Design and Evaluation of Nonblocking Collective
I/O Operations

Vishwanath Venkatesan', Mohamad Chaarawi!, Edgar Gabriel!, and Torsten
Hoefler?

! Department of Computer Science, University of Houston,
{venkates, mschaara, gabriel}@cs.uh.edu
2 Blue Waters Directorate, University of Illinois
htor@illinois.edu

Abstract. Nonblocking operations have successfully been used to hide
network latencies in large scale parallel applications. This paper presents
the challenges associated with developing nonblocking collective 1/O op-
erations, in order to help hiding the costs of I/O operations. We also
present an implementation based on the libNBC library, and evaluate
the benefits of nonblocking collective I/O over a PVFS2 file system for
a micro-benchmark and a parallel image processing application. Our re-
sults indicate the potential benefit of our approach, but also highlight
the challenges to achieve appropriate overlap between I/O and compute
operations.

1 Introduction

Overlapping computation and communication is a standard technique to op-
timize the performance of parallel applications. This technique allows to hide
latencies and improve bandwidth of data transfers to remote processes. This
functionality is offered to the user through a special nonblocking interface, which
allows to start operations and check for completions later. Benefits of nonblock-
ing operations have been demonstrated for point-to-point [1, 2] and nonblocking
collective [3, 4] operations. The Message Passing Interface (MPI) standard speci-
fies so called “immediate” versions of some operations. MPI-2.2 offers immediate
versions of all point-to-point communication calls and MPI-3.0 will add imme-
diate versions of all collective communication functions. Those special functions
return with a handle before the operation is completed. The handle can be used
to test and wait for completion of the associated operations.

With the advent of data-intensive computing [5], the input/output from/to
disk (I/O) of application data can become a significant bottleneck. This does
not only include reading the dataset initially and saving it at the end but also
periodic application-level checkpoints and out-of-core processing. In addition to
this, while the compute and network power of parallel HPC systems is growing
steadily, the performance of the I/O subsystem can often not keep up with this
growth. Thus, nonblocking I/O interfaces are important to improve application
performance.

In this work, we propose a new interface that is similar to the newly intro-
duced nonblocking collective communication operations and show an optimized
implementation of this interface. In particular, the contributions of this paper
are as follows:

1. We propose a simple extension to the MPI-2.2 standard to enable the user
to specify overlap of I/O operations with other computation and communi-
cation operations conveniently.

2. We describe a framework to efficiently implement nonblocking collective I/O
routines.

3. We demonstrate an implementation of this framework and performance re-
sults on a parallel file system.

The outline of the paper is as follows: section 2 presents the technical chal-
lenges associated with nonblocking collective I/O operations. Section 3 evaluates
the benefits of nonblocking collective I/O operations, followed by a general dis-
cussion on nonblocking collective I/O interfaces in section 4. Finally, section 5
summarizes the contributions of the paper and presents the ongoing work in this
domain.

2 Challenges of Nonblocking Collective I/O Operations

In the following, we detail the challenges of providing nonblocking collective I/O
operations. For this, we describe first the collective I/O algorithm used and then
elaborate the extensions introduced in libNBC.

2.1 Collective I/O Algorithm

The collective I/O algorithm used for the prototype implementation of nonblock-
ing collective I/O operations is based on the dynamic segmentation algorithm [6].
This algorithm is an extension of the classical two-phase collective I/O algorithm.
Similar to two-phase I/0O, the main goal of this algorithm is to combine data
from multiple processes in order to minimize the number of discontiguous I/0
requests. In contrast to two-phase I/O however, the dynamic segmentation algo-
rithm does not create a globally sorted data array based on the offsets in the file.
Instead, each aggregator is assigned a group of processes and performs the data
gathering/scattering and sorting only within its group. This allows to execute
the shuffle step including the sorting and data gathering/scattering more effi-
ciently, since the Alltoall(v) type communication in the two-phase I/O algorithm
is replaced by a number of independent Allgather(v) operations in the dynamic
segmentation algorithm.

For very large collective operations, the dynamic segmentation algorithm is
split into multiple cycles. This allows to keep the amount of temporary buffer
required on the aggregator processes within constant, reasonable limits. Note,
that depending on the offsets into the file a process might have to contribute
different amounts of data to its aggregator in each cycle.

