
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Lock-Free and Distributed Memory

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

Â Final project presentation: Monday 12/ 15 during last lecture

ÁSend slides to Timo by 12/15, 11am

Á12 minutes per team (hard limit)

ÁRough guidelines:

Summarize your goal/task

Related work (what exists, literature review!)

Describe techniques/approach (details!)

Final results and findings (details)

Pick one presenter (you may also switch but keep the time in mind)

2

3

KAUST ς King Abdullah University of Science and Technology

Internships are for students in their last year of bachelor or for master students.
They are 3 to 6 month long. Students will receive the following:
 Academic credit
 Monthly living allowance between $800 and $1200 (based upon field of research)
 Round-trip airfare to/from city of departure-Jeddah (KAUST)
 Health insurance
 Private bedroom & bath in a shared residential suite
 Visa fees (Students must have valid passport)
 Access to community recreational resources
 Social and cultural activities

If interested: http://vsrp.kaust.edu.sa/Pages/Internships.aspx
(look for Prof. David Keyes)

http://vsrp.kaust.edu.sa/Pages/Internships.aspx

Review of last lecture

Â Abstract models

Á!ƳŘŀƘƭΩǎ ŀƴŘ DǳǎǘŀŦǎƻƴΩǎ [ŀǿ

Á[ƛǘǘƭŜΩǎ [ŀǿ

Á²ƻǊƪκŘŜǇǘƘ ƳƻŘŜƭǎ ŀƴŘ .ǊŜƴǘΩǎ ǘƘŜƻǊŜƳ

Á I/O complexity and balance (Kung)

ÁBalance principles

Â Scheduling

ÁGreedy

ÁRandom work stealing

Â Balance principles

ÁOutlook to the future

ÁMemory and data-movement will be more important

4

DPHPC Overview

5

Goals of this lecture

Â Finish lock-free tricks

ÁList example but they generalize well

Â Finish wait-free/lock-free

ÁConsensus hierarchy

ÁThe promised proof!

Â Distributed memory

ÁModels and concepts

ÁDesigning (close-to) optimal communication algorithms

6

Tricks Overview

1. Fine-grained locking

Á {Ǉƭƛǘ ƻōƧŜŎǘ ƛƴǘƻ άƭƻŎƪŀōƭŜ ŎƻƳǇƻƴŜƴǘǎέ

Á Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

7

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

Á Multiple readers hold lock (traversal)

Á contains() only needs read lock

Á Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

8

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

Á Traverse without locking

Need to make sure that this is correct!

Á Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

9

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

Á Postpone hard work to idle periods

Á Mark node deleted

Delete it physically later

5. Lock-free

10

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

Á Completely avoid locks

Á Enables wait-freedom

Á Will need atomics (see later why!)

Á Often very complex, sometimes higher overhead

11

Trick 1: Fine-grained Locking

Â Each element can be locked

ÁHigh memory overhead

ÁThreads can traverse list
concurrently like a pipeline

Â Tricky to prove correctness

ÁAnd deadlock-freedom

ÁTwo-phase locking (acquire, release) often helps

Â Hand-over-hand (coupled locking)

ÁNot safe to release ȄΩǎ lock before acquiring ȄΦƴŜȄǘΩǎ lock

will see why in a minute

Á Important to acquire locks in the same order

12

typedef struct {
 int key;
 node *next;
 lock_t lock;
} node;

Hand-over-Hand (fine-grained) locking

13

a b c

Hand-over-Hand (fine-grained) locking

14

a b c

Hand-over-Hand (fine-grained) locking

15

a b c

Hand-over-Hand (fine-grained) locking

16

a b c

Hand-over-Hand (fine-grained) locking

17

a b c

Removing a Node

18

a b c d

remove(b)

Removing a Node

19

a b c d

remove(b)

Removing a Node

20

a b c d

remove(b)

Removing a Node

21

a b c d

remove(b)

Removing a Node

22

a b c d

remove(b)

Removing a Node

23

a c d

remove(b)
Why lock target node?

Concurrent Removes

24

a b c d

remove(c)
remove(b)

Concurrent Removes

25

a b c d

remove(b)
remove(c)

Concurrent Removes

26

a b c d

remove(b)
remove(c)

Concurrent Removes

27

a b c d

remove(b)
remove(c)

Concurrent Removes

28

a b c d

remove(b)
remove(c)

Concurrent Removes

29

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 30

Concurrent Removes

30

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Concurrent Removes

31

a b c d

remove(b)
remove(c)

Uh, Oh

32

a c d

remove(b)
remove(c)

Uh, Oh

33

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

Â If a node x is locked

ÁSuccessor of x cannot be deleted!

