence alignment between
a reference optimization and a similar loop nest gives rise to the
idea of a model-based alternative to the model-free reinforcement
learning approach presented by Steiner et al. [52].

Loop Fusion. The fusion of parallel loop nests is an important
optimization to reduce the volume of necessary data movement. In
order to support this optimization in the similarity-based frame-
work, a model is necessary which produces subgraph embeddings
for graphs of parallel loop nests. Such models are subject to current
research [2].

Target Architecture. The separation of the model and the opti-
mizations also facilitates porting the approach to new architectures.

In particular, learning a representation for similarity search is sig-
nificantly simpler than training a model that accurately predicts the
speedups of complex optimization sequences. In fact, the dynamic
encoding and the targets only need to be substituted by appropriate
performance counters and metrics for the new target architecture.
Performance models usually provide a good basis for finding rele-
vant metrics and are available for most architectures, e.g., NUMA
nodes [24], FPGA [22], GPU [45], and distributed computing [20].

9 CONCLUSION
In this paper, we present a similarity-based tuning framework that
lifts peephole optimizations by fuzzy-matching larger program
transformations. The approach separates the performance model
from the optimizations in the form of performance embeddings and
an optimization database. This enables local search for optimiza-
tions over the nearest neighbors in the embedding space.

We demonstrate the approach in different case studies highlight-
ing the reduction of the search complexity by up to four orders
of magnitude, and the extensibility of the approach to tailored
optimizations on data-dependent applications, outperforming the
state-of-the-art MKL library in certain use cases. The approach
creates a new space that can be used for explainable and robust
optimization, while remaining adaptive to future applications and
hardware — transferring a new optimization technique is as simple
as adding a row to the database.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory. LLNL-
CONF-848643. This work received EuroHPC-JU funding with sup-
port from the European Union’s Horizon 2020 program and from the
European Research Council under grant agreement PSAP, num-
ber 101002047, and grant DEEP-SEA, No. 955606. The authors also
wish to acknowledge the support from the PASC program (Platform
for Advanced Scientific Computing) for the DaCeMI project. T.B.N.
(while at ETH Zurich) and P.S. were supported by the Swiss Na-
tional Science Foundation (Ambizione Project #185778). L.T. wants
to thank Hannah, Aileen, and friends for their support.

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree
Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121 (jul 2019),
12 pages. https://doi.org/10.1145/3306346.3322967

[2] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. 2020. Sub-
graph Neural Networks. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 8017–8029. https://proceedings.neurips.cc/paper/2020/
file/5bca8566db79f3788be9efd96c9ed70d-Paper.pdf

[3] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael
Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donald-
son, Jeroen Ketema, Javed Absar, Sven Van Haastregt, Alexey Kravets, Anton
Lokhmotov, Robert David, and Elnar Hajiyev. 2015. PENCIL: A Platform-Neutral
Compute Intermediate Language for Accelerator Programming. In 2015 Inter-
national Conference on Parallel Architecture and Compilation (PACT). 138–149.
https://doi.org/10.1109/PACT.2015.17

[4] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and Konrad Trifunović. 2013.
Improved Loop Tiling Based on the Removal of Spurious False Dependences.
ACM Trans. Archit. Code Optim. 9, 4, Article 52 (jan 2013), 26 pages. https:
//doi.org/10.1145/2400682.2400711

59

https://doi.org/10.1145/3306346.3322967
https://proceedings.neurips.cc/paper/2020/file/5bca8566db79f3788be9efd96c9ed70d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5bca8566db79f3788be9efd96c9ed70d-Paper.pdf
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1145/2400682.2400711
https://doi.org/10.1145/2400682.2400711

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

[5] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, Taha Arbaoui, Karima Benatchba, and Saman Amarasinghe. 2021. A
Deep Learning Based Cost Model for Automatic Code Optimization. In Pro-
ceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Sto-
ica (Eds.), Vol. 3. 181–193. https://proceedings.mlsys.org/paper/2021/file/
3def184ad8f4755ff269862ea77393dd-Paper.pdf

[6] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization (Washington, DC, USA) (CGO 2019). IEEE
Press, 193–205.

[7] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schnei-
der, and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs: A Data-Centric
Model for Performance Portability on Heterogeneous Architectures. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’19).

