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Administrivia

A Final project presentation: Monday 2/ 15during last lecture
A Send slides to Timo 2/ 15, 11am
A 12minutes per team (hard limit)

A Rough guidelines:
Summarize your goal/task
Related work (what exists, literature review!)
Describe techniques/approach (details!)
Final results and findings (details)
Pick one presenter (you may also switch but keep the time in mind)



KAUST King Abdullah University of Science and Technology

Internships are for students in their last year of bachelor or for master students
They are3 to 6 month long. Students will receive the following:

Academic credit
Monthly living allowance between8®0and $1200(based upon field of research

Roundtrip airfare to/from city of departureJeddah (KAUST)
Health insurance

Private bedroom & bath in a shared residential suite

Visa fees (Students must have valid passport)

Access to community recreational resources

Social and cultural activities
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Review of last lecture

A Abstract models
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A 1/0 complexity and balance (Kung)
A Balance principles

A Scheduling
A Greedy
A Random work stealing

A Balance principles
A Outlook to the future
A Memory and datamovement will be more important
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Goals of this lecture

A Finish lockfree tricks
A List example but they generalize well

A Finish waitfree/lock-free
A Consensus hierarchy
A The promised proof!

A Distributed memory
A Models and concepts
A Designing (closep) optimal communication algorithms



Tricks Overview

1. Finegrained locking
A {LXAG 202800 AylGz at201l0fS O2YLRY
A Guarantee mutual exclusion for conflicting accesses to same component

Reader/writer locking
Optimistic synchronization

Lazy locking

a kM WD

Lockfree



Tricks Overview

1. Finegrained locking

2. Reader/writer locking
A Multiple readers hold lock (traversal)
A contains() only needs read lock
A Locks may be upgraded during operation
Must ensure starvatioffreedom for writer locks!

3. Optimistic synchronization
4. Lazy locking

5. Lockfree



Tricks Overview

1. Finegrained locking
2. Reader/writer locking

3. Optimistic synchronization
A Traverse without locking
Need to make sure that this is correct!
A Acquire lock if update necessary
May need restart from beginning, tricky

4. Lazy locking

5. Lockfree



Tricks Overview

Finegrained locking
Reader/writer locking

Optimistic synchronization

R

Lazy locking
A Postpone hard work to idle periods
A Mark node deleted
Delete it physically later

5. Lockfree



Tricks Overview

Finegrained locking
Reader/writer locking
Optimistic synchronization

Lazy locking

a k~ WD PF

Lockfree

Completely avoid locks

Enables waifreedom

Will need atomics (see later why!)

Often very complex, sometimes higher overhead
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Trick1l: Finegrained Locking

A Each element can be locked

A High memory overhead typedefstruct{
A Threads can traverse list int key;
concurrently like a pipeline node *next;
_ lock_tlock;
A Tricky to prove correctness } node:

A And deadlockreedom
A Two-phase locking (acquire, release) often helps

A Handover-hand (coupled locking)
A Not safe to releas& (oék before acquiringe ® Yy Soekii Q &
will see why in a minute
A Important to acquire locks in the same order



Hand-over-Hand (finegrained) locking
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Hand-over-Hand (finegrained) locking
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Hand-over-Hand (finegrained) locking
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Hand-over-Hand (finegrained) locking
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node




Removing a Node
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Why lock target node?
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes

HE g C1E o O1E ;ud CIE g (1N

;
Oo, |



Concurrent Removes
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Concurrent Removes




Uh, Oh
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Uh, Oh

Bad news, ¢ not removed
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Insight

A If anode x is locked
A Successor of x cannot be deleted!

A Thus, safe locking is
A Lock node to be deleted
A And its predecessor!
A A handoverhand locking



Hand-OverHand Again
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Hand-OverHand Again




Hand-OverHand Again
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Hand-OverHand Again




Hand-OverHand Again




Hand-OverHand Again
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Removing a Node
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Removing a Node

([F=>l—~bl5>[5~0]]

;;
Oo, |



Removing a Node
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Removing a Node

acquire
Lock for



Removing a Node
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Removing a Node
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Removing a Node

Proceed
to
remove(b)




Removing a Node
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Removing a Node




Removing a Node
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What are the Issues?