Â Thus, safe locking is

ÁLock node to be deleted

ÁAnd its predecessor!

ÁĄ hand-over-hand locking

34

Hand-Over-Hand Again

35

a b c d

remove(b)

Hand-Over-Hand Again

36

a b c d

remove(b)

Hand-Over-Hand Again

37

a b c d

remove(b)

Hand-Over-Hand Again

38

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

39

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

40

a c d

remove(b)

Removing a Node

41

a b c d

remove(b)
remove(c)

Removing a Node

42

a b c d

remove(b)
remove(c)

Removing a Node

43

a b c d

remove(b)
remove(c)

Removing a Node

44

a b c d

remove(b)
remove(c)

Removing a Node

45

a b c d

remove(b)
remove(c)

Removing a Node

46

a b c d

remove(b)
remove(c)

Removing a Node

47

a b c d

remove(b)
remove(c)

Removing a Node

48

a b c d

remove(b)
remove(c)

Removing a Node

49

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

50

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

51

a b c d

Wait!
remove(c)

Removing a Node

52

a b d

Proceed

to

remove(b)

Removing a Node

53

a b d

remove(b)

Removing a Node

54

a b d

remove(b)

Removing a Node

55

a d

remove(b)

What are the Issues?

Â We have fine-grained locking, will there be contention?

ÁYes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

ÁThis is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

Â Other problems, ignoring contention?

ÁMust acquire O(|S|) locks

56

Trick 2: Reader/Writer Locking

Â Same hand-over-hand locking

ÁTraversal uses reader locks

ÁOnce add finds position or remove finds target node, upgrade both locks
to writer locks

ÁNeed to guarantee deadlock and starvation freedom!

Â Allows truly concurrent traversals

ÁStill blocks behind writing threads

ÁStill O(|S|) lock/unlock operations

57

Trick 3: Optimistic synchronization

Â Similar to reader/writer locking but traverse list without locks

ÁDangerous! Requires additional checks.

Â Harder to proof correct

58

Optimistic: Traverse without Locking

59

b d e a

add(c) Aha!

Optimistic: Lock and Load

60

b d e a

add(c)

Optimistic: Lock and Load

61

b d e a

add(c)

c

What could go wrong?

62

b d e a

add(c) Aha!

What could go wrong?

63

b d e a

add(c)

What could go wrong?

64

b d e a

remove(b)

What could go wrong?

65

b d e a

remove(b)

What could go wrong?

66

b d e a

add(c)

What could go wrong?

67

b d e a

add(c)

c

What could go wrong?

68

d e a

add(c) Uh-oh

Validate ς Part 1

69

b d e a

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

70

b d e a

add(c) Aha!

What Else Could Go Wrong?

71

b d e a

add(c)

add(bô)

What Else Could Go Wrong?

72

b d e a

add(c)

add(bô) bô

What Else Could Go Wrong?

73

b d e a

add(c)
bô

What Else Could Go Wrong?

74

b d e a

add(c)

c

Validate Part 2
(while holding locks)

75

b d e a

add(c) Yes, b still

points to d

Optimistic synchronization

Â One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

Á If any of those checks fail?

Start over from the beginning (hopefully rare)

Â Not starvation-free

ÁA thread may need to abort forever if nodes are added/removed

ÁShould be rare in practice!

Â Other disadvantages?

ÁAll operations requires two traversals of the list!

ÁEven contains() needs to check if node is still in the list!

76

Trick 4: Lazy synchronization

Â We really want one list traversal

Â Also, contains() should be wait-free

Á Is probably the most-used operation

Â Lazy locking is similar to optimistic

ÁKey insight: removing is problematic

ÁtŜǊŦƻǊƳ ƛǘ άƭŀȊƛƭȅέ

Â !ŘŘ ŀ ƴŜǿ άǾŀƭƛŘέ ŦƛŜƭŘ

Á Indicates if node is still in the set

ÁCan remove it without changing list structure!

ÁScan once, contains() never locks!

77

typedef struct {
 int key;
 node *next;
 lock_t lock;
 boolean valid;
} node;

Lazy Removal

78

a a b c d

c

Lazy Removal

79

a a b d

Present in list

c

Lazy Removal

80

a a b d

Logically deleted

Lazy Removal

81

a a b c d

Physically deleted

Lazy Removal

82

a a b d

Physically deleted

How does it work?

Â Eliminates need to re-scan list for reachability

ÁMaintains invariant that every unmarked node is reachable!

