
Operating Systems and Networks Spring 2015
Assignment 2 Due 6 March 2015

1. Scheduling

The following table describes jobs to be scheduled. The table contains the entry times, duration, execu-
tion times, and deadlines of jobs. All values are given in milliseconds.

Job Entry time Execution time Deadline
1 0 30 70
2 0 20 90
3 20 20 50
4 30 10 40
5 50 30 120

Scheduling decisions are performed every 10 ms. Assume scheduling decisions take no time. The dead-
lines are absolute.

(a) Creating schedules

Create schedules for the different types of policies listed below. Please visualize your schedules (like
in the lecture) and also answer the questions below.

Types of schedules:

i. RR (round robin)

ii. EDF (earliest deadline first)

iii. SRTF (shortest remaining time first)

Please answer the following questions for each of the schedules:

• What is the waiting time for each job?
• What is the average waiting time for all job?
• What is the turnaround time for each job?
• How is the response time computed for this scheduler? If possible, calculate the response time

for each job.

Solution:

• Turnaround time: The time between arrival and completion of a job.
• Waiting time: The time a job is runnable but not executing.
• Response time: The time from arrival of a job to the point where output appears. In

general, this is only for interactive jobs. For instance, how long does it take for a character
to appear on the screen after a user presses a key?

i. RR: Assume a job which enters the system can be scheduled immediately and is the next
job to be run.

Job 00 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5
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• Waiting time for each job: 1: 60, 2: 50, 3: 40, 4: 0, 5: 30
• Average waiting time: (60 + 50 + 40 + 0 + 30)/5 = 36
• Turnaround time for each job: 1: 90, 2: 70, 3: 60, 4: 10, 5: 60
• Response time: In the worst case, the job’s time slice is used up when the user presses

a key. Then it must wait for 4 other jobs before it will be run again. Assuming the job
can produce output as soon as it is run, the response time is at most (5−1)×10 = 40
ms.

ii. EDF: The deadlines are absolute if the jobs are non-periodic. If two jobs have the same
deadline, assume the first jobs we find is run.

Job 00 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5

• Waiting time for each job: 1: 30, 2: 60, 3: 10, 4: 0, 5: 30
• Average waiting time: (30 + 60 + 10 + 0 + 30)/5 = 26
• Turnaround time for each job: 1: 60, 2: 80, 3: 30, 4: 10, 5: 60
• Response time: Since jobs must meet their deadlines, a job is scheduled to start

at (deadline - execution time) at the latest. Thus the maximum response time is
(deadline - execution time - entry time). Assuming jobs produce output as soon as
they are run, we get 1: 40, 2: 70, 3: 10, 4: 0, 5: 40.

iii. SRTF: The job with the shortest remaining time is always chosen to be executed.

Job 00 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5

• Waiting time for each job: 1: 50, 2: 0, 3: 0, 4: 10, 5: 30
• Average waiting time: (50 + 0 + 0 + 10 + 30)/5 = 18
• Turnaround time for each job: 1: 80, 2: 20, 3: 20, 4: 20, 5: 60
• Response time: The response time cannot be estimated for SRTF since starvation

may cause certain jobs to never be scheduled.

(b) General questions

i. What is the problem with the SJF (shortest job first) policy?

ii. What is an advantage of SJF?

iii. What is a benefit of RR?

iv. What is a major conceptual difference between EDF and RR?

v. Why do hard real-time systems often not have dynamic scheduling?

Solution:

i. Long jobs may suffer from starvation if there is a continuous stream of incoming short
jobs.

ii. It minimizes the waiting time and the turnaround time. This can be shown using the
rearrangement inequality (proof given below).
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Suppose there are n jobs and the execution times are t1, . . . , tn (in order of execution).

Then the average waiting time is (n−1)t1+(n−2)t2+...+tn−1

n . Clearly, the average waiting
time is minimal if and only if the total waiting time (n− 1)t1 + (n− 2)t2 + . . .+ tn−1 is
minimal, and this is guaranteed when t1 ≤ . . . ≤ tn. Hence SJF is optimal is terms of
average waiting time.
Since the turnaround time of a job is equal to (waiting time + execution time) and the
execution time is a constant value, the average turnaround time is also minimal if and
only if the average waiting time is minimal.

Theorem 1. (Rearrangement inequality.) Let n ∈ N. Suppose a1, . . . , an, b1, . . . , bn ∈ R
such that a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn. Define Sn = {1, . . . , n}. Let σ : Sn → Sn be a
permutation of Sn. Then a1b1 + . . .+ anbn ≥ aσ(1)b1 + . . .+ aσ(n)bn ≥ anb1 + . . .+ a1bn.