A We have finegrained locking, will there be contention?

A Yes, the list can only be traversed sequentially, a remove dd'them
will block all other threads!

A This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

A Other problems, ignoring contention?
A Must acquire O(|S]) locks



Trick2: Reader/Writer Locking

A Same hanebver-hand locking
A Traversal uses reader locks

A Once add finds position or remove finds target node, upgiaaté locks
to writer locks

A Need to guarantee deadlock and starvation freedom!

A Allows truly concurrent traversals
A Still blocks behind writing threads
A still O(JS|) lock/unlock operations



Trick3: Optimistic synchronization

A Similar to reader/writer locking but traverse list without locks
A Dangerous! Requires additional checks.

A Harder to proof correct



Optimistic: Traverse without Locking




Optimistic: Lock and Load
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Optimistic: Lock and Load




What could go wrong?




What could go wrong?
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What could go wrong?




What could go wrong?




What could go wrong?




What could go wrong?




What could go wrong?
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Validatec Part1

Yes, b still
reachable
from head
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What Else Could Go Wrong?




What Else Could Go Wrong?




What Else Could Go Wrong?




What Else Could Go Wrong?




What Else Could Go Wrong?




Validate Part2
(while holding locks)

Yes, b still
points to d
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Optimistic synchronization

A One MUST validate AFTER locking
1. Check if the path how we got there is still valid!
2. Check if locked nodes are still connected
A If any of those checks fail?
Start over from the beginning (hopefully rare)

A Not starvationfree
A A thread may need to abort forever if nodes are added/removed
A Should be rare in practice!

A Other disadvantages?
A All operations requires two traversals of the list!
A Even contains() needs to check if node is still in the list!



Trick4: Lazy synchronization

A We really want one list traversal

A Also, contains() should be waitee

A

A

A ls probably the mostised operation

Lazy locking is similar to optimistic

A Key insight: removing is problematic
At SNF2NY Al atl T Afeé

RR I yS¢ a@lftARéE FASEE

A Indicates if node is still in the set
A Can remove it without changing list structure!
A Scan once, contains() never locks!

typedefstruct{
int key;
node *next;
lock_tlock;
booleanvalid;
} node;



Lazy Removal
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Lazy Removal
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Present In list
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Lazy Removal
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Logically deleted
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Lazy Removal

Physically deleted
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Lazy Removal
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Physically deleted
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How does it work?

A Eliminates need to rescan list forreachability
A Maintains invariant that everynmarkednode is reachable!

A Contains can now simply traverse the list
A Just check marks, naéachability no locks

A  Remove/Add
A Scan through locked and marked nodes
A Removing does not delay others
A Must only lock when list structure is updated
Check if neitheprednor currare markedpred.next==curr



Business as Usual
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Business as Usual




Business as Usual













Business as Usual




Business as Usual




Business as Usual
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Summary: Watfree Contains
/\/\/_\ al&
EEE A B0 E el

Use Mark bit + list ordering
1. Not markedA in the set
2. Marked or missingd not in the set

Lazyadd() andremove()+ Waitfree contains()
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Problems with Locks

A What are the fundamental problems with locks?

A Blocking
A Threads wait, fault tolerance
A Especially when things like page faults occur in CR

A Overheads
A Even when not contended
A Also memory/state overhead

A Synchronization is tricky
A Deadlock, other effects are hard to debug

A Not easilycomposable



Lockfree Methods

A No matter what:

A Guarantee minimal progress
l.e., some thread will advance

A Threads may halt at bad times (no CRs! No exclusion!)
l.e., cannot use locks!