Â Contains can now simply traverse the list

Á Just check marks, not reachability, no locks

Â Remove/Add

ÁScan through locked and marked nodes

ÁRemoving does not delay others

ÁMust only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

83

Business as Usual

84

a b c

Business as Usual

85

a b c

Business as Usual

86

a b c

Business as Usual

87

a b c

remove(b)

Business as Usual

88

a b c

a not

marked

Business as Usual

89

a b c

a still

points

to b

Business as Usual

90

a b c

Logical

delete

Business as Usual

91

a b c

physical

delete

Business as Usual

92

a b c

Summary: Wait-free Contains

93

a 0 0 0 a b c 0 e 1 d

Use Mark bit + list ordering
1. Not marked Ą in the set
2. Marked or missing Ą not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

Â What are the fundamental problems with locks?

Â Blocking

ÁThreads wait, fault tolerance

ÁEspecially when things like page faults occur in CR

Â Overheads

ÁEven when not contended

ÁAlso memory/state overhead

Â Synchronization is tricky

ÁDeadlock, other effects are hard to debug

Â Not easily composable

94

Lock-free Methods

Â No matter what:

ÁGuarantee minimal progress

I.e., some thread will advance

ÁThreads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

ÁNeeds other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

95

Trick 5: No Locking

Â Make list lock-free

Â Logical succession

ÁWe have wait-free contains

ÁMake add() and remove() lock-free!

Keep logical vs. physical removal

Â Simple idea:

ÁUse CAS to verify that pointer is correct before moving it

96

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

97

tǊƻōƭŜƳΧ

98

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(3) Physical

Removal 0 d

(2) Node

added

The Solution: Combine Mark and Pointer

99

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0 d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

Â Option 1:
ÁLƴǘǊƻŘǳŎŜ άŀǘƻƳƛŎ markable ǊŜŦŜǊŜƴŎŜέ ǘȅǇŜ

Áά{ǘŜŀƭέ ŀ ōƛǘ ŦǊƻƳ ŀ ǇƻƛƴǘŜǊ

ÁRather complex and OS specific L

Â Option 2:
ÁUse Double CAS (or CAS2) J

CAS of two noncontiguous locations

ÁWell, not many machines support it L

Any still alive?

Â Option 3:
ÁOur favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

Â Option 4:
ÁTM!

9ΦƎΦΣ LƴǘŜƭΩǎ ¢{· όŜǎǎŜƴǘƛŀƭƭȅ ŀ ŎƳǇȄŎƘƎ64b (operates on a cache line))

100

Removing a Node

101

a b d

remove

b

remove

c

c

Removing a Node

102

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

103

a b d

remove

b

remove

c

c

Uh oh ς node marked but not removed!

104

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

Â !ŘŘόύ ŀƴŘ ǊŜƳƻǾŜόύ άƘŜƭǇ ǘƻ ŎƭŜŀƴ ǳǇέ

ÁPhysically remove any marked nodes on their path

Á I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

Â άIŜƭǇƛƴƎέ ƛǎ ƻŦǘŜƴ ƴŜŜŘŜŘ ƛƴ ǿŀƛǘ-free algs

Â This fixes all the issues and makes the algorithm correct!

105

Comments

Â Atomically updating two variables (CAS2 etc.) has a non-trivial cost

Â If CAS fails, routine needs to re-traverse list

ÁNecessary cleanup may lead to unnecessary contention at marked nodes

Â More complex data structures and correctness proofs than for locked
versions

ÁBut guarantees progress, fault-tolerant and maybe even faster (that really
depends)

106

More Comments

Â Correctness proof techniques

ÁEstablish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
ǊŜŀŎƘŀōƭŜ ŦǊƻƳ ƘŜŀŘΣ Χ

ÁProofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice J)

Lock-free gets somewhat tricky

Â Source-codes can be found in Chapter 9 ƻŦ ά¢ƘŜ !Ǌǘ ƻŦ aǳƭǘƛǇǊƻŎŜǎǎƻǊ
tǊƻƎǊŀƳƳƛƴƎέ

107

Lock-free and wait-free

Â A lock-free method

Águarantees that infinitely often some method call finishes in a finite number
of steps

Â A wait-free method

Águarantees that each method call finishes in a finite number of steps (implies
lock-free)

ÁWas our lock-free list also wait-free?

Â Synchronization instructions are not equally powerful!