2.2 A Framework for Nonblocking Collective I/O Operations

A similar problem, the implementation of nonblocking collective operations, has
been discussed in [4]. The framework for nonblocking collectives is implemented
in the open-source library libNBC. We utilize and extend 1ibNBC in conjunc-
tion with Open MPI’'s OMPIO framework [7] to handle nonblocking collective
I/O operations. The central concept in libNBC’s design is the collective oper-
ation schedule. During initialization of the operation, each process records its
part of the collective operation in a local schedule. A schedule contains, among
others, send and recv operations and a so called “barrier” which acts as local
synchronization object. A barrier in a schedule has the semantics that all oper-
ations before the barrier have to be finished before any of the operations after
the barrier can be started. The execution of a schedule is nonblocking and the
state of the operation is simply kept as a pointer to a position in the schedule.
With send, recv, and barrier, one can express many collective communication
algorithms; see [4] for further details.

A major difference between collective communication and collective 1/O op-
erations stems from the fact, that each process is allowed to provide different
volumes of data to a collective read or write operation, without having knowledge
on the data volumes provided by other processes. This is not the case for collec-
tive communication operations, where either each process provides exactly the
same amount of data (e.g. Bcast, Reduce, Allreduce, Gather, Scatter, Allgather,
Alltoall ete.) or in case of the vector version of the operations a process knows
the communication volumes of all processes communicating with him (Gatherv,
Scatterv, Allgatherv, Alltoallv, Alltoallw). This information is, however, essen-
tial to determine how much data a process has to contribute within a cycle of
the collective I/O operation.

Thus, the first step in most collective I/O algorithms is an Allgather(v) step
which determines the overall amount of data each process is contributing along
with the according offsets into the file. In the case of the dynamic segmentation
algorithm, this communication operation is within each group of an aggregator.
This allows every process to determine how much data it has to contribute in
every cycle of the algorithm. For nonblocking operations, the challenge is, that
upon calling MPI_File iwrite_all the according Allgather(v) operations can
not be finished, since this would result in a blocking communication operation
when initiating the nonblocking write-all. This is however not possible, since it
could lead to a deadlocks.

Thus, the solution developed here consists of a two-step approach: while initi-
ating the nonblocking collective read /write operation, we generate first a sched-
ule which executes the nonblocking Allgather(v) communication step ® The last
step of the Allgather(v) schedule will be executed when the Allgather(v) opera-
tion is finished, and creates a new schedule which executes the actual collective

3 Note, that the operation is not exactly an MPI_Allgatherv, but consists of multi-
ple Allgather(v) operations executed on disjoint groups of processes in the same
communicator.

I/0 operations. This second schedule contains the data gathering at the aggrega-
tor processes, the sorting based on the offsets into the file, and the asynchronous
writing to the file.

Associated with that are two further challenges: first, no temporary buffers
used within the collective I/O algorithm can be allocated upfront when posting
the operation, since the overall amount of data and many of the according buffers
are only known at the end of the Allgather(v) step. Therefore, we extended the
set of operations supported by the progress engine of 1ibNBC in addition to
nonblocking read and write by dynamic memory management functions, which
allow to allocate and free buffers as part of the libNBC schedule. Second, due to
the fact that the asynchronous I/O operation are implemented using aio_read
and aio_write operations which have their own data structure to identify pend-
ing operations, the libNBC progress engine has been extended with the ability
to progress multiple, different handles simultaneously, e.g. MPI_Requests for
communication operations and the internal aio-handles for asynchronous I/0
operations.

2.3 Schedule Caching

One of the distinct features of libNBC is its ability to cache a schedule of a
collective operation. This allows to speed up execution of operations which are
posted repeatedly by an application. I/O operations generally fit the repetitive
pattern required for caching a schedule, e.g. in case an application writes periodic
checkpoint files. In this scenario an application has two options. The first option
is to append the most recent data that has to be written to the end of an
existing file. The second option would use a different file for every checkpoint.
Both approaches post unique challenges for caching a schedule.

For the first option, the challenge comes from the fact that every collective
I/O operation which appends data to an already existing file will lead to new
offset values into the file. Moreover, the MPI standard also allows for a process
to mix individual and collective I/O calls, which makes predicting the current
position of the file pointer of a process impossible. Since the order in which data
has to be written to the file depends on the file view and the current position
of the individual file pointer, the actual amount of data that a process has to
contribute to a particular cycle of the collective I/O is not necessarily repetitive,
even if the arguments passed to the MPI function are identical to the previous
instance. Thus, caching the schedule would not help in this scenario.

