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Administrivia 

Â Final project presentation: Monday 12/ 15 during last lecture 

ÁSend slides to Timo by 12/15, 11am 

Á12 minutes per team (hard limit) 

 

ÁRough guidelines: 

Summarize your goal/task 

Related work (what exists, literature review!) 

Describe techniques/approach (details!) 

Final results and findings (details) 

Pick one presenter (you may also switch but keep the time in mind) 

 

 

2 



 

3 

KAUST ς King Abdullah University of Science and Technology 
 
Internships are for students in their last year of bachelor or for master students. 
They are 3 to 6 month long. Students will receive the following: 
    Academic credit 
    Monthly living allowance between $800 and $1200 (based upon field of research) 
    Round-trip airfare to/from city of departure-Jeddah (KAUST) 
    Health insurance 
    Private bedroom & bath in a shared residential suite 
    Visa fees (Students must have valid passport) 
    Access to community recreational resources 
    Social and cultural activities 

If interested: http://vsrp.kaust.edu.sa/Pages/Internships.aspx 
(look for Prof. David Keyes) 

http://vsrp.kaust.edu.sa/Pages/Internships.aspx


Review of last lecture 

Â Abstract models  

Á!ƳŘŀƘƭΩǎ ŀƴŘ DǳǎǘŀŦǎƻƴΩǎ [ŀǿ 

Á[ƛǘǘƭŜΩǎ [ŀǿ 

Á²ƻǊƪκŘŜǇǘƘ ƳƻŘŜƭǎ ŀƴŘ .ǊŜƴǘΩǎ ǘƘŜƻǊŜƳ 

Á I/O complexity and balance (Kung) 

ÁBalance principles 

Â Scheduling 

ÁGreedy 

ÁRandom work stealing 

Â Balance principles 

ÁOutlook to the future 

ÁMemory and data-movement will be more important 
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DPHPC Overview 
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Goals of this lecture 

Â Finish lock-free tricks  

ÁList example but they generalize well 

 

Â Finish wait-free/lock-free 

ÁConsensus hierarchy 

ÁThe promised proof! 

 

Â Distributed memory 

ÁModels and concepts 

ÁDesigning (close-to) optimal communication algorithms 
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Tricks Overview 

1. Fine-grained locking 

Á {Ǉƭƛǘ ƻōƧŜŎǘ ƛƴǘƻ άƭƻŎƪŀōƭŜ ŎƻƳǇƻƴŜƴǘǎέ 

Á Guarantee mutual exclusion for conflicting accesses to same component 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

Á Multiple readers hold lock (traversal) 

Á contains() only needs read lock 

Á Locks may be upgraded during operation 

Must ensure starvation-freedom for writer locks! 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

Á Traverse without locking 

Need to make sure that this is correct! 

Á Acquire lock if update necessary 

May need re-start from beginning, tricky 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

Á Postpone hard work to idle periods 

Á Mark node deleted 

Delete it physically later 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 

Á Completely avoid locks 

Á Enables wait-freedom 

Á Will need atomics (see later why!) 

Á Often very complex, sometimes higher overhead 
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Trick 1: Fine-grained Locking 

Â Each element can be locked 

ÁHigh memory overhead 

ÁThreads can traverse list 
concurrently like a pipeline 

Â Tricky to prove correctness 

ÁAnd deadlock-freedom 

ÁTwo-phase locking (acquire, release) often helps 

Â Hand-over-hand (coupled locking) 

ÁNot safe to release ȄΩǎ lock before acquiring ȄΦƴŜȄǘΩǎ lock  

will see why in a minute 

Á Important to acquire locks in the same order 
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typedef struct { 
  int key; 
  node *next; 
  lock_t lock; 
} node; 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a c d 

remove(b) 
Why lock target node? 



Concurrent Removes 
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a b c d 

remove(c) 
remove(b) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Art of Multiprocessor Programming 30 

Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Art of Multiprocessor Programming 31 

Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Uh, Oh 
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a c d 

remove(b) 
remove(c) 



Uh, Oh 
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a c d 

Bad news, c not removed 

remove(b) 
remove(c) 



Insight 

Â If a node x is locked 

ÁSuccessor of x cannot be deleted! 

Â Thus, safe locking is 

ÁLock node to be deleted 

ÁAnd its predecessor! 

ÁĄ hand-over-hand locking 
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Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 

38 

a b c d 

remove(b) 
Found 

it! 



