Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publications of SPCL

A. Arteaga, O. Fuhrer, T. Hoefler, T. Schulthess:

 Model-Driven Choice of Numerical Methods for the Solution of the Linear Advection Equation

(In Proceedings of the International Conference on Computational Science (ICCS'17), presented in Zurich, Switzerland, pages , Elsevier, ISBN: , Jun. 2017, )

Publisher Reference

Abstract

Designing a partial differential equations solver is a complex task which involves making choices about the solution algorithm and its parameters. Such choices are usually done on the basis of personal preference or numerical experiments, which can introduce significant bias on the selection process. In this work we develop a methodology to drive this selection process towards the optimal choices by modelling the accuracy and the performance of the solution algorithm. We show how this methodology can be successfully applied on the linear advection problem. As a result, the selection can be optimally performed with a much lower investment on the development of high-performance versions of the solvers and without using the target architecture for numerical experiments.

Documents

download article:


Recorded talk (best effort)

 

BibTeX

@inproceedings{arteaga-model-driven,
  author={A. Arteaga and O. Fuhrer and T. Hoefler and T. Schulthess},
  title={{Model-Driven Choice of Numerical Methods for the Solution of the Linear Advection Equation}},
  year={2017},
  month={06},
  pages={},
  booktitle={Proceedings of the International Conference on Computational Science (ICCS'17)},
  location={Zurich, Switzerland},
  publisher={Elsevier},
  isbn={},
  note={},
}