1 Probability of Path Collisions

We consider a random communication pattern of endpoints,
where for each endpoint s’, we pick an endpoint ¢’ uniformly
at random. This also gives us, u.a.r., a vertex ¢; for each s§
attached to some vertex s, effectively we get N = p - N, pairs
(s,7) sampled u.a.r.. Now, the probability of having a path
collision is given by the birthday paradox, with the number
of node pairs P = N? as the number of days and the number
of endpoints N as the sample size':
Py
P (collision) =1 — N (1)

For the given random pattern, this is essentially 1 for all
usual configurations, even with p = 1 it is = 50%. We can
also look at smaller subsets of endpoints, e. g. the same
pattern for all sources on a single node (note that now P
is smaller): for p = %, we get around 5% (N, = 722, SF).
This means collisions are not negligible even for low-load,
random patterns.

We can also compute the expected number of colliding
paths C (summed over all colliding sets, excluding the first,
non-colliding, path per set) for this workload:

N
E(C)—N—P+P(P]:1> 2)

This gives values of a few times k' for the SF configura-
tions with p = %/
For comparison, the number of collisions on endpoints
(s] # s, with 1] = 1}) is according to the same formula
N
N-1 N
E(C)=N-N+4+N|—) ~— 3
@) (*F) =Y o
which is much higher and impacts performance much more.
We can also estimate the maximum size of a collision
group: the number of collision groups is bounded by the to-
tal number of colliding paths. Since this is small compared
to P, we can estimate the probability of a size three set as

c\¢
P (3-way collision) ~ 1 — (1 - P) 4)
which remains around 1% for the mentioned configuration.
Therefore, we can conclude that multi-path routing has to
be able to handle at least pairs of colliding paths on a small
subset of paths. If there are no shortest paths available, non-
minimal paths can be used and the average path length will
increase slightly.

2 Efficient Path Counting

Some of the measures for path diversity are computation-
ally hard to derive for large graphs. Algorithms for all-pairs
shortest paths analysis based on adjacency matrices are well

Lk is the falling factorial x- (x—1)-...- (x—k+1)

known, and we reintroduce one such method here for the
purpose of reproducibility. For the disjoint-paths analysis
however, all-pairs algorithms exist, but are not commonly
known. We introduce a method by Cheung et. al [?] and we
adapt for length-limited edge connectivity computation.

2.1 Matrix Multiplication for Path Counting

It is well known that for a graph represented as an adjacency
matrix, matrix multiplication (MM) can be used to obtain
information about paths in that graph. Variations of this in-
clude the Floyd-Warshall algorithm [?] for transitive closure
and all-pairs shortest paths [?], which use different semir-
ings to aggregate the respective quantities. To recapitulate
how these algorithms work, consider standard MM using -
and + operators on non-negative integers, which computes
the number of paths n;(s,#) between each pair of vertices.

Theorem 1. IfA is the adjacency matrix of a directed graph

G= (V,E), Ai"j =1 lff(l,]) cFE al’ldAw‘ =0 l]f(l,]) gE,

then each celli€ V,j €V of Q=A' = A-...-A contains the
—

[ times

number of paths from i to j with exactly [ steps in G.

Proof. By induction on the path length [: For [ =1, Al = A
and the adjacency matrix contains a 1 in cell i, j iff (i, j) €
E, else 0. Since length-1 paths consist of exactly one edge,
this satisfies the theorem. Now consider matrices A”, A? for
p + g = [ for which the theorem holds since p,q < [. We
now prove the theorem also holds for A’ = A” . A, Matrix
multiplication is defined as

(AP -A%); ;= ;Agk AL 5)

According to the theorem, Aff ¢ 18 the number of length-p
paths from i some vertex k, and AZ_ . is the number of length-
q paths from said vertex k to j. To reach j from i via k, we
can choose any path from i to k and any form k to j, giving
Af k -AZ’ j options. Since we are interested in all paths from
i to j, we consider all intermediate vertices k and count the
total number (sum) of paths. This is exactly the number of
length-/ paths demanded by the theorem, since each length-
I path can be uniquely split into a length-p and a length-g
segment. O

In the proof we ignored a few details caused by the ad-
jacency matrix representation: first, the adjacency matrix
models a directed graph. We can also use the representation
for undirected graphs by making sure A is symmetrical (then
also A! is symmetrical). Adjacency matrices contain the en-
try A; j = 0 to indicate (i, j) ¢ E and A; ; = 1 for (i, j) € E.
By generalizing A; ; to be the number of length-1 paths (=
number of edges) from i to j as in the theorem, we can also
represent multi-edges; the proof still holds.