The second scenario where a separate file is used for every checkpoint is
equally challenging, due to the fact the schedules would be cached on a per file
handle basis. This is in equivalence to the collective communication operations,
where the caching is being done on a per communicator basis, although the
MPI specification does not providing attribute caching functions on files as of
today. Transferring a schedule from one file handle to another file handle can
theoretically be done, the challenge being however how to keep a file handle
around once a file has been closed, without creating an unnecessary memory
overhead.

3 Performance Evaluation

In the following section we evaluate the impact of the nonblocking collective I/O
operations. We first describe the execution environment followed by the results
obtained with a micro-benchmark and a parallel image processing application.

3.1 Experimental Setting

The system used in these tests is the crill-cluster at the University of Houston,
which consists of 16 nodes with four 12-core AMD Opteron (Magny Cours)
processor cores each (48 cores per node, 768 cores total), 64 GB of main memory
and two dual-port InfiniBand HCAs per node. The parallel file system used is
PVFS2 with 16 I/O servers and a stripe size of 64 KB. The file system is mounted
onto the compute nodes over the Gigabit Ethernet network interconnect of the
cluster. The current implementation of nonblocking I/O collective operations is
tied to Open MPI and its new parallel I/O framework (OMPIO), mostly for
retrieving and maintaining file handle related aspects and for decoding derived
data types and the file view. The version of Open MPI executed is equivalent to
the Open MPI trunk revision 24640. In the following analysis we focus, for the
sake of simplicity, on write operations.

The first test executed is using the Latency-1O micro-benchmark developed
as part of the latency test suite [8], which is a micro-benchmark executing either
individual or collective I/O operations. Initially, we compare the performance
obtained with the blocking version of the dynamic segmentation algorithm vs.
a sequence of NBC_File_iwrite_all followed by NBC_Wait. Table 1 presents the
bandwidth achieved in both scenarios for 64 and 128 MPI processes when using
32 aggregator processes and a 4 MB cycle buffer size. The overall file size written
were 63 GB and 125 GB respectively (1000MB per process). All tests have
been executed three times, and we present the average bandwidth obtained over
all three runs. Note that the variation in the individual performance numbers
between different runs very fairly small. The results indicate a small overhead
for the 64 processes test case of the nonblocking implementation, which achieved
94% of the bandwidth obtained with the blocking version. For 128 processes
the nonblocking version slightly outperformed the blocking version, which we
attribute however to measurement jitter. All-in-all, the conclusion drawn from
this analysis is that nonblocking implementation does not impose a significant,
fundamental overhead compared to the blocking version.

Table 1. Performance comparison of blocking vs. nonblocking collective I/O algorithm.

No. of processes|Blocking Bandwidth|Nonblocking Bandwidth
64 703 MB/s 660 MB/s
128 574 MB/s 577 MB/s

In the second test we evaluate the ability to overlap collective I/O operations
with compute operations. For this, the same benchmark is executing a compute
function after posting the nonblocking collective write operation. The compute
operation is configured to take the equal amount of time as the I/O operation.
Thus, we expect to observe an overall execution time equal or larger than the
time required to perform the I/O operation only for the according scenario,
with the upper bound being twice the amount of time required for the same
test without the compute operation in case I/O and computation cannot be
overlapped. Table 2 presents the results achieved for the same test cases as
outlined above, the first column being the time spent in the I/O test without
overlap, the second column representing the time spent in writing the same
amount of data and performing an equally expensive compute operation, and the
third column showing the time spent in the compute operation for the overlap
test.

Table 2. Evaluating the overlap potential of nonblocking collective I/O operations.

No. of processes|I/O only time|Overlapping time|Time spent in computation
64 85.69 sec 85.80 sec 85.69 sec
128 205.39 sec 205.91 sec 205.39 sec

The results in this section indicate the ability to entirely hide the I/O opera-
tion under optimal circumstances. These optimal circumstances are represented
by the ability of libNBC to progress the operation either through a progress
thread or through inserting regularly NBC_Test function calls into the compute
operation. Within the context of this analysis, we choose the second approach.
Moreover, we also identified that the frequency and number of calls to NBC_Test
have a tremendous influence on the overlap performance: calling it too often will
introduce an additional overhead, if there are to few calls to this function, the
library will not be able to progress the function. In our experimental results we
identified the time required to execute one cycle in the dynamic segmentation
algorithm as the optimal interval between two subsequent calls to NBC_Test.