Á Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

108

Concept: Consensus Number

Â 9ŀŎƘ ƭŜǾŜƭ ƻŦ ǘƘŜ ƘƛŜǊŀǊŎƘȅ Ƙŀǎ ŀ άŎƻƴǎŜƴǎǳǎ ƴǳƳōŜǊέ ŀǎǎƛƎƴŜŘΦ

Á Is the maximum number of threads for which primitives in level x can solve
the consensus problem

Â The consensus problem:

ÁHas single function: decide(v)

ÁEach thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

ǾŀƭƛŘΥ ǘƘŜ ǾŀƭǳŜ ƛǎ ǎƻƳŜ ǘƘǊŜŀŘΩǎ ƛƴǇǳǘ

ÁSimplification: binary consensus (inputs in {0,1})

109

Understanding Consensus

Â Can a particular class solve n-thread consensus wait-free?

ÁA class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

ÁThe protocol has to be wait-free (bounded number of steps per thread)

ÁThe consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

ÁAssume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

110

{ǘŀǊǘƛƴƎ ǎƛƳǇƭŜ Χ

Â Binary consensus with two threads (A, B)!

ÁEach thread moves until it decides on a value

ÁMay update shared objects

ÁProtocol state = state of threads + state of shared objects

Á Initial state = state before any thread moved

ÁFinal state = state after all threads finished

ÁStates form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

111

Atomic Registers

Â ¢ƘŜƻǊŜƳ ώIŜǊƭƛƘȅΩ91]: Atomic registers have consensus number one

ÁReally?

Â Proof outline:

ÁAssume arbitrary consensus protocol, thread A, B

ÁRun until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

ÁShow all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) ¢ƘǊŜŀŘǎ ǿǊƛǘŜ ǘƻ ŘƛŦŦŜǊŜƴǘ ǊŜƎƛǎǘŜǊǎ όƻǊŘŜǊ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊύ

3) Threads write to same register (solo thread can start after each
write)

112

Atomic Registers

Â ¢ƘŜƻǊŜƳ ώIŜǊƭƛƘȅΩ91]: Atomic registers have consensus number one

Â Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
ÁάǇŜǊƘŀǇǎ ƻƴŜ ƻŦ ǘƘŜ Ƴƻǎǘ ǎǘǊƛƪƛƴƎ ƛƳǇƻǎǎƛōƛƭƛǘȅ ǊŜǎǳƭǘǎ ƛƴ /ƻƳǇǳǘŜǊ
{ŎƛŜƴŎŜέ όHerlihy, Shavit)

ÁĄ We need hardware atomics or TM!

Â Proof technique borrowed from:

Â Very influential paper, always worth a read!
ÁNicely shows proof techniques that are central to parallel and distributed

computing!

113

Other Atomic Operations

Â Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

ÁSimilar proof technique (bivalence argument)

Â CAS and TM have consensus number қ

ÁConstructive proof!

114

Compare and Set/Swap Consensus

Â CAS provides an infinite consensus number

ÁMachines providing CAS are asynchronous computation equivalents of the
Turing Machine

Á I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

115

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
 proposed[tid] = v;
 if(CAS(thread, first, tid))
 return v; // I won!
 else
 return proposed[thread]; // thread won
}

Now you know everything J

Â bƻǘ ǊŜŀƭƭȅ Χ Τ-)

Á²ŜΩƭƭ ŀǊƎǳŜ ŀōƻǳǘ performance now!

Â But you have all the tools for:

ÁEfficient locks

ÁEfficient lock-based algorithms

ÁEfficient lock-free algorithms (or even wait-free)

ÁReasoning about parallelism!

Â What now?

ÁA different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

ÁRelevant to HPC, applies to shared and distributed memory

Ą Group communications

116

Remember: A Simple Model for Communication

Â Transfer time T(s) = h+ɓs

Á h= startup time (latency)

Á ̡= cost per byte (bandwidth=1/)̡

Â As s increases, bandwidth approaches 1/ ̡asymptotically

ÁConvergence rate depends on h

Á s1/2 = h /ɓ

Â Assuming no pipelining (new messages can only be issued from a
process after all arrived)

117

Bandwidth vs. Latency

Â s1/ 2 = h /ɓ often used to distinguish bandwidth- and latency-

bound messages

Á s1/2 is in the order of kilobytes on real systems

118

asymptotic limit

Quick Example

Â Simplest linear broadcast

ÁOne process has a data item to be distributed to all processes

Â Broadcasting s bytes among P processes:

ÁT(s) = (P-1) * (h +ɓs) =

Â Class question: Do you know a faster method to accomplish the
same?

