
!"#$%"&%!$'

#'

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

BE CAREFUL WITH I/O DEVICES!

Networks and Operating Systems (252-0062-00)!
Chapter 10: I/O Subsystems (2)

spcl.inf.ethz.ch
@spcl_eth

! ! True or false (raise hand)
! ! Open files are part of the processÕ address-space
! ! Unified buffer caches improve the access times
! ! A partition table can unify the view of multiple disks
! ! Unix enables to bind arbitrary file systems to arbitrary locations
! ! The virtual file system interface improves modularity of OS code
! ! Programmed I/O is efficient for the CPUs
! ! DMA enables devices to access virtual memory of processes
! ! IOMMUs enable memory protection for devices
! ! IOMMUs improve memory access performance
! ! First level interrupt handlers process the whole request from the hardware
! ! Software interrupts reduce the request processing latency
! ! Deferred procedure calls execute second-level interrupt handlers

2

Our Small Quiz

spcl.inf.ethz.ch
@spcl_eth

The I/O subsystem

spcl.inf.ethz.ch
@spcl_eth

Generic I/O functionality

! ! Device drivers essentially move data to and from I/O de vices
! ! Abstract hardware
! ! Manage asynchrony

! ! OS I/O subsystem includes generic functions for dealing with
this data
! ! Such asÉ

spcl.inf.ethz.ch
@spcl_eth

The I/O Subsystem

! ! Caching - fast memory holding copy of data
! ! Always just a copy
! ! Key to performance

! ! Spooling - hold output for a device
! ! If device can serve only one request at a time
! ! E.g., printing

spcl.inf.ethz.ch
@spcl_eth

The I/O Subsystem

! ! Scheduling
! ! Some I/O request ordering via per-device queue
! ! Some OSs try fairness

! ! Buffering - store data in memory while transferring between
devices or memory
! ! To cope with device speed mismatch
! ! To cope with device transfer size mismatch
! ! To maintain Òcopy semanticsÓ

!"#$%"&%!$'

!'

spcl.inf.ethz.ch
@spcl_eth

Naming and Discovery

! ! What are the devices the OS needs to manage?
! ! Discovery (bus enumeration)
! ! Hotplug / unplug events
! ! Resource allocation (e.g., PCI BAR programming)

! ! How to match driver code to devices?
! ! Driver instance ! driver module
! ! One driver typically manages many models of device

! ! How to name devices inside the kernel?

! ! How to name devices outside the kernel?

spcl.inf.ethz.ch
@spcl_eth

Matching drivers to devices

! ! Devices have unique (model) identifiers
! ! E.g., PCI vendor/device identifiers

! ! Drivers recognize particular identifiers
! ! Typically a listÉ

! ! Kernel offers a device to each driver in turn
! ! Driver can ÒclaimÓ a device it can handle
! ! Creates driver instance for it.

spcl.inf.ethz.ch
@spcl_eth

Naming devices in the Unix kernel

(Actually, naming device driver instances)

! ! Kernel creates identifiers for
! ! Block devices
! ! Character devices
! ! [Network devices Ð see laterÉ]

! ! Major device number:
! ! Class of device (e.g., disk, CD-ROM, keyboard)

! ! Minor device number:
! ! Specific device within a class

spcl.inf.ethz.ch
@spcl_eth

Unix Block Devices

! ! Used for Òstructured I/OÓ
! ! Deal in large ÒblocksÓ of data at a time

! ! Often look like files (seekable, mappable)
! ! Often use UnixÕ shared buffer cache

! ! Mountable:
! ! File systems implemented above block devices

spcl.inf.ethz.ch
@spcl_eth

Character Devices

! ! Used for Òunstructured I/OÓ
! ! Byte-stream interface Ð no block boundaries
! ! Single character or short strings get/put
! ! Buffering implemented by libraries

! ! Examples:
! ! Keyboards, serial lines, mice

! ! Distinction with block devices somewhat arbitraryÉ

spcl.inf.ethz.ch
@spcl_eth

Naming devices outside the kernel

! ! Device files: special type of file
! ! Inode encodes <type, major num, minor num>
! ! Created with mknod() system call

! ! Devices are traditionally put in /dev
! ! /dev/sda Ð First SCSI/SATA/SAS disk
! ! /dev/sda5 Ð Fifth partition on the above
! ! /dev/cdrom0 Ð First DVD-ROM drive
! ! /dev/ttyS1 Ð Second UART

!"#$%"&%!$'

&'

spcl.inf.ethz.ch
@spcl_eth

Pseudo-devices in Unix

! ! Devices with no hardware!

! ! Still have major/minor device numbers. Examples:

/dev/stdin
/dev/kmem
/dev/random
/dev/null
/dev/loop0

etc.

spcl.inf.ethz.ch
@spcl_eth

Old-style Unix device configuration

! ! All drivers compiled into the kernel

! ! Each driver probes for any supported devices

! ! System administrator populates /dev
! ! Manually types mknod when a new device is purchased!

! ! Pseudo devices similarly hard-wired in kernel

spcl.inf.ethz.ch
@spcl_eth

Linux device configuration today

! ! Physical hardware configuration readable from /sys
! ! Special fake file system: sysfs
! ! Plug events delivered by a special socket

! ! Drivers dynamically loaded as kernel modules
! ! Initial list given at boot time
! ! User-space daemon can load more if required

! ! /dev populated dynamically by udev
! ! User-space daemon which polls /sys

spcl.inf.ethz.ch
@spcl_eth

Interface to network I/O

spcl.inf.ethz.ch
@spcl_eth

Unix interface to network I/O

! ! You already know the data path
! ! BSD sockets
! ! bind(), listen(), accept(), connect(), send(), recv (),

etc.