Proof. Suppose σ is not the identity map. Let j be the smallest element in Sn such
that σ(j) 6= j. Then σ(i) = i for all i ∈ Sn satisfying i < j, so we have σ(j) > j.
Furthermore, there exists a unique k ∈ Sn such that k > j and σ(k) = j. It follows that
(aσ(j) − aj)(bk − bj) ≥ 0 implies

ajbj + aσ(j)bk ≥ aσ(j)bj + ajbk. (1)

Thus we can obtain

a1b1 + . . .+ anbn ≥ aσ(1)b1 + . . .+ aσ(n)bn (2)

by repeatedly exchanging elements using (1). Applying (2) to a1 ≤ . . . ≤ an and −bn ≤
. . . ≤ −b1 completes the second half of the rearrangement inequality.

iii. It is easy to understand, analyze, and implement. It also has a good response time.
iv. EDF is a real-time scheduling strategy. Therefore, jobs have priorities. In contrast, RR

treats all jobs as the same and does not prioritize.
v. In a dynamic setup, it is not possible to guarantee the feasibility of a correct schedule.

That means if new tasks are allowed to be entered, we cannot guarantee all deadlines
will be met. A possible solution is to compute whether there is sufficient time to meet
deadlines before creating a new task. This guarantees existing tasks will always meet
deadlines, but new important tasks may failed to be created.

(c) Real-time scheduling

You are designing an HDTV. To keep the production costs low, it has only one CPU which must
perform the following tasks:

• Decode video chunks (takes 50 ms and has to be done at least every 200 ms)
• Update Screen (takes 30 ms and has to be done at least every 200 ms)
• Handle user input (takes 10 ms and has to be done at least every 250 ms)

i. Show that it is possible to schedule all tasks in such a way that all deadlines are met using
rate-monotonic scheduling (RMS). Do not present a working schedule.

ii. Suppose DRM must be added to your TV. This requires an extra task with a period of 300 ms
and an execution time of 100 ms.
α) What is the utilization of the system now?

β) What is the upper bound according to the theorem used in (ii).

γ) If you try to construct a working schedule by hand, you will see it is still possible to create
one. How can this be explained?

iii. For a general setting show the following: if the number of tasks approaches infinity and the
utilization is below 69.3%, then all tasks can be scheduled without violating deadlines. Explain
how you derive this result.
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Solution:

i. It can be shown that N periodic tasks with computation times Ci and periods Pi can be
scheduled by ordering the tasks according to their periods if

U =

N∑
i=1

Ci
Pi
≤ N(2

1
N − 1). (3)

For the given values, we get U = 0.44 ≤ 0.78.
ii. If the utilization U does not exceed the upper bound given in Equation 3, then a working

schedule can be constructed. However, the converse is not true, i.e., a working schedule need
not have a utilization less than or equal to the upper bound. There are cases where a feasible
schedule can be found even when U = 1.

Task Execution time Period
∑
Ci/Pi Utilization Upper bound

1 30 200 0.15 0.15 1.00
2 50 200 0.40 0.40 0.82
3 10 250 0.44 0.44 0.78
4 100 300 0.77 0.77 0.75

iii. We want to compute limN→∞N(2
1
N − 1). By reformulating the problem and then applying

L’Hôpital’s rule, we obtain

lim
N→∞

N(2
1
N − 1) = lim

x→0

2x − 1

x
= lim
x→0

(ln 2 · 2x) = ln 2 ≈ 0.693.

2. Processes revisited

Creating new processes in Linux (and other Unix-like operating systems) is done using fork(). The
system call fork() clones an existing process instead of creating a completely new one.

Since fork() clones a process, both the parent and the child execute the same code after the invocation.
It is necessary to distinguish to two processes, and this can be done by checking the return value of
fork(). The parent receives the PID of the child process while the child gets 0.

(a) Calling fork() multiple times in a row

Write a program which calls fork() multiple times in a row, e.g. three times. Each forked process
shall print its own level in the process tree and wait for all child processes using waitpid().

What process tree do you expect? Note that you can use ps f to verify if your program output
matches the actual process tree.

(b) Executing ls -l from your program

Write a program which executes ls -l. Look up the man page of the exec() family of functions
using man 3 exec. (Note that each man page is associated with a section, and all the sections are
described in the man page of man. Here we must specify section 3 to get the correct man page.)

After calling exec() (or one of its variants) in your program, add a printf() statement to show
that exec() has completed.

When you run your program, what problem do you observe? How can it be fixed?