Finally, the diagonal entries A; ; represent self-loops in the
graph, which need to be explicitly modeled. Note that also



i = j is allowed above and the intermediate vertex k can be
equal to i and/or j. Usually self-loops should be avoided
by setting A;; = 0. Then A/, will be the number of cycles
of length I passing through 7, and the paths counted in Aij
will include paths containing cycles. These cannot easily be
avoided in this scheme?. For most measures, e.g., shortest
paths or disjoint paths, this is not a problem, since paths con-
taining cycles will naturally never affect these metrics.

On general graphs, the algorithms outlined here are not
attractive since it might take up to the maximum shortest path
length D iterations to reach a fixed point, however since we
are interested in low-diameter graphs, they are practical and
easier to reason about than the Floyd-Warshall algorithms.

2.1.1 Matrix Multiplication for Routing Tables

As another example, we will later use a variation of this algo-
rithm to compute next-hop tables that encode for each source
s and each destination ¢ which out-edge of s should be used
to reach ¢. In this algorithm, the matrix entries are sets of
possible next hops. The initial adjacency matrix will contain
for each edge in G a set with the out edge index of this edge,
otherwise empty sets. Instead of summing up path counts,
we union the next-hop sets, and instead of multiplying with
zero or one for each additional step, depending if there is
an edge, we retain the set only if there is an edge for the
next step. Since this procedure is not associative, it cannot
be used to form longer paths from shorter segments, but it
works as long as we always use the original adjacency ma-
trix on the right side of the multiplication. The correctness
proof is analogous to the path counting procedure.

2.2 Counting Disjoint Paths

The problem of counting all-pairs disjoint paths per pair is
equivalent to the all-pairs edge connectivity problem which
is a special case of the all-pairs max flow problem for uni-
form edge capacities. It can be solved using a spanning tree
(Gomory-Hu tree [?]) with minimum s — ¢-cut values for the
respective partitions on the edges. The minimum s —¢ cut
for each pair is then the minimum edge weight on the path in
this tree, which can be computed cheaply for all pairs. The
construction of the tree requires &'(N,) s —t-cuts, which cost
O (N?) each (e.g., using the Push-Relabel scheme [?]).

Since we are more interested in the max flow values,
rather than the min-cut partitions, a simplified approach can
be used: while the Gomory-Hu tree has max flow values
and min cut partitions equivalent to the original graph, a
equivalent flow tree [?] only preserves the max flow values.
While constructing it needs the same number of max-flow
computations, these can be performed on the original in-
put graph rather than the contracted graphs of Gomory-Hu,
which makes the implementation much easier.

2Setting Aﬁ,i = 0 before/after each step does not prevent cycles, since a
path from i to k might pass j, causing a cycle, and we cannot tell this is the
case without actually recording the path.

For length-restricted connectivity, common max-flow al-
gorithms have to be adapted to respect the path length con-
straint. The Gomory-Hu approach does not work, since it is
based on the principle that the distances in the original graph
do not need to be respected. We implemented an algorithm
based on the Ford-Fulkerson method [?], using Breadth-First
Search (BFS) [?], which is not suitable for an all-pairs anal-
ysis, but can provide results for small sets of samples.

The spanning-tree based approaches only work for undi-
rected graphs, and solve the more general max-flow prob-
lem. There are also algorithms that only solve the
edge-connectivity problem, using completely different ap-
proaches. Cheung et. al [?] propose an algorithm based on
linear algebra which can compute all-pairs connectivity in
O(|E|® 4 |V|?K'®) where @ < 3 is the exponent for matrix-
matrix multiplication. For our case of kK’ =~ /N, and naive
matrix inversion, this is &' (N*>) with massive space use, but
there are many options to use sparse representations and it-
erative solvers, which might allow to reach ¢(N3*). Due to
their construction, those algorithms also allow a limitation of
maximum path length (with a corresponding complexity re-
duction) and the heavy computations are built on well-known
primitives with low constant overhead and good parallel scal-
ing, compared to classical graph manipulation.

2.3 Deriving Edge Connectivity
This scheme is based on the ideas of Cheung et. al. [?]. First
we adapt the algorithm for vertex connectivity, which allows
lower space- and time complexity than the original algorithm
and might also be easier to understand. The original edge-
connectivity algorithm is obtained by applying it to a trans-
formed graph.? We then introduce the path-length constraint
by replacing the exact solution obtained by matrix inversion
with an approximated one based on iterations, which corre-
spond to incrementally adding steps. The algorithm is ran-
domized in the same way as the original is; we will ignore
the probability analysis for now, as the randomization is only
required to avoid degenerate matrices in the process and al-
low the use of a finite domain. The domain F is defined to be
a finite field of sufficient size to make the analysis work and
allow a real-world implementation; we can assume F = R
for the algorithm itself.