Hand-Over-Hand Again 
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a b c d 

remove(b) 
Found 

it! 



Hand-Over-Hand Again 
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a c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

Must 

acquire  

Lock for 

b 

remove(c) 



Removing a Node 
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a b c d 

Waiting to 

acquire 

lock for b 

remove(c) 



Removing a Node 
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a b c d 

Wait! 
remove(c) 



Removing a Node 
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a b d 

Proceed 

to 

remove(b) 



Removing a Node 
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a b d 

remove(b) 



Removing a Node 
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a b d 

remove(b) 



Removing a Node 
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a d 

remove(b) 



What are the Issues? 

Â We have fine-grained locking, will there be contention? 

ÁYes, the list can only be traversed sequentially, a remove of the 3rd item 
will block all other threads! 

ÁThis is essentially still serialized if the list is short (since threads can only 
pipeline on list elements) 

Â Other problems, ignoring contention? 

ÁMust acquire O(|S|) locks  
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Trick 2: Reader/Writer Locking 

Â Same hand-over-hand locking 

ÁTraversal uses reader locks 

ÁOnce add finds position or remove finds target node, upgrade both locks 
to writer locks 

ÁNeed to guarantee deadlock and starvation freedom! 

Â Allows truly concurrent traversals 

ÁStill blocks behind writing threads 

ÁStill O(|S|) lock/unlock operations 
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Trick 3: Optimistic synchronization 

Â Similar to reader/writer locking but traverse list without locks 

ÁDangerous! Requires additional checks. 

Â Harder to proof correct 
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Optimistic: Traverse without Locking 
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b d e a 

add(c) Aha! 



Optimistic: Lock and Load 
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b d e a 

add(c) 



Optimistic: Lock and Load 

61 

b d e a 

add(c) 

c 



What could go wrong? 
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b d e a 

add(c) Aha! 



What could go wrong? 
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b d e a 

add(c) 



What could go wrong? 
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b d e a 

remove(b) 



What could go wrong? 
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b d e a 

remove(b) 



What could go wrong? 
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b d e a 

add(c) 



What could go wrong? 
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b d e a 

add(c) 

c 



What could go wrong? 
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d e a 

add(c) Uh-oh 



Validate ς Part 1 
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b d e a 

add(c) Yes, b still 

reachable 

from head 



What Else Could Go Wrong? 
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b d e a 

add(c) Aha! 



What Else Could Go Wrong? 
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b d e a 

add(c) 

add(bô) 



What Else Could Go Wrong? 
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b d e a 

add(c) 

add(bô) bô 



What Else Could Go Wrong? 
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b d e a 

add(c) 
bô 



What Else Could Go Wrong? 
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b d e a 

add(c) 

c 



Validate Part 2 
(while holding locks) 
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b d e a 

add(c) Yes, b still 

points to d 



Optimistic synchronization 

Â One MUST validate AFTER locking 

1. Check if the path how we got there is still valid! 

2. Check if locked nodes are still connected 

Á If any of those checks fail? 

Start over from the beginning (hopefully rare) 

Â Not starvation-free 

ÁA thread may need to abort forever if nodes are added/removed 

ÁShould be rare in practice! 

Â Other disadvantages? 

ÁAll operations requires two traversals of the list! 

ÁEven contains() needs to check if node is still in the list! 
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Trick 4: Lazy synchronization 

Â We really want one list traversal 

Â Also, contains() should be wait-free 

Á Is probably the most-used operation 

Â Lazy locking is similar to optimistic 

ÁKey insight: removing is problematic 

ÁtŜǊŦƻǊƳ ƛǘ άƭŀȊƛƭȅέ 

Â !ŘŘ ŀ ƴŜǿ άǾŀƭƛŘέ ŦƛŜƭŘ 

Á Indicates if node is still in the set 

ÁCan remove it without changing list structure! 

ÁScan once, contains() never locks! 
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typedef struct { 
  int key; 
  node *next; 
  lock_t lock; 
  boolean valid; 
} node; 



Lazy Removal 
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a a b c d 



c 

Lazy Removal 

79 

a a b d 

Present in list 



c 

Lazy Removal 
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a a b d 

Logically deleted 



Lazy Removal 
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a a b c d 

Physically deleted 



Lazy Removal 
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a a b d 

Physically deleted 



How does it work? 

Â Eliminates need to re-scan list for reachability 

ÁMaintains invariant that every unmarked node is reachable! 