[8] Tal Ben-Nun, Linus Groner, Florian Deconinck, Tobias Wicky, Eddie Davis, Jo-
hann Dahm, Oliver Elbert, Rhea George, Jeremy McGibbon, Lukas Trümper,
Elynn Wu, Oliver Fuhrer, Thomas Schulthess, and Torsten Hoefler. 2022. Produc-
tive Performance Engineering for Weather and Climate Modeling with Python.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’22).

[9] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neu-
ral Code Comprehension: A Learnable Representation of Code Semantics.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
17c3433fecc21b57000debdf7ad5c930-Paper.pdf

[10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and
Cédric Bastoul. 2010. The Polyhedral Model Is More Widely Applicable Than You
Think. In Compiler Construction, Rajiv Gupta (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 283–303.

[11] Kristof Beyls and Erik H. D’Hollander. 2001. Reuse Distance as a Metric for Cache
Behavior. In In Proceedings of the IASTED Conference on Parallel and Distributed
Computing and Systems. 617–662.

[12] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. 2008. Automatic Transformations for
Communication-Minimized Parallelization and Locality Optimization in the Poly-
hedral Model. Springer Berlin Heidelberg, Berlin, Heidelberg, 132–146. https:
//doi.org/10.1007/978-3-540-78791-4_9

[13] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (Tucson, AZ, USA) (PLDI ’08). Association for Computing Machinery,
New York, NY, USA, 101–113. https://doi.org/10.1145/1375581.1375595

[14] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-Based Graph Representations for Deep Learning Models of Code.
In Proceedings of the 29th International Conference on Compiler Construction (San
Diego, CA, USA) (CC 2020). Association for Computing Machinery, New York,
NY, USA, 201–211. https://doi.org/10.1145/3377555.3377894

[15] Alexandru Calotoiu, David Beckinsale, Christopher W. Earl, Torsten Hoefler, Ian
Karlin, Martin Schulz, and Felix Wolf. 2016. Fast Multi-parameter Performance
Modeling. In 2016 IEEE International Conference on Cluster Computing (CLUSTER).
172–181. https://doi.org/10.1109/CLUSTER.2016.57

[16] Max Carlson, Jerry Watkins, and Irina Tezaur. 2020. Improvements to the per-
formance portability of boundary conditions in Albany Land Ice. CSRI Summer
Proceedings (2020), 177–187.

[17] Laura Carrington, Allan Snavely, Xiaofeng Gao, and Nicole Wolter. 2003. A
Performance Prediction Framework for Scientific Applications, Vol. 2659. 926–
935. https://doi.org/10.1007/3-540-44863-2_91

[18] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 3393–3404.

[19] Edward Grady Coffman and Peter J Denning. 1973. Operating systems theory.
Vol. 973. prentice-Hall Englewood Cliffs, NJ.

[20] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:
Towards a Realistic Model of Parallel Computation. SIGPLAN Not. 28, 7 (jul 1993),
1–12. https://doi.org/10.1145/173284.155333

[21] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P
O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-based Program Represen-
tation for Data Flow Analysis and Compiler Optimizations. In Proceedings of the
38th International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 2244–2253.
https://proceedings.mlr.press/v139/cummins21a.html

[22] Bruno da Silva, An Braeken, Erik H. D’Hollander, and Abdellah Touhafi. 2013.
Performance Modeling for FPGAs: Extending the Roofline Model with High-
Level Synthesis Tools. Int. J. Reconfig. Comput. 2013, Article 7 (jan 2013), 1 pages.
https://doi.org/10.1155/2013/428078

[23] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[24] Nicolas Denoyelle, Brice Goglin, Aleksandar Ilic, Emmanuel Jeannot, and Leonel
Sousa. 2019. Modeling Non-Uniform Memory Access on Large Compute Nodes
with the Cache-Aware Roofline Model. IEEE Transactions on Parallel and Dis-
tributed Systems 30, 6 (2019), 1374–1389. https://doi.org/10.1109/TPDS.2018.
2883056

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[26] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, Anna Sikora, Eduardo Cesar,
and Ali Jannesari. 2022. Pattern-based Autotuning of OpenMP Loops using
Graph Neural Networks. In 2022 IEEE/ACM International Workshop on Artificial
Intelligence and Machine Learning for Scientific Applications (AI4S). 26–31. https:
//doi.org/10.1109/AI4S56813.2022.00010