3.2 An Application Scenario

Further tests have been executed with a parallel image processing application.
This application is used to analyze smear sample from fine needle aspiration
cytology, with the overall goal being to assist medical doctors in identifying
cancer cells [9]. The challenge imposed by this application is due to the high
resolution of the microscopes and the fact that images are captured at various
wave-length to identify different chemical properties of the cells. For a 1em x 1em
sample with 31 spectral channels the image can contain overall up to 50GB of
raw data. The MPI version of the code has furthermore the option to write the
texture data into output files to facilitate future processing steps in realizing a

complete computer aided diagnosis (CAD) solution. This makes the application
compute and I/O intensive.

For the following tests, we focus on the code section which writes the tex-
ture data into files. This code sequence contains a loop in which texture data
for each of the twelve Gabor filters is calculated and then written to a separate
file. The computational part within this loop consists of two parallel fast-fourier
transforms (FFTs), which are implemented using the FFTW library [10] version
2.1.5, and a convolution operation. For the version using the non-blocking collec-
tive I/O functions, writing the texture data in one iteration is overlapped with
the execution of the FFTs and the convolution of the next iteration. Progress
of the non-blocking collective I/O operation is implemented in two ways. The
first one uses NBC_Test function calls in-between each FFT and the convolution
operation. The second code version uses a patched version of the FFTW library
which contains further function calls to NBC_Test. Note, that the initial reading
of the image and final writing of the cluster assignments have not been modified
and still use the blocking collective MPI I/O version.

For evaluation purposes we used two separate images. The first image has
8192 x 8192 pixels and 21 spectral channels, writing 12 times 256 MB of texture
data (3 GB total) . The second image has 12281 x 12281 pixels and also 21
spectral channels, writing 12 times 576 MB of data (6.75 GB total). Tests have
been executed with 64 and 96 processes on the same cluster and file system as in
the previous section. Figure 1 show the times spent in I/O operations for each
test case. We present again the average obtained over three separate runs. Note,
that we ensured that both blocking and non-blocking collective I/O operation
use the same algorithm, with the same number of aggregator processes and the
same cycle buffer size.

MPI ENBC MNBC w/FFTW MPI B NBC MNBC w/FFTW

w
(@]
NWw
[)

N
v

~N)
o
[N}
o

-
ul
=
ul

Execution Time [sec]
Execution Time [sec]

=
o u o

-
o u o

64 96 64 96

Fig. 1. Comparison of I/O times for 8k x 8k image (left) and 12k x 12k image (right)
for 64 and 96 MPI processes.

The results indicate that the version of the code which uses the FFTW library
as a ’black box’, i.e. without any NBC_Test function calls inserted, offers only
little benefit compared to the original version of the code which uses blocking,
collective MPII/O operation. The main problem is the limited ability to progress

the non-blocking operations without a progress thread and with a very small
number of calls to NBC_Test. On the other hand, using the patched version of
the FFTW library ensures more progress and demonstrates significant benefits
of the non-blocking collective I/O operations. The benefit is more obvious for
the 64 processes test cases compared to the 96 processes test cases due to the
increased execution time of the FFTs and the convolution for the 64 process test
cases, which offer therefore more potential for overlapping computation and 1/0O
operations. Hiding the entire costs of the I/O operations for a real application
is however very difficult, since i) the application has to have compute intensive
sections that can be used for overlapping computation and I/O operations and ii)
the timespan between two subsequent calls to NBC_Test can not be controlled in
the similar manner as for the micro-benchmark. Nevertheless, with some efforts
we were able to reduce the time spent in I/O operation by up to 35% — which
can be highly significant for large scale applications.

4 Discussion

To mitigate potential performance bottlenecks, MPI added support for nonblock-
ing file routines. However, collective MPI file operations can only be expressed
with the limited split collective interface. The main limitations are that (1) there
must only be a single split collective active on a file handle at any time and (2)
no other collective file I/O operations can be issued on a file handle when a split
collective is active. The first limitation prevents optimization techniques such as
pipelined communications for communication/communication overlap [11] and
the second limitation reduces programmability. The MPI-2.2 standard also al-
lows to perform a global synchronization in the begin call of a split collective.
This limits certain usage patterns.

Our nonblocking collective I/O framework allows to offer two additional fea-
tures: (1) explicit progress and (2) multiple outstanding operations.