Â Contains can now simply traverse the list 

Á Just check marks, not reachability, no locks 

Â Remove/Add 

ÁScan through locked and marked nodes 

ÁRemoving does not delay others 

ÁMust only lock when list structure is updated 

Check if neither pred nor curr are marked, pred.next == curr 
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Business as Usual 
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a b c 



Business as Usual 
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a b c 



Business as Usual 
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a b c 



Business as Usual 

87 

a b c 

remove(b) 



Business as Usual 
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a b c 

a not 

marked 



Business as Usual 
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a b c 

a still 

points 

to b 



Business as Usual 
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a b c 

Logical 

delete 



Business as Usual 
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a b c 

physical 

delete 



Business as Usual 
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a b c 



Summary: Wait-free Contains 

93 

a 0 0 0 a b c 0 e 1 d 

Use Mark bit + list ordering  
1. Not marked Ą in the set 
2. Marked or missing Ą not in the set  

Lazy add() and remove() + Wait-free contains() 



Problems with Locks 

Â What are the fundamental problems with locks? 

Â Blocking 

ÁThreads wait, fault tolerance 

ÁEspecially when things like page faults occur in CR 

Â Overheads 

ÁEven when not contended 

ÁAlso memory/state overhead 

Â Synchronization is tricky 

ÁDeadlock, other effects are hard to debug 

Â Not easily composable 
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Lock-free Methods 

Â No matter what: 

ÁGuarantee minimal progress 

I.e., some thread will advance 

ÁThreads may halt at bad times (no CRs! No exclusion!) 

I.e., cannot use locks! 

ÁNeeds other forms of synchronization 

E.g., atomics (discussed before for the implementation of locks) 

Techniques are astonishingly similar to guaranteeing mutual exclusion 
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Trick 5: No Locking 

Â Make list lock-free 

Â Logical succession 

ÁWe have wait-free contains 

ÁMake add() and remove() lock-free! 

Keep logical vs. physical removal 

Â Simple idea: 

ÁUse CAS to verify that pointer is correct before moving it 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

(2) Physical 

Removal 
Use CAS to verify pointer  

is correct  

Not enough! Why?  

Lock-free Lists 
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tǊƻōƭŜƳΧ 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

(3) Physical 

Removal 0 d 

(2) Node 

added 



The Solution: Combine Mark and Pointer 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

= 

Set Mark Bit 

(3) Physical 

Removal CAS 
0 d 

Mark-Bit and Pointer 

are CASed together! 

(2) Fail CAS: Node not  

added after logical 

Removal 



Practical Solution(s) 

Â Option 1: 
ÁLƴǘǊƻŘǳŎŜ άŀǘƻƳƛŎ markable ǊŜŦŜǊŜƴŎŜέ ǘȅǇŜ 

Áά{ǘŜŀƭέ ŀ ōƛǘ ŦǊƻƳ ŀ ǇƻƛƴǘŜǊ 

ÁRather complex and OS specific L 

Â Option 2: 
ÁUse Double CAS (or CAS2) J 

CAS of two noncontiguous locations 

ÁWell, not many machines support it L 

Any still alive? 

Â Option 3: 
ÁOur favorite ISA (x86) offers double-width CAS 

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems) 

Â Option 4: 
ÁTM! 

9ΦƎΦΣ LƴǘŜƭΩǎ ¢{· όŜǎǎŜƴǘƛŀƭƭȅ ŀ ŎƳǇȄŎƘƎ64b  (operates on a cache line)) 
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Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 



Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 

failed 

CAS CAS 



Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 



Uh oh ς node marked but not removed! 
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a d 

remove 

b 

remove 

c 

Zombie node! 



Dealing With Zombie Nodes 

Â !ŘŘόύ ŀƴŘ ǊŜƳƻǾŜόύ άƘŜƭǇ ǘƻ ŎƭŜŀƴ ǳǇέ 

ÁPhysically remove any marked nodes on their path 

Á I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and 
remove curr 

If CAS fails, restart from beginning!  