[27] Athena Elafrou, Georgios Goumas, and Nectarios Koziris. 2017. Performance
Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern
Multi- andMany-Core Processors. In 2017 46th International Conference on Parallel
Processing (ICPP). 292–301. https://doi.org/10.1109/ICPP.2017.38

[28] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. Springer US,
Boston, MA, 1581–1592. https://doi.org/10.1007/978-0-387-09766-4_502

[29] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne, D. Leutwyler,
D. Lüthi, C. Osuna, C. Schär, T. C. Schulthess, and H. Vogt. 2018. Near-global
climate simulation at 1 km resolution: establishing a performance baseline on
4888GPUs with COSMO 5.0. Geoscientific Model Development 11, 4 (2018), 1665–
1681. https://doi.org/10.5194/gmd-11-1665-2018

[30] Perry Gibson and José Cano. 2022. Reusing Auto-Schedules for Efficient DNN
Compilation. CoRR abs/2201.05587 (2022). arXiv:2201.05587 https://arxiv.org/
abs/2201.05587

[31] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance
Matrix Multiplication. ACM Trans. Math. Softw. 34, 3, Article 12 (may 2008),
25 pages. https://doi.org/10.1145/1356052.1356053

[32] Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly - Per-
forming Polyhedral Optimizations on a Low-Level Intermediate Representation.
Parallel Process. Lett. 22, 4 (2012). https://doi.org/10.1142/S0129626412500107

[33] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. 2015. MODESTO: Data-Centric
Analytic Optimization of Complex Stencil Programs on Heterogeneous Architec-
tures. In Proceedings of the 29th ACM on International Conference on Supercomput-
ing (Newport Beach, California, USA) (ICS ’15). Association for Computing Ma-
chinery, New York, NY, USA, 177–186. https://doi.org/10.1145/2751205.2751223

[34] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2022. Sparsity in Deep Learning: Pruning and Growth for Efficient Inference and
Training in Neural Networks. J. Mach. Learn. Res. 22, 1, Article 241 (jul 2022),
124 pages.

[35] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2014. Cache-aware Roofline
model: Upgrading the loft. IEEE Computer Architecture Letters 13, 1 (2014), 21–24.
https://doi.org/10.1109/L-CA.2013.6

[36] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. 2005. An
Approach to Performance Prediction for Parallel Applications. In Euro-Par 2005
Parallel Processing, José C. Cunha and Pedro D. Medeiros (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 196–205.

[37] Hong Jia-Wei and H. T. Kung. 1981. I/O Complexity: The Red-Blue Pebble Game.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing
(Milwaukee, Wisconsin, USA) (STOC ’81). Association for Computing Machinery,
New York, NY, USA, 326–333. https://doi.org/10.1145/800076.802486

[38] H. W. Kuhn. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly 2,
1-2 (1955), 83–97. https://doi.org/10.1002/nav.3800020109
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109

[39] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin
Fineran, Michael Goin, and Dan Alistarh. 2022. The Optimal BERT Surgeon:
Scalable and Accurate Second-Order Pruning for Large Language Models. https:
//doi.org/10.48550/ARXIV.2203.07259

[40] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu,
Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoefler.
2021. Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower
Bounds for Statically Analyzable Programs. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures (Virtual Event, USA)
(SPAA ’21). Association for Computing Machinery, New York, NY, USA, 328–339.
https://doi.org/10.1145/3409964.3461796

60

https://proceedings.mlsys.org/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17c3433fecc21b57000debdf7ad5c930-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17c3433fecc21b57000debdf7ad5c930-Paper.pdf
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1109/CLUSTER.2016.57
https://doi.org/10.1007/3-540-44863-2_91
https://doi.org/10.1145/173284.155333
https://proceedings.mlr.press/v139/cummins21a.html
https://doi.org/10.1155/2013/428078
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/TPDS.2018.2883056
https://doi.org/10.1109/TPDS.2018.2883056
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/AI4S56813.2022.00010
https://doi.org/10.1109/AI4S56813.2022.00010
https://doi.org/10.1109/ICPP.2017.38
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.5194/gmd-11-1665-2018
https://arxiv.org/abs/2201.05587
https://arxiv.org/abs/2201.05587
https://arxiv.org/abs/2201.05587
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/2751205.2751223
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1145/800076.802486
https://doi.org/10.1002/nav.3800020109
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109
https://doi.org/10.48550/ARXIV.2203.07259
https://doi.org/10.48550/ARXIV.2203.07259
https://doi.org/10.1145/3409964.3461796

ICS ’23, June 21–23, 2023, Orlando, FL, USA Trümper et al.

