Parallel A* pathfinding algorithm

Giuseppe Accaputo
Pascal Iselin

December 16, 2013

Parallel A* pathfinding algorithm

Overview

» Goal

Literature Review

v

v

Approaches
Results

v

Parallel A* pathfinding algorithm
L Goal

Our Goals were

» Implement a correct parallel A* algorithm

» Make it faster than the serial version

Parallel A* pathfinding algorithm
L Goal

Our Goals were

» Implement a correct parallel A* algorithm v

» Make it faster than the serial version

Parallel A* pathfinding algorithm
|—Goal

Our Goals were

» Implement a correct parallel A* algorithm v

» Make it faster than the serial version X

Parallel A* pathfinding algorithm
L A* Shortest Path

Best first heuristic search

fn)= gn) + h(n)
~~

exact cost estimated cost

Parallel A* pathfinding algorithm

- Literature Review

Parallel A* in the literature

» Shared Priority Queue: Threads produce and consume
simultaneously. Does not perform well!
[Cohen et al., 2010]

» Bidirectional Search: Run two searches. Does not scale!
[Rios, Luis Henrique Oliveira, and Luiz Chaimowicz. PNBA*:
A Parallel Bidirectional Heuristic Search Algorithm.]

» Sacrifice path quality for speed: Converge towards other
algorithms
[Sandy Brand, and Rafael Bidarra. Multicore scalable and
efficient pathfinding with Parallel Ripple Search. Comp.
Anim. Virtual Worlds 23.2 (2012)]

» Clustering: Too complicated
[Rafia, Inam. A* Algorithm for Multicore Graphics Processors.
(2010).]

Parallel A* pathfinding algorithm
LApproaches

|ldeas we implemented

» Concurrent Neighbor Expansion
» Shared Priority Queue
» Atomic ClosedFlags + Shared JobQueue

Same underlying datastructure for all the Implementations.
SquareLattice filled with Objects of Type MapNode

Parallel A* pathfinding algorithm
LApproaches

Concurrent Neighbor Expansion

Concurrent calculation of the neighbors in each step. This does
not scale but it's easy!

Parallel A* pathfinding algorithm
LApproaches

Shared Priority Queue

» concurrent_priority_queue (CPQ) from Intel's Thread Building
Blocks (TBB)

CPQ does not allow rebalancing

Recursive call of the search function with a counter

One lock per node

v

v

v

1 atomic <size_t> num_threads;
2 task_group t_group;
3
t_group.run([&]{ parallel_search(); });

4
5
6 void parallel_search() {
7
8

e
// A* Magic
9 e
10 size_t n_threads = ++num_threads;
11 if(n_threads < max_threads) {
12 t_group.run([&]{ parallel_search(); });
13 } else {
14 --num_threads;
15 }

16 }

Parallel A* pathfinding algorithm
LApproaches

Atomic ClosedFlags + Shared JobQueue

Run serial A* until we have enough open nodes

Run a new A* in parallel on each of the open nodes

Each thread has its own priority queue

Threads communicate through a shared grid of closed flags
Use atomic CAS to set the flags

vV vV vV vY

Parallel A* pathfinding algorithm
LApproaches

Atomic ClosedFlags + Shared JobQueue

» Run serial A* until we have enough open nodes

» Run a new A* in parallel on each of the open nodes

» Each thread has it's own priority queue

» Threads communicate through a shared grid of closed flags
» Use atomic CAS to set the flags

» How to make sure threads don't just terminate? — Shared
JobQueue

» How to guarantee the shortest path?

Parallel A* pathfinding algorithm
LApproaches

How to guarantee the shortest path?

Parallel A* pathfinding algorithm
LApproaches

How to guarantee the shortest path?

Parallel A* pathfinding algorithm
LApproaches

How to guarantee the shortest path?

Just take the green path... NO! That would be fringe search!