Â άIŜƭǇƛƴƎέ ƛǎ ƻŦǘŜƴ ƴŜŜŘŜŘ ƛƴ ǿŀƛǘ-free algs 

Â This fixes all the issues and makes the algorithm correct! 
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Comments 

Â Atomically updating two variables (CAS2 etc.) has a non-trivial cost 

Â If CAS fails, routine needs to re-traverse list 

ÁNecessary cleanup may lead to unnecessary contention at marked nodes 

Â More complex data structures and correctness proofs than for locked 
versions 

ÁBut guarantees progress, fault-tolerant and maybe even faster (that really 
depends) 
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More Comments 

Â Correctness proof techniques 

ÁEstablish invariants for initial state and transformations 

E.g., head and tail are never removed, every node in the set has to be 
ǊŜŀŎƘŀōƭŜ ŦǊƻƳ ƘŜŀŘΣ Χ 

ÁProofs are similar to those we discussed for locks 

Very much the same techniques (just trickier) 

Using sequential consistency (or consistency model of your choice J) 

Lock-free gets somewhat tricky 

Â Source-codes can be found in Chapter 9 ƻŦ ά¢ƘŜ !Ǌǘ ƻŦ aǳƭǘƛǇǊƻŎŜǎǎƻǊ 
tǊƻƎǊŀƳƳƛƴƎέ 
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Lock-free and wait-free 

Â A lock-free method 

Águarantees that infinitely often some method call finishes in a finite number 
of steps 

Â A wait-free method 

Águarantees that each method call finishes in a finite number of steps (implies 
lock-free) 

ÁWas our lock-free list also wait-free? 

Â Synchronization instructions are not equally powerful! 

Á Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can 
be used for lock-/wait-free implementations of primitives in level z>x. 
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Concept: Consensus Number 

Â 9ŀŎƘ ƭŜǾŜƭ ƻŦ ǘƘŜ ƘƛŜǊŀǊŎƘȅ Ƙŀǎ ŀ άŎƻƴǎŜƴǎǳǎ ƴǳƳōŜǊέ ŀǎǎƛƎƴŜŘΦ 

Á Is the maximum number of threads for which primitives in level x can solve 
the consensus problem 

Â The consensus problem:  

ÁHas single function: decide(v) 

ÁEach thread calls it at most once, the function returns a value that meets two 
conditions: 

consistency: all threads get the same value 

ǾŀƭƛŘΥ ǘƘŜ ǾŀƭǳŜ ƛǎ ǎƻƳŜ ǘƘǊŜŀŘΩǎ ƛƴǇǳǘ 

ÁSimplification: binary consensus (inputs in {0,1}) 
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Understanding Consensus 

Â Can a particular class solve n-thread consensus wait-free? 

ÁA class C solves n-thread consensus if there exists a consensus protocol 
using any number of objects of class C and any number of atomic registers 

ÁThe protocol has to be wait-free (bounded number of steps per thread) 

ÁThe consensus number of a class C is the largest n for which that class 
solves n-thread consensus (may be infinite) 

ÁAssume we have a class D whose objects can be constructed from objects 
out of class C. If class C has consensus number n, what does class D have? 
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{ǘŀǊǘƛƴƎ ǎƛƳǇƭŜ Χ 

Â Binary consensus with two threads (A, B)! 

ÁEach thread moves until it decides on a value 

ÁMay update shared objects 

ÁProtocol state = state of threads + state of shared objects 

Á Initial state = state before any thread moved 

ÁFinal state = state after all threads finished 

ÁStates form a tree, wait-free property guarantees a finite tree 

Example with two threads and two moves each! 
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Atomic Registers 

Â ¢ƘŜƻǊŜƳ ώIŜǊƭƛƘȅΩ91]: Atomic registers have consensus number one 

ÁReally? 

Â Proof outline: 

ÁAssume arbitrary consensus protocol, thread A, B 

ÁRun until it reaches critical state where next action determines outcome 
(show that it must have a critical state first) 

ÁShow all options using atomic registers and show that they cannot be used 
to determine one outcome for all possible executions! 

1) Any thread reads (other thread runs solo until end) 

2) ¢ƘǊŜŀŘǎ ǿǊƛǘŜ ǘƻ ŘƛŦŦŜǊŜƴǘ ǊŜƎƛǎǘŜǊǎ όƻǊŘŜǊ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊύ 

3) Threads write to same register (solo thread can start after each 
write) 
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Atomic Registers 

Â ¢ƘŜƻǊŜƳ ώIŜǊƭƛƘȅΩ91]: Atomic registers have consensus number one 

Â Corollary: It is impossible to construct a wait-free implementation of 
any object with consensus number of >1 using atomic registers 
ÁάǇŜǊƘŀǇǎ ƻƴŜ ƻŦ ǘƘŜ Ƴƻǎǘ ǎǘǊƛƪƛƴƎ ƛƳǇƻǎǎƛōƛƭƛǘȅ ǊŜǎǳƭǘǎ ƛƴ /ƻƳǇǳǘŜǊ 
{ŎƛŜƴŎŜέ όHerlihy, Shavit) 

ÁĄ We need hardware atomics or TM! 