[41] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[42] Mingzhen Li, Yi Liu, Hailong Yang, Yongmin Hu, Qingxiao Sun, Bangduo Chen,
Xin You, Xiaoyan Liu, Zhongzhi Luan, and Depei Qian. 2021. Automatic Code
Generation and Optimization of Large-Scale Stencil Computation on Many-
Core Processors. In Proceedings of the 50th International Conference on Parallel
Processing (Lemont, IL, USA) (ICPP ’21). Association for Computing Machinery,
NewYork, NY, USA, Article 34, 12 pages. https://doi.org/10.1145/3472456.3473517

[43] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.
05493

[44] Luiz G. A. Martins, Ricardo Nobre, João M. P. Cardoso, Alexandre C. B. Delbem,
and Eduardo Marques. 2016. Clustering-Based Selection for the Exploration of
Compiler Optimization Sequences. ACM Trans. Archit. Code Optim. 13, 1, Article
8 (mar 2016), 28 pages. https://doi.org/10.1145/2883614

[45] Cedric Nugteren and Henk Corporaal. 2012. The Boat Hull Model: Adapting
the Roofline Model to Enable Performance Prediction for Parallel Computing.
SIGPLAN Not. 47, 8 (feb 2012), 291–292. https://doi.org/10.1145/2370036.2145859

[46] F. J. Och, C. Tillmann, andH. Ney. 1999. ImprovedAlignmentmodels for Statistical
Machine Translation. In Conference on Empirical Methods in Natural Language
Processing. University of Maryland, College Park, MD, USA, 20–28.

[47] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Syl-
vain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2017. Halide:
Decoupling Algorithms from Schedules for High-Performance Image Processing.
Commun. ACM 61, 1 (dec 2017), 106–115. https://doi.org/10.1145/3150211

[48] Philipp Schaad, Tal Ben-Nun, and Torsten Hoefler. 2022. Boosting Performance
Optimization with Interactive Data Movement Visualization. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 64, 16 pages.

[49] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, Zhi-Hua Zhou (Ed.). International
Joint Conferences on Artificial Intelligence Organization, 1548–1554. https:
//doi.org/10.24963/ijcai.2021/214 Main Track.

[50] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 284–294. https://doi.org/10.1145/2786805.2786845

[51] Shikhar Singh, James Hegarty, Hugh Leather, and Benoit Steiner. 2022. A Graph
Neural Network-Based Performance Model for Deep Learning Applications.
In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming (San Diego, CA, USA) (MAPS 2022). Association for Computing
Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/3520312.3534863

[52] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value
Learning for Throughput Optimization of Deep Learning Workloads. In Pro-
ceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Sto-
ica (Eds.), Vol. 3. 323–334. https://proceedings.mlsys.org/paper/2021/file/
73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf

[53] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018. The Sparse
Polyhedral Framework: Composing Compiler-Generated Inspector-Executor
Code. Proc. IEEE 106, 11 (2018), 1921–1934. https://doi.org/10.1109/JPROC.2018.
2857721

[54] Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park,
Ryousei Takano, Jason Haga, George Sugihara, and Gerald M. Pao. 2021. KEDM:
A Performance-Portable Implementation of Empirical Dynamic Modeling Using
Kokkos. In Practice and Experience in Advanced Research Computing (Boston, MA,
USA) (PEARC ’21). Association for Computing Machinery, New York, NY, USA,
Article 8, 8 pages. https://doi.org/10.1145/3437359.3465571

[55] Jan Treibig, Georg Hager, and Gerhard Wellein. 2013. Performance Patterns
and Hardware Metrics on Modern Multicore Processors: Best Practices for Per-
formance Engineering. In Euro-Par 2012: Parallel Processing Workshops, Ioannis
Caragiannis, Michael Alexander, Rosa Maria Badia, Mario Cannataro, Alexandru
Costan, Marco Danelutto, Frédéric Desprez, Bettina Krammer, Julio Sahuquillo,
Stephen L. Scott, and Josef Weidendorfer (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 451–460.