119

k-ary Tree Broadcast

Â Origin process is the root of the tree, passes messages to k neighbors
which pass them on

Á k=2 -> binary tree

Â Class Question: What is the broadcast time in the simple
latency/bandwidth model?

Á (for fixed k)

Â Class Question: What is the optimal k?

Á

Á Independent of P, h, ɓs? Really?

120

Faster Trees?

Â Class Question: Can we broadcast faster than in a ternary tree?

ÁYes because each respective root is idle after sending three messages!

ÁThose roots could keep sending!

ÁResult is a k-nomial tree

For k=2Σ ƛǘΩǎ ŀ ōƛƴƻƳƛŀƭ ǘǊŜŜ

Â Class Question: What about the runtime?

Á

Â Class Question: What is the optimal k here?

ÁT(s) d/dk is monotonically increasing for k>1, thus kopt=2

Â Class Question: Can we broadcast faster than in a k-nomial tree?

Á is asymptotically optimal for s=1!

ÁBut what about large s?

121

Open Problems

Â Look for optimal parallel algorithms (even in simple models!)

ÁAnd then check the more realistic models

ÁUseful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/ExscanΣ Χ

Á Implementations of those (check current MPI libraries J)

ÁUseful also in scientific computations

.ŀǊƴŜǎ IǳǘΣ ƭƛƴŜŀǊ ŀƭƎŜōǊŀΣ CC¢Σ Χ

Â Lots of work to do!

ÁContact me for thesis ideas (or check SPCL) if you like this topic

ÁUsually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

125

HPC Networking Basics

Â Familiar (non-HPC) network: Internet TCP/IP

ÁCommon model:

Â Class Question: What parameters are needed to model the
performance (including pipelining)?

ÁLatency, Bandwidth, Injection Rate, Host Overhead

126

Network Destination Source

The LogP Model

Â Defined by four parameters:

ÁL: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

Áo: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

Ág: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

ÁP: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

 127

The LogP Model

128

Simple Examples

Â Sending a single message

ÁT = 2o+L

Â Ping-Pong Round-Trip

ÁTRTT = 4o+2L

Â Transmitting n messages

ÁT(n) = L+(n-1)*max(g, o) + 2o

129

Simplifications

Â o is bigger than g on some machines

Ág can be ignored (eliminates max() terms)

Ábe careful with multicore!

Â Offloading networks might have very low o

ÁCan be ignored (not yet but hopefully soon)

Â L might be ignored for long message streams

Á If they are pipelined

Â Account g also for the first message

Á9ƭƛƳƛƴŀǘŜǎ ά-1έ

130

Benefits over Latency/Bandwidth Model

Â Models pipelining

Á[κƎ ƳŜǎǎŀƎŜǎ Ŏŀƴ ōŜ άƛƴ ŦƭƛƎƘǘέ

ÁCaptures state of the art (cf. TCP windows)

Â Models computation/communication overlap

ÁAsynchronous algorithms

Â Models endpoint congestion/overload

ÁBenefits balanced algorithms

131

Example: Broadcasts

Â Class Question: What is the LogP running time for a linear broadcast
of a single packet?

ÁTlin = L + (P-2) * max(o,g) + 2o

Â Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

ÁTbin Җ ƭƻƎ2P * (L + max(o,g) + 2o)

Â Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

Á Tk-n Җ logkP * (L + (k-1)max(o,g) + 2o)

132

Example: Broadcasts

Â Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

ÁTbin Җ ƭƻƎ2P * (L + 2o)

Â Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

ÁTk-n Җ logkP * (L + (k-2)max(o,g) + 2o)

Â Class Question: What is the optimal k (assume o>g)?

ÁDerive by k: 0 = o * ln(kopt) ς L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

ÁModels pipelining capability better than simple model!

133

Example: Broadcasts

Â Class Question: Can we do better than kopt-ary binomial broadcast?

ÁProblem: fixed k in all stages might not be optimal

ÁWe can construct a schedule for the optimal broadcast in practical settings

ÁCƛǊǎǘ ǇǊƻǇƻǎŜŘ ōȅ YŀǊǇ Ŝǘ ŀƭΦ ƛƴ άhǇǘƛƳŀƭ .ǊƻŀŘŎŀǎǘ ŀƴŘ {ǳƳƳŀǘƛƻƴ ƛƴ ǘƘŜ
LogP aƻŘŜƭέ

134

Example: Optimal Broadcast

Â Broadcast to P-1 processes

ÁEach process who received the value sends it on; each process receives
exactly once

135

P=8, L=6, g=4, o=2