Â Proof technique borrowed from: 

 

 

 

 

Â Very influential paper, always worth a read! 
ÁNicely shows proof techniques that are central to parallel and distributed 

computing! 
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Other Atomic Operations 

Â Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all 
functions where the op commutes or overwrites) have consensus 
number 2! 

ÁSimilar proof technique (bivalence argument) 

Â CAS and TM have consensus number қ 

ÁConstructive proof! 

 

114 



Compare and Set/Swap Consensus 

 

 

 

 

 

 

Â CAS provides an infinite consensus number 

ÁMachines providing CAS are asynchronous computation equivalents of the 
Turing Machine 

Á I.e., any concurrent object can be implemented in a wait-free manner (not 
necessarily fast!) 

 

115 

const int first = -1 
volatile int thread = -1; 
int proposed[n]; 
 
int decide(v) { 
  proposed[tid] = v; 
  if(CAS(thread, first, tid)) 
    return  v; // I won! 
  else  
     return proposed[thread]; // thread won 
} 



Now you know everything J 

Â bƻǘ ǊŜŀƭƭȅ Χ Τ-) 

Á²ŜΩƭƭ ŀǊƎǳŜ ŀōƻǳǘ performance now! 

Â But you have all the tools for: 

ÁEfficient locks 

ÁEfficient lock-based algorithms 

ÁEfficient lock-free algorithms (or even wait-free) 

ÁReasoning about parallelism! 

Â What now? 

ÁA different class of problems 

Impact on wait-free/lock-free on actual performance is not well understood 

ÁRelevant to HPC, applies to shared and distributed memory 

Ą Group communications 
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Remember: A Simple Model for Communication 

Â Transfer time T(s) = h+ɓs 

Á  h= startup time (latency) 

Á  ̡= cost per byte (bandwidth=1/ )̡ 

Â As s increases, bandwidth approaches  1/  ̡asymptotically 

ÁConvergence rate depends on  h

Á s1/2 = h /ɓ 

Â Assuming no pipelining (new messages can only be issued from a 
process after all arrived)  
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Bandwidth vs. Latency 

Â s1/ 2 = h /ɓ often used to distinguish bandwidth- and latency-

bound messages 

Á s1/2 is in the order of kilobytes on real systems 
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asymptotic limit 



Quick Example  

Â Simplest linear broadcast 

ÁOne process has a data item to be distributed to all processes 

Â Broadcasting s bytes among P processes: 

ÁT(s) = (P-1) * (h +ɓs) =  

 

Â Class question: Do you know a faster method to accomplish the 
same? 
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k-ary Tree Broadcast 

Â Origin process is the root of the tree, passes messages to k neighbors 
which pass them on 

Á k=2 -> binary tree 

Â Class Question: What is the broadcast time in the simple 
latency/bandwidth model? 

Á                                                                                                   (for fixed k) 

Â Class Question: What is the optimal k?  

 

Á   

 

Á Independent of P, h, ɓs? Really? 
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Faster Trees? 

Â Class Question: Can we broadcast faster than in a ternary tree? 

ÁYes because each respective root is idle after sending three messages! 

ÁThose roots could keep sending! 

ÁResult is a k-nomial tree 

For k=2Σ ƛǘΩǎ ŀ ōƛƴƻƳƛŀƭ ǘǊŜŜ 

Â Class Question: What about the runtime? 

Á   

Â Class Question: What is the optimal k here? 

ÁT(s) d/dk is monotonically increasing for k>1, thus kopt=2 

Â Class Question: Can we broadcast faster than in a k-nomial tree? 

Á                         is asymptotically optimal for s=1! 

ÁBut what about large s? 

 

 

 
121 



Open Problems 

Â Look for optimal parallel algorithms (even in simple models!) 

ÁAnd then check the more realistic models 

ÁUseful optimization targets are MPI collective operations 

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, 
Scan/ExscanΣ Χ 

Á Implementations of those (check current MPI libraries J) 

ÁUseful also in scientific computations 

.ŀǊƴŜǎ IǳǘΣ ƭƛƴŜŀǊ ŀƭƎŜōǊŀΣ CC¢Σ Χ 

Â Lots of work to do! 