[56] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro
Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul
H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and
Miquel Pericás. 2017. Trends in Data Locality Abstractions for HPC Systems.
IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017), 3007–3020.
https://doi.org/10.1109/TPDS.2017.2703149

[57] Didem Unat, Tan Nguyen, Weiqun Zhang, Muhammed Nufail Farooqi, Burak
Bastem, George Michelogiannakis, Ann Almgren, and John Shalf. 2016. TiDA:
High-Level Programming Abstractions for Data Locality Management. In High
Performance Computing, Julian M. Kunkel, Pavan Balaji, and Jack Dongarra (Eds.).
Springer International Publishing, Cham, 116–135.

[58] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http:
//jmlr.org/papers/v9/vandermaaten08a.html

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[60] S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar,
Ramakrishna Upadrasta, and Y. N. Srikant. 2020. IR2VEC: LLVM IR Based Scalable
Program Embeddings. ACM Trans. Archit. Code Optim. 17, 4, Article 32 (dec 2020),
27 pages. https://doi.org/10.1145/3418463

[61] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[62] Xing Wu and Frank Mueller. 2011. ScalaExtrap: Trace-Based Communication
Extrapolation for SPMD Program. Sigplan Notices - SIGPLAN 46, 113–122. https:
//doi.org/10.1145/2038037.1941569

[63] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoe-
fler. 2021. NPBench: A Benchmarking Suite for High-Performance NumPy. In
Proceedings of the ACM International Conference on Supercomputing (ICS ’21).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3447818.3460360

61

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3472456.3473517
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.1145/2883614
https://doi.org/10.1145/2370036.2145859
https://doi.org/10.1145/3150211
https://doi.org/10.24963/ijcai.2021/214
https://doi.org/10.24963/ijcai.2021/214
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1145/3520312.3534863
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1145/3437359.3465571
https://doi.org/10.1109/TPDS.2017.2703149
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3418463
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/2038037.1941569
https://doi.org/10.1145/2038037.1941569
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360

Performance Embeddings ICS ’23, June 21–23, 2023, Orlando, FL, USA

A APPENDIX
The static encoding maps nodes and edges of an SDFG to a set of fea-
tures. The mapping of SDFG node types to features is summarized
in Table 4.

Node Type Features

Access Node data type, bytes per element, shape, total size,
stride, alignment, offset, transient, storage type

Map Entry map level, map dimensions, map extents, map
steps

Map Exit one-hot encoding
Memlet start access matrix, stop access matrix, steps

vector, dynamic, indirection, reduction, type of
reduction

Table 4: An overview of the static features selected for the
static encoding of parallel loop nests. Most features directly
correspond to the properties of nodes in an SDFG.

The dynamic encoding maps the profiling to 19 performance
counters selected from 8 different groups. Table 5 lists the counters
and groups in detail.

Group Counters

Instructions INSTR_RETIRED_ANY

FP 32

FP_ARITH_INST_RETIRED_SCALAR_SINGLE
FP_ARITH_INST_RETIRED_128B_PACKED_SINGLE
FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE
FP_ARITH_INST_RETIRED_512B_PACKED_SINGLE

FP 64

FP_ARITH_INST_RETIRED_SCALAR_DOUBLE
FP_ARITH_INST_RETIRED_128B_PACKED_DOUBLE
FP_ARITH_INST_RETIRED_256B_PACKED_DOUBLE
FP_ARITH_INST_RETIRED_512B_PACKED_DOUBLE

Branching BR_INST_RETIRED_ALL_BRANCHES
BR_MISP_RETIRED_ALL_BRANCHES

DRAM Controller MEM_INST_RETIRED_ALL_LOADS
MEM_INST_RETIRED_ALL_STORES

Main Memory CAS_COUNT_RD
CAS_COUNT_WR

L3 Cache L2_LINES_IN_ALL
L2_TRANS_L2_WB

L2 Cache L1D_REPLACEMENT
L1D_M_EVICT

Table 5: An overview of the performance counters selected
for the dynamic encoding on the Intel Xeon Gold 6140 CPU.

62

	Abstract
	1 Introduction
	2 Similarity in Performance Optimization
	3 Embedding Parallel Loop Nests
	3.1 Parallel Loop Nests
	3.2 Encoding
	3.3 Model
	3.4 Validation

	4 Performance Similarity
	5 Transfer Tuning
	5.1 A Matching Problem for Program Transformations

	6 Evaluation
	6.1 Case Study: Auto-Scheduler
	6.2 Case Study: Tailored Optimization

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Appendix