A Needs other forms of synchronization
E.g., atomics (discussed before for the implementation of locks)
Techniques are astonishingly similar to guaranteeing mutual exclusion



Trick5: No Locking

A Make list lockfree

A Logical succession
A We have waiffree contains
A Make add() and remove() lodkee!
Keep logical vs. physical removal

A Simple idea:
A Use CASto verify that pointer is correct before moving it



Lockfree Lists

(1) Logical Removal

EEE A E -

Use CAS to verify pointer (2) Physical
is correct Removal

Not enough! Why?
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(3) Physical
Removal
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The Solution: Combine Mark and Pointer

(1) Logical Removal

R E

(3) Physica
Removal CAS

Mark-Bit and Pointer
are CASed together!

M B it
| 8
bt

(2) Fail CAS: Node not
added after logical
Removal

99



Practical Solution(s)

A Option 1:
ALY G NE R dzOSarkableNiR2 TSNS y 0S¢ G & LIS
Aa{0SFHtft¢ I o0A0 FNRBY | LIR2AY(HSN

A Rather complex and OS specific
A Option 2:
A Use Double CAS (or CAS
CAS of two noncontiguous locations

A Well, not many machines supportLit
Any still alive?

A Option 3:
A Our favorite ISA 86) offers doublewidth CAS
Contiguous, e.g., lock cmpxditl (on64 bit systems)

A Option 4.

A TM!
9dIdE LYy (St Qa ¢ {64 (OpbratesBnyjaicdcheflife I+ O






Removing a Node
Wi, g
3~ B

remove
b O oo
102



Removing a Node
SERgCINERU - g0l tugtll

remove
b O o o”



Uh oh¢ node marked but not removed!

remove
b O o QQ
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Dealing With Zombie Nodes

Al RROUO YR NBY2Q0S0U0U aGaKSftLI 02 OfSIy
A Physically remove any marked nodes on their path

A l.e., ifcurris marked: CA®PIed.next mark) to ¢urr.next false) and
removecurr

If CAS fails, restart from beginning!

~ ~ hod ~ hod Ve
(
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A This fixes all the issues and makes the algorithm correct!



Comments

A Atomically updating two variables (CR®tc.) has a norrivial cost

A If CAS fails, routine needs to4teaverse list
A Necessary cleanup may lead to unnecessary contention at marked nodes

A More complex data structures and correctness proofs than for locked
versions

A But guarantees progress, fadtilerant and maybe even faster (that really
depends)



More Comments

A Correctness proof techniques

A Establish invariants for initial state and transformations
E.g., hqad and taiIAare never removegl, every node in the set has to be
NEI OKII ot S FTNRBRY KSIRXZ X

A Proofs are similar to those we discussed for locks
Very much the same techniques (just trickier)
Using sequential consistency (or consistency model of your chbice
Lockfree gets somewhat tricky

A Sourcecodes can befoundinChapté2 ¥ a ¢ KS ! NI 2F a
t N2PINF YYAY T



Lockfree and waltfree

A A lockfree method

A guarantees that infinitely oftesomemethod call finishes in a finite number
of steps

A A wait-free method

A guarantees thaeachmethod call finishes in a finite number of steps (implies
lock-free)

A Was our locKree list also waifree?

A Synchronization instructions are not equally powerful!

A Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lockwait-free implementations of primitives in level z>x.



Concept: Consensus Number

A 9FOK fS@St 2F 0KS KASNI NOKE
A Is the maximum number of threads for which primitives in level x can solve
the consensus problem

A The consensus problem:
A Has single function: decide(V)

A Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value
gt ARY GKS @l fdzS Aa a2yYyS UGKNBIFRQa&
A Simplification: binary consensus (inputs O)



Understanding Consensus

A Can a particular class solvethread consensus waifree?

A A class C solvesthread consensus if there exists a consensus protocol
usingany number of objects of class C amahy numberof atomic registers

A The protocol has to be waitee (bounded number of steps per thread)

A The consensus number of a class C is the largest n for which that class
solves rthread consensus (may be infinite)

A Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?