ÁContact me for thesis ideas (or check SPCL) if you like this topic 

ÁUsually involve optimization (ILP/LP) and clever algorithms (algebra) 
combined with practical experiments on large-scale machines (10,000+ 
processors) 
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HPC Networking Basics 

Â Familiar (non-HPC) network: Internet TCP/IP 

ÁCommon model: 

 

 

 

 

 

 

 

Â Class Question: What parameters are needed to model the 
performance (including pipelining)? 

ÁLatency, Bandwidth, Injection Rate, Host Overhead 
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The LogP Model 

Â Defined by four parameters: 

ÁL: an upper bound on the latency, or delay, incurred in 
communicating a message containing a word (or small number of 
words) from its source module to its target module. 

Áo: the overhead, defined as the length of time that a processor is 
engaged in the transmission or reception of each message; during 
this time, the processor cannot perform other operations. 

Ág: the gap, defined as the minimum time interval between 
consecutive message transmissions or consecutive message 
receptions at a processor. The reciprocal of g corresponds to the 
available per-processor communication bandwidth. 

ÁP: the number of processor/memory modules. We assume unit 
time for local operations and call it a cycle. 
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The LogP Model 
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Simple Examples 

Â Sending a single message 

ÁT = 2o+L 

 

Â Ping-Pong Round-Trip 

ÁTRTT = 4o+2L 

 

Â Transmitting n messages 

ÁT(n) = L+(n-1)*max(g, o) + 2o 
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Simplifications 

Â o is bigger than g on some machines  

Ág can be ignored (eliminates max() terms) 

Ábe careful with multicore! 

Â Offloading networks might have very low o 

ÁCan be ignored (not yet but hopefully soon) 

Â L might be ignored for long message streams 

Á If they are pipelined 

Â Account g also for the first message 

Á9ƭƛƳƛƴŀǘŜǎ ά-1έ  
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Benefits over Latency/Bandwidth Model 

Â Models pipelining 

Á[κƎ ƳŜǎǎŀƎŜǎ Ŏŀƴ ōŜ άƛƴ ŦƭƛƎƘǘέ 

ÁCaptures state of the art (cf. TCP windows) 

Â Models computation/communication overlap 

ÁAsynchronous algorithms 

Â Models endpoint congestion/overload 

ÁBenefits balanced algorithms 
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Example: Broadcasts 

Â Class Question: What is the LogP running time for a linear broadcast 
of a single packet? 

ÁTlin = L + (P-2) * max(o,g) + 2o 

Â Class Question: Approximate the LogP runtime for a binary-tree 
broadcast of a single packet? 

ÁTbin Җ ƭƻƎ2P * (L + max(o,g) + 2o) 

Â Class Question: Approximate the LogP runtime for an k-ary-tree 
broadcast of a single packet? 

Á  Tk-n Җ logkP * (L + (k-1)max(o,g) + 2o) 
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Example: Broadcasts 

Â Class Question: Approximate the LogP runtime for a binomial tree 
broadcast of a single packet (assume L > g!)?  

ÁTbin Җ ƭƻƎ2P * (L + 2o) 

Â Class Question: Approximate the LogP runtime for a k-nomial tree 
broadcast of a single packet? 

ÁTk-n Җ logkP * (L + (k-2)max(o,g) + 2o) 

Â Class Question: What is the optimal k (assume o>g)? 

ÁDerive by k: 0 = o * ln(kopt) ς L/kopt + o (solve numerically) 

For larger L, k grows and for larger o, k shrinks 

ÁModels pipelining capability better than simple model! 
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Example: Broadcasts 

Â Class Question: Can we do better than kopt-ary binomial broadcast? 

ÁProblem: fixed k in all stages might not be optimal 

ÁWe can construct a schedule for the optimal broadcast in practical settings 

ÁCƛǊǎǘ ǇǊƻǇƻǎŜŘ ōȅ YŀǊǇ Ŝǘ ŀƭΦ ƛƴ άhǇǘƛƳŀƭ .ǊƻŀŘŎŀǎǘ ŀƴŘ {ǳƳƳŀǘƛƻƴ ƛƴ ǘƘŜ 
LogP aƻŘŜƭέ 
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Example: Optimal Broadcast 

Â Broadcast to P-1 processes 

ÁEach process who received the value sends it on; each process receives 
exactly once 
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P=8, L=6, g=4, o=2 