(c) Reading the output of ls from a pipe Create a program which opens a pipe. Execute ls and
redirect the output into the pipe. Then read data from the pipe and print it. Your program should
print a statement before writing data read from the pipe, e.g., “Output from ls: . . . ”.
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Solution:

(a) The process tree will be unbalanced. The root process will spawn n children, the first child
will spawn n− 1 children, the second child will spawn n− 2 children, and so on.

(b) The function exec() never returns since it replaces the current process with a new program.
Therefore, printf() will never be reached assuming exec() does not fail.
The problem can be fixed by calling fork() and let the child process call exec(). The parent
can use wait() to wait until the child has completed.

(c) A sample implementation is available on the course website.
Note that shells make use of pipe() to implement pipelines. File descriptors are manipulated
using dup2() after fork() but before exec(). For an example, see http://pdos.csail.mit.

edu/6.828/2014/xv6/xv6-rev8.pdf.

3. Processes and the kernel

(a) If a process terminates but its parent has not called wait() (or a similar function) or “ignored” it,
the process enters the zombie state. Explain why the process is put in the zombie state instead of
being cleaned up in the kernel.

(b) Write a program which calls fork(), and make the parent process terminate while the child runs
indefinitely. Does the child process get a new parent? If so, which process becomes its parent and
is there anything special about the new process?

Solution:

(a) If the process is cleaned up, then the exit status will not be available if the parent requests it
using wait() or waitpid().

(b) The process receives a new parent whose PID is 1. The process with PID 1 is the first process
started during boot and is typically init or systemd depending on the operating system.

4. User-level threads

(a) Implementing user-level threads

In this section, you should implement a user-level thread library and a scheduler. To keep it simple,
implement a round robin scheduler.

You will need to implement the following functions:

• thread create()

• thread add runqueue()

• thread yield()

• thread exit()

• schedule()

• dispatch()

• thread start threading()

Each thread should be represented by a TCB (struct thread in the template) which contains at
least a function pointer to the thread’s function and an argument of type void *. The thread’s
function should take this void * as argument whenever it is executed. This struct should also
contain a pointer to the thread’s stack and two fields which store the current stack pointer and base
pointer when it calls yield.

thread create() should take a function pointer and void *arg as arguments. It allocates a TCB
and a new stack for the thread and sets default values. It is important that the initial stack pointer
(set by this function) is at an address divisible by 8. The function returns the initialized structure.
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thread add runqueue() adds an initialized TCB to the run queue. Since we implement a round
robin scheduler, it is easiest if you maintain a ring of struct thread’s. This can be done by having
a linked list where the last node points to the first node.

The static variable current thread always points to the currently executing thread.

thread yield() suspends the current thread by saving its context to the TCB and calling the
scheduler and the dispatcher. If the process the resumed later, it continues executing from where
it stopped.

thread exit() removes the caller from the ring, frees its stack and the TCB, sets current thread

to the next thread to be executed, and calls dispatch(). It is important to dispatch the next
thread right here before returning because we just removed the current thread.

schedule() decides which thread to run next. This is actually trivial because it is a round robin
scheduler. Simply select the next thread in the ring. For convenience (e.g., for the dispatcher), it
may be helpful to have another static variable which points to the last executed thread.

dispatch() actually executes a thread (the thread to run as decided by the scheduler). It has to
save the stack pointer and the base pointer of the last thread to its TCB and restore the stack
pointer and base pointer of the new thread. This involves some assembly code. In case the thread
has never run before, it may have to do some initialization instead. If the thread’s function returns,
the thread has to be removed from the ring and the next one has to be dispatched. The easiest
thing to do here is call thread exit() since this function does that already.

thread start threading() initializes the threading by calling schedule() and dispatch(). This
function should be called by your main function (after adding the first thread to the run queue). It
should never return (at least as long as there are threads in your system).

In summary, to create and run a thread, you should follow the steps below:

static void

thread_function(void *arg)

{

// Create threads here and add to the run queue if necessary

while (condition) {

do_work();

thread_yield();

if (condition)

thread_exit();

}

}

int

main(int argc, char **argv)

{

struct thread *t = thread_create(f, NULL);

thread_add_runqueue(t);

// Create more threads and add to run queue if necessary

thread_start_threading();

printf("Done\n");

return 0;

}

(b) Testing the user-level thread library

As a second step, implement a main function that creates a couple of threads which perform some
operations so that we can see on the console the threads are really running interleaved. Note: since
this is cooperative threading, your threads must call thread yield() from time to time.
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Write two functions which maintain separate counters. One prints 0–9 while the other prints 1000-
1009

Templates of thread.h and main.c are available from the course website. The template defines
prototypes of functions used in main.c, but you may use your own ones.

Solution: A sample implementation is available on the course website.
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