First, we consider a connection matrix, which is just the
adjacency matrix with random coefficients for the edges:

~_Jx€Fuar iff (i,j) € E
") 0 else.

(6)

In the edge-connectivity algorithm we use a much larger
adjacency matrix of a transformed graph here (empty rows
and columns could be dropped, leaving an |E| x |E| matrix,

3Vertex—connectivity, defined as the minimum size of a cut set ¢y C V' \
{s,1} of vertices that have to be removed to make s and ¢ disconnected, is not
well defined for neighbors in the graph. The edge-connectivity algorithm
avoids this problem, but this cannot be generalized for vertex-connectivity.



but our implementation does not do this since the empty rows
and columns are free in a sparse matrix representation):

(N

< _{xeFu&niﬁUJjeEA@J)eE
(), (k) 0 else.

Now, we assign a vector F; € F*, where k is the maxi-
mum vertex degree, to each vertex i and consider the system
of equations defined by the graph: the value of each vertex
shall be the linear combination of its neighbors weighted by
the edge coefficients in K. To force a non-trivial solution,
we designate a source vertex s and add pairwise orthogonal
vectors to each of its neighbors. For simplicity we use unit
vectors in the respective columns of a k x |V| matrix P (same
shape as F'). So, we get the condition

F=FK+P. ()

This can be solved as
F=—P(I-K)"". )

The work-intensive part here is inverting (I — K), which
can be done explicitly and independently from s, to get a
computationally inexpensive all-pairs solution, or implicitly
only for the vectors in P; for a computationally inexpensive
single-source solution. To compute connectivity, we use the
following theorem. The algorithm outlines in the following
proof counts vertex-disjoint paths of any length.

Theorem 2. The size of the vertex cut set cg from s to t
equals rank(FQ;), where F = —P;(I1—K) ™! and Q, is a |V | x
k permutation matrix selecting the incoming neighbors of't.

Proof. First, ¢y < rank(FQy), because all non-zero vectors
were injected around s and all vectors propagated through the
cut set of ¢, vertices to ¢, so there cannot be more than ¢y, lin-
early independent vectors near ¢. Second, ¢y, > rank(FQ;),
because there are ¢y vertex-disjoint paths from s to . Each
passes through one of the ¢y outgoing neighbors of s, which
has one of the linearly independent vectors of Py assigned
(combined with potentially other components). As there is a
path from s to ¢ trough this vertex, on each edge of this path
the component of P; will be propagated to the next vertex,
multiplied by the respective coefficient in K. So, at t each of
the paths will contribute one orthogonal component. O

To count length-limited paths instead, we simply use an
iterative approximation of the fixed point instead of the ex-
plicit solution. Since we are only interested in the ranks of
sub-matrices, it is also not necessary to actually find a precise
solution; rather, following the argument of the proof above,
we want to follow the propagation of linearly independent
components through the network. The first approach is sim-
ply iterating Equation ?? from some initial guess. For this

guess we use zero vectors, due to P in there we still get
nontrivial solutions but we can be certain to not introduce
additional linearly dependent vectors:

Ro=(0) (kx V)

(10)
F=F_K+P.

This iteration still depends on a specific source vertex s.
For an all-pairs solution, we can iterate for all source ver-
tices in parallel by using more dimensions in the vectors, we
set k = |[V|. Now we can assign every vertex a pairwise or-
thogonal start vector, e.g., by factoring out P; and selecting
rows by multiplying with P in the end. The intermediate
products are now |V| x |V| matrices, and we add the identity
matrix after each step. Putting the parts together, we obtain

¢y = rank(P, (K+1)-K+1)-...)0,). (11

[ times, precomputed

The total complexity includes the & (|V[*1) operations to
precompute the matrix for a maximum path length of / and
O (|V|*k®) operations for the rank operations for all vertex
pairs in the end, which will be the leading term for the k =

2 ((w / |V|) (diameter 2) undirected graphs considered here,

for a total of & (|V[3?).

For the edge connectivity version, we use the edge inci-
dence connection matrix K’, and select rows and columns
based on edge incidence, instead of vertex adjacency. Apart
from that, the algorithm stays identical, but the measured cut
set will now be a cut set of edges, yielding edge connectivity
values. However, the algorithm is more expensive in terms
of space use and running time: & (|E |3l) to precompute the
propagation matrix.