Thus, we propose to extend the MPI standard similar to nonblocking collec-
tive operations, i.e., to add immediate versions of all split collective operations,
e.g., MPI_File_iread_all(..., MPI_Request req) and adding a request as last pa-
rameter. For file operations, the file pointer is advanced within the immediate
function call, so that following calls operate on the right offset. We omit a list
of all functions for space reasons.

The new functions can be used like nonblocking point-to-point and collective
operations and the returned requests can be tested and waited on for completion
with the usual functions (e.g., MPI_Test). Implicit progress can be problematic
under certain circumstances while explicit progress puts a higher burden on the
user [12]. Our interface proposal allows the implementation to offer both choices
to the user. In addition, having multiple outstanding operations allows to employ
pipelining techniques for overlapping communication and computation.

5 Conclusion

In this paper we discussed the challenges associated with non-blocking collective
I/O operations. We present a framework which provides non-blocking versions
of the collective read and write operations by extending the libNBC library. The
performance of write operation has been evaluated using a micro benchmark and
parallel image processing application. The results indicate the potential to ac-
tually overlap computation and I/O operations using these functions. However,
the main challenge is how to ensure progress of the non-blocking collective 1/0O
operations in the absence of a progress thread. The currently ongoing work in-
cludes multiple domains. First, we plan to extend the analysis to collective read
operations. Second, we plan to perform a similar set of analysis as shown in this
paper on different file systems, specifically on a large scale Lustre installation.

References

1. Brightwell, R., Underwood, K.D.: An analysis of the impact of MPI overlap and
independent progress. In: ICS ’04: Proceedings of the 18th annual international
conference on Supercomputing, New York, NY, USA; ACM Press (2004) 298-305

2. Baude, F., Caromel, D., Furmento, N., Sagnol, D.: Optimizing metacomputing with
communication-computation overlap. In: PaCT ’01: Proceedings of the 6th Inter-
national Conference on Parallel Computing Technologies, London, UK, Springer-
Verlag (2001) 190-204

3. Hoefler, T., Gottschling, P., Lumsdaine, A., Rehm, W.: Optimizing a Conjugate
Gradient Solver with Non-Blocking Collective Operations. Elsevier Journal of
Parallel Computing (PARCO) 33(9) (9 2007) 624-633

4. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI. In: Proc. of the 2007 Intl. Conf.
on High Perf. Comp., Networking, Storage and Analysis, SC07, IEEE Computer
Society/ACM (Nov. 2007)

5. Kothe, D., Kendall, R.: Computational science requirements for leadership com-
puting. Technical report, ORNL/TM-2007/44 (2007)

6. Chaarawi, M., Chandok, S., Gabriel, E.: Performance Evaluation of Collective
Write Algorithms in MPI I/O. In: Proceedings of the International Conference on
Computational Science (ICCS). Volume 5544., Baton Rouge, USA (2009) 185-194

7. Chaarawi, M., Gabriel, E., Keller, R., Graham, R.L., Bosilca, G., Dongarra, J.J.:
OMPIO: A Modular Software Architecture for MPI I/O. In: accepted for publica-
tion at the EuroMPI Conference, Santorini, Greece (September 2011)

8. Gabriel, E., Fagg, G.E., Dongarra, J.J.: Evaluating dynamic communicators and
one-sided operations for current MPI libraries. International Journal of High Per-
formance Computing Applications 19(1) (2005) 67-79

9. Gabriel, E., Venkatesan, V., Shah, S.: Towards high performance cell segmentation
in multispectral fine needle aspiration cytology of thyroid lesions. Computational
Methods and Programs in Biomedicine 98(3) (2009) 231-240

10. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of IEEE 93(2) (2005) 216231 Special issue on “Program Generation, Optimiza-
tion, and Platform Adaptation”.

11.

12.

Bell, C., Bonachea, D., Cote, Y., Duell, J., Hargrove, P., Husbands, P., lancu, C.,
Welcome, M., Yelick, K.: An evaluation of current high-performance networks. In:
Proc. of the 17th Int. Symp. on Par. and Distr. Proc. (2003) 28.1
Hoefler, T., Lumsdaine, A.: Message Progression in Parallel Computing - To
Thread or not to Thread? In: Proceedings of the 2008 IEEE International Confer-
ence on Cluster Computing, IEEE Computer Society (Oct. 2008)