Parallel A* pathfinding algorithm
|—Results

Test setup

v

Tested on Kanifushi

(32 Cores Intel Xeon E7-4830 @ 2.13Ghz)
Compiled with GCC 4.7 and TBB 3.0

10 runs per test case

90% of random map was walkable

vYyy

s

Parallel A* pathfinding algorithm

[Results

Execution time in seconds

Serial A* vs. Boost A* run time (Random Map)

N=100

N=200

N=300

N=400

N=500 N=600

N=700

N=800

N=900

N=1000

Size of square lattice

R
Parallel A* pathfinding algorithm

[Results

Serial A* vs. Boost A* run time (Wall map)

25} i

Execution time in seconds

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000 |

Size of square lattice

R
Parallel A* pathfinding algorithm

[Results

Serial A* vs. Parallel Neighbor Expanding A* run time (Random map)

3r 4
— Parallel Neighbor Expanding A*
— Serial A
251 4
2r 4
7)
e
c
S 1.5 B
Q
@
£
E 1+ = |
i=4
i)
3 —
L 05F — = == i
s [
J— _ J— J—
of = = —_ — — i
-0.5FN=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000-

Size of square lattice

R
Parallel A* pathfinding algorithm

[Results

Serial A* vs. Parallel Neighbor Expanding A* run time (Wall map)

o —— Parallel Neighbor Expanding A*)
— Serial A =
8 4
7F B
o 6 B
e}
[=
3
& 5F q
£
(o}
£ 4t R
S =
5 1] %
8 3r 4
> —
b N
2F B
==
1k —_— — —_— 4
= =
——
0 | === —_— -
N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000

Size of square lattice

R
Parallel A* pathfinding algorithm

[Results

Serial A* vs. Parallel A* run time (Random map)

251

— T —
R i SR
— {1
~TH

-

R S

—
—

—
- — —

[i S
-
- -

Execution time in seconds

e s e s e s s s s s s s s s s s s s s s scss s s

-051 2 3 456 7 8 9 1011121314151617 18192021 22 23 24 25 26 27 28 29 30 31 32

Number of threads

R
Parallel A* pathfinding algorithm

[Results

Serial A* vs. Parallel A* run time (Wall map)

35F

25F

f’é@%@

T

I

Execution time in seconds
(%
T

T —
Uia%*dsegngapls
1 Ll 1 1
1- i
o
0.5 i
L g S e = S e o = S e = S e = = S = S S = = S S = ==
or i

-051 2 3 456 7 8 9 1011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32

Number of threads

R
Parallel A* pathfinding algorithm

[Results

Parallel Neighbor Expanding A* vs. Parallel A* run time (Random map, N=1000)

3 — Parallel A* 7
— Parallel Neighbor Expanding A*

251 b
gl |
L

c 1

()

£ 1 1 T

= 15 | \ g
S Eé@%ﬁ% -5 I

5 E - - = = =
§ B i? %*"—??%?% = s =

] |

1 | N

e

1 T T

1234567 89 1011121314151617 181920212223 24 25262728 29 30 31 32

Number of threads

R
Parallel A* pathfinding algorithm

[Results

Parallel Neighbor Expanding A* vs. Parallel A* run time (Wall map, N=1000)

=T+ —
(o B
—CITF — A
—[d
—H

0
o F —
[
1+ —
T+~
=T h
T+
[0
1
1T+ —
-0 —
1+

[]
- —
[l I N
T A
H1

[l —
-1 =
[I
— [0

— Parallel A*
— Parallel Neighbor Expanding A*

Execution time in seconds
—

o
T
i}
L0
]
o
L

—[H

§%%‘T—'?Déf?—==—%éa—_-

1+ -

1234567 89 1011121314151617 18192021 2223242526 27 28 29 30 31 32

Number of threads

Parallel A* pathfinding algorithm
LResuIts

Conclusions

» We comply with the literature!
» One must sacrifice path quality for speed

» There are much better alternatives out there:

» Ripple Search [Brand et al., 2012]
» Fringe Search

	Goal
	Goal
	Goal
	A* Shortest Path
	Literature Review
	Approaches
	Results