[OFNIOAY3I AAYLAE S X

A Binary consensus with two threads (A, B)!
A Each thread moves until it decides on a value
A May update shared objects
A Protocol state = state of threads + state of shared objects
A Initial state = state before any thread moved
A Final state = state after all threads finished
A States form a tree, waitree property guarantees a finite tree
Example with two threads and two moves each!



Atomic Registers

A CKS2NBY 9dIABNIE regis&r@have consensus number one
A Really?

A Proof outline:
A Assume arbitrary consensus protocol, thread A, B

A Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

A Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) ¢KNBI Ra 6NARUS (G2 RAFTFSNBYU NBIAAL

3) Threads write to same register (solo thread can start after each
write)



Atomic Registers

A

A

>

>

¢ KS2NBY 9dj1ABMNIEE regisr@have consensus number one

Corollary: It is impossible to construct a wdtee implementation of

any object with consensus number oflxising atomic registers
AGLISNKI LA 2yS 2F GKS Y2ad adNR1 Ay
~{ OA& S HddiByeShavi)
A A We need hardware atomics or TM!

Proof technique borrowed from:

Impossibility of distributed consensus with one faulty process

MJ Fischer, MA Lynch, MS Paterson - Journal of the ACM [JACK), 1985 - dl.acm.org
Abstract The consensus problem involves an asynchronous system of processes, some of
which may be unreliable. The problem is for the reliable processes to agree on a binary
value. In this paper, it is shown that every protocol for this problem has the possibility of ...
Cited by 3180 Related articles  All 164 versions

Very influential paper, always worth a read!

A Nicely shows proof techniques that are central to parallel and distributed
computing!
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Other Atomic Operations

A Simple RMW operationsliest&Set Fetch&Op Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

A Similar proof technique (bivalence argument)

A CAS and TM have consensus numker
A Constructive proof!



Compare and Set/Swap Consensus

const int first =1
volatile int thread =1;
int proposed|n];

int decide(v) {
proposedfid] = v; h I '
if(CAS(thread, firstjd)) oy g
return v; // | won! SENSU
else

return proposed[thread]; // thread won

}

A CAS provides an infinite consensus number

A Machines providing CAS ameynchronousomputation equivalents of the
Turing Machine

A l.e., any concurrent object can be implemented in a vir@e manner (not
necessarily fast!)



Now you know everything]

A b20 NBYtte X T
A2 SQf f | NBErizanceddvizi
A But you have all the tools for:
A Efficient locks
A Efficient lockbased algorithms
A Efficient lockfree algorithms (or even waitee)
A Reasoning about parallelism!

A What now?
A A different class of problems
Impact on waitfree/lockfree on actual performance is not well understood
A Relevant to HPC, applies to shared and distributed memory
A Group communications



Remember: A Simple Model for Communication

A Transfer time T(s) &+bs
A h = startup time (latency)

r

A | = cost per byte (bandwidtti )

A As s increases, bandwidth approachdsi asymptotically
A Convergence rate depends 8n
A s,,=h/b

A Assuming no pipelining (new messages can only be issued from a
process after all arrived)



Bandwidth vs. Latency

A Sy,=n/Db often used to distinguish bandwidth- and latency-
bound messages

A s, is in the order of kilobytes on real systems
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Message Size



Quick Example

A Simplest linear broadcast
A One process has a data item to be distributed to all processes

A Broadcasting s bytes among P processes:
A T(s) = (R) * (1 +bs) =O(P)

A Class guestion: Do you know a faster method to accomplish the
same?



k-ary Tree Broadcast

A Origin process is the root of the tree, passes messages to k neighbors
which pass them on

A k=2 -> binary tree

A Class Question: What is the broadcast time in the simple
latency/bandwidth model?

A T(s) = [log(P)]-k-(a+ B-5) = O(log(P)) (forfixed k)

A Class Question: What is the optimal k?

