Parallel A* pathfinding algorithm

Giuseppe Accaputo
Pascal Iselin

December 16, 2013



Parallel A* pathfinding algorithm

Overview

» Goal

Literature Review

v

v

Approaches
Results

v



Parallel A* pathfinding algorithm
L Goal

Our Goals were

» Implement a correct parallel A* algorithm

» Make it faster than the serial version



Parallel A* pathfinding algorithm
L Goal

Our Goals were

» Implement a correct parallel A* algorithm v

» Make it faster than the serial version



Parallel A* pathfinding algorithm
|—Goal

Our Goals were

» Implement a correct parallel A* algorithm v

» Make it faster than the serial version X



Parallel A* pathfinding algorithm
L A* Shortest Path

Best first heuristic search

fn)= gn) + h(n)
~~

exact cost  estimated cost
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- Literature Review

Parallel A* in the literature

» Shared Priority Queue: Threads produce and consume
simultaneously. Does not perform well!
[Cohen et al., 2010]

» Bidirectional Search: Run two searches. Does not scale!
[Rios, Luis Henrique Oliveira, and Luiz Chaimowicz. PNBA*:
A Parallel Bidirectional Heuristic Search Algorithm.]

» Sacrifice path quality for speed: Converge towards other
algorithms
[Sandy Brand, and Rafael Bidarra. Multicore scalable and
efficient pathfinding with Parallel Ripple Search. Comp.
Anim. Virtual Worlds 23.2 (2012)]

» Clustering: Too complicated
[Rafia, Inam. A* Algorithm for Multicore Graphics Processors.
(2010).]
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|ldeas we implemented

» Concurrent Neighbor Expansion
» Shared Priority Queue
» Atomic ClosedFlags + Shared JobQueue

Same underlying datastructure for all the Implementations.
SquareLattice filled with Objects of Type MapNode
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Concurrent Neighbor Expansion

Concurrent calculation of the neighbors in each step. This does
not scale but it's easy!
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Shared Priority Queue

» concurrent_priority_queue (CPQ) from Intel's Thread Building
Blocks (TBB)

CPQ does not allow rebalancing

Recursive call of the search function with a counter

One lock per node

v

v

v

1 atomic <size_t> num_threads;
2 task_group t_group;
3
t_group.run([&]{ parallel_search(); });

4
5
6 void parallel_search() {
7
8

e
// A* Magic
9 e
10 size_t n_threads = ++num_threads;
11 if(n_threads < max_threads) {
12 t_group.run([&]{ parallel_search(); });
13 } else {
14 --num_threads;
15 }

16 }
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Atomic ClosedFlags + Shared JobQueue

Run serial A* until we have enough open nodes

Run a new A* in parallel on each of the open nodes

Each thread has its own priority queue

Threads communicate through a shared grid of closed flags
Use atomic CAS to set the flags

vV vV vV vY
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Atomic ClosedFlags + Shared JobQueue

» Run serial A* until we have enough open nodes

» Run a new A* in parallel on each of the open nodes

» Each thread has it's own priority queue

» Threads communicate through a shared grid of closed flags
» Use atomic CAS to set the flags

» How to make sure threads don't just terminate? — Shared
JobQueue

» How to guarantee the shortest path?
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How to guarantee the shortest path?
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How to guarantee the shortest path?

Just take the green path... NO! That would be fringe search!
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Test setup

v

Tested on Kanifushi

(32 Cores Intel Xeon E7-4830 @ 2.13Ghz)
Compiled with GCC 4.7 and TBB 3.0

10 runs per test case

90% of random map was walkable

vYyy

s
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[ Results

Execution time in seconds

Serial A* vs. Boost A* run time (Random Map)
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Serial A* vs. Boost A* run time (Wall map)
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[ Results

Serial A* vs. Parallel Neighbor Expanding A* run time (Random map)
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[ Results

Serial A* vs. Parallel Neighbor Expanding A* run time (Wall map)
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Serial A* vs. Parallel A* run time (Random map)
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[ Results

Parallel Neighbor Expanding A* vs. Parallel A* run time (Random map, N=1000)
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[ Results

Parallel Neighbor Expanding A* vs. Parallel A* run time (Wall map, N=1000)
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Conclusions

» We comply with the literature!
» One must sacrifice path quality for speed

» There are much better alternatives out there:

» Ripple Search [Brand et al., 2012]
» Fringe Search
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