] __In(P)k da _ In(P)in(k)—In(P A
A Q= IPLk 4 _ In(PAnn(P) o g7y

A Independent of P}, bs? Really?



Faster Trees?

A Class Question: Can we broadcast faster than in a ternary tree?
A Yes because each respective root is idle after sending three messages!
A Those roots could keep sending!

A Result is akomialtree
Fork2x AGQa | o0Ay2YALf GNBS

A Class Question: What about the runtime?

A T(s) = [loge(P)] - (k—=1) - (a+ B -s) = O(log(P))
A Class Question: What is the optimal k here?

A T(s) ddkis monotonically increasing for k>thusk,,=2

A Class Question: Can we broadcast faster than inrsoknial tree?
A O(log(P)) is asymptotically optimal for 4+
A But what about large s?



Open Problems

A Look for optimal parallel algorithms (even in simple models!)
A And then check the more realistic models
A Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gathédjtoall, Allreduce Allgather;
ScanExscak X

A Implementations of those (check current MPI libraries
A Useful also in scientific computations
CFNYSa 1dzis tAYSENI FEf3ISONI S CC¢z X

A Lots of work to do!
A Contact me for thesis ideas (or check SPCL) if you like this topic

A Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on largeale machinesl(,000+
processors)



HPC Networking Basics

A Familiar (norHPC) network: Internet TCP/IP
A Common model:

Source Network Destination

A Class Question: What parameters are needed to model the
performance (including pipelining)?
A Latency, Bandwidth, Injection Rate, Host Overhead
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The LogP Model

A Defined by four parameters:

A L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

A o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

A g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available petprocessor communication bandwidth.

A P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.



Receiver

Sender

INetwork I

time

The LogP Model



Simple Examples

A Sending a single message
A T =20+L

A PingPong RoundTlrip
A Tr=40+2L

A Transmitting n messages
A T(n) = L+@1)*max(g, o) 20



Simplifications

A 0 s bigger than g on some machines
A g can be ignored (eliminates max() terms)
A be careful with multicore!

A Offloading networks might have very low o
A Can be ignored (not yet but hopefully soon)

A L might be ignored for long message streams
A If they are pipelined

A Account g also for the first message
A9fAYAME GSa &



Benefits over Latency/Bandwidth Model

A Models pipelining
Al k3 YSaal3sSa OFy 06S aray FfAaAakbe
A Captures state of the art (cf. TCP windows)

A Models computation/communication overlap
A Asynchronous algorithms

A Models endpoint congestion/overload
A Benefits balanced algorithms



Example: Broadcasts

A Class Question: What is tHeogPrunning time for a linear broadcast
of a single packet?

A T. =L+ (R)* maxp,g +20

lin

A Class Question: Approximate tHeogPruntime for a binarytree
broadcast of a single packet?

A Ty K §PZ @ + maxg) +20)

A Class Question: Approximate tHeogPruntime for an kary-tree
broadcast of a single packet?

A T ogP* (L + (kl)maxp,g) +20)



Example: Broadcasts

A Class Question: Approximate theogPruntime for a binomial tree
broadcast of a single packet (assume L > g!)?

A Toin K IPZ @ +20)

A Class Question: Approximate thHeogPruntime for a knomialtree
broadcast of a single packet?

A T, MogP* (L + (K)maxp,g) +20)

A Class Question: What is the optimal k (assume 0>Qg)?
A Derive by kD=0 *“In(kypt) G LKy + 0 (sOlve numerically)
For larger L, k grows and for larger o, k shrinks
A Models pipelining capability better than simple model!



Example: Broadcasts

A Class Question: Can we do better thag),-ary binomial broadcast?
A Problem: fixed k in all stages might not be optimal
A We can construct a schedule for the optimal broadcast in practical settings
ACANRBG LINRBLRASR 6@ YINW SG Fto Ay ah
LogPa 2 RS €



Example: Optimal Broadcast

A Broadcast to PL processes

A Each process who received the value sends it on; each process receives
exactly once

P=8, L6, g4, 0=