! ! Have not yet seen:
! ! Device driver interface
! ! Configuration
! ! Routing

spcl.inf.ethz.ch
@spcl_eth

Software routing

! ! OS protocol stacks
include routing
functionality

! ! Routing protocols
typically in a user-space
daemon
! ! Non-critical
! ! Easier to change

! ! Forwarding information
typically in kernel
! ! Needs to be fast
! ! Integrated into protocol stack

User space

Kernel space

Routing daemon

Routing
protocol

messages

FIB (forwarding
information base) Protocol stack

Routing
control

Network

!"#$%"&%!$'

('

spcl.inf.ethz.ch
@spcl_eth

Network stack implementation

spcl.inf.ethz.ch
@spcl_eth

Networking stack

! ! Probably most important peripheral
! ! GPU is increasingly not a peripheral
! ! Disk interfaces look increasingly like a network

! ! ButÉ
! ! NO standard OS textbook talks about the network stack!

! ! Good references:
! ! The 4.4BSD book (for Unix at least)
! ! George Varghese: ÒNetwork AlgorithmicsÓ (up to a point)

spcl.inf.ethz.ch
@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Network
interface

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

spcl.inf.ethz.ch
@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

1.! Interrupt
1.1 Allocate buffer
1.2 Enqueue packet
1.3 Post s/w interrupt

Network
interface

spcl.inf.ethz.ch
@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

2.! S/W Interrupt
High priority
Any process context
Defragmentation
TCP processing
Enqueue on socket

Network
interface

spcl.inf.ethz.ch
@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

3.! Application
Copy buffer to user
space
Application process
context

Network
interface

!"#$%"&%!$'

$'

spcl.inf.ethz.ch
@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

Network
interface

spcl.inf.ethz.ch
@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

1.! Application
Copy from user space to buffer
Call TCP code and process
Possible enqueue on socket
queue

Network
interface

spcl.inf.ethz.ch
@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

2.! S/W Interrupt
Any process context
Remaining TCP
processing
IP processing
Enqueue on i/f queue

Network
interface

spcl.inf.ethz.ch
@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

3.! Interrupt
Send packet
Free buffer

Network
interface

spcl.inf.ethz.ch
@spcl_eth

The TCP state machine

Closed

SYN_rcvd

Listen

Established

Closing

Time_wait Closed

Last_Ack

Close_wait

FIN_wait_2

FIN_wait_1

SYN_sent

Active open / SYN

Close
Close Passive Open

SYN / SYNACK

SYNACK / ACK

SYN / SYNACK Send / SYN

ACK

Close / FIN

ACK

FIN / ACK

Close / FIN FIN / ACK

Close / FIN

ACK Timeout after 2
segment lifetimes

ACK

FIN / ACK
ACKFIN / ACK

spcl.inf.ethz.ch
@spcl_eth

OS TCP state machine

! ! More complex! Also needs to handle:
! ! Congestion control state (window, slow start, etc.)
! ! Flow control window
! ! Retransmission timeouts
! ! Etc.

! ! State transitions triggered when:
! ! User request: send , recv , connect , close
! ! Packet arrives
! ! Timer expires

! ! Actions include:
! ! Set or cancel a timer
! ! Enqueue a packet on the transmit queue
! ! Enqueue a packet on the socket receive queue
! ! Create or destroy a TCP control block

!"#$%"&%!$'

)'

spcl.inf.ethz.ch
@spcl_eth

In-kernel protocol graph

Ethernet device

Ethernet

TCP UDP

ARP

ICMP

IP

Interfaces can be
standard (e.g. X-

kernel, Windows) or
protocol-specific (e.g.

Unix)

e.g.
Tunneling

spcl.inf.ethz.ch
@spcl_eth

Protocol graphs

Graph nodes can be:

! ! Per-protocol (handle all flows)
! ! Packets are ÒtaggedÓ with demux tags

! ! Per-connection (instantiated dynamically)
! ! Multiple interfaces as well as connections
! ! Ethernet ! Ethernet " bridging
! ! IP ! IP " IP routing

spcl.inf.ethz.ch
@spcl_eth

Memory management

spcl.inf.ethz.ch
@spcl_eth

Memory management

! ! Problem: how to ship packet data around

! ! Need a data structure that can:
! ! Easily add, remove headers
! ! Avoid copying lots of payload
! ! Uniformly refer to half-defined packets
! ! Fragment large datasets into smaller units

! ! Solution:
! ! Data is held in a linked list of Òbuffer structuresÓ

spcl.inf.ethz.ch
@spcl_eth

BSD Unix mbufs (Linux equivalent: sk_buffs)

next
offset
length
type

Data
(112 bytes)

next object

spcl.inf.ethz.ch
@spcl_eth

BSD Unix mbufs (Linux equivalent: sk_buffs)

next
offset
length
type

Data
(112 bytes)

next object

36
24

Type: DATA

24 bytes

36
bytes

Next mbuf
for this
object

Next object
in a list

!"#$%"&%!$'

*'

spcl.inf.ethz.ch
@spcl_eth

Case Study: Linux 3.x

¥! Implementing a simple protocol over Ethernet

¥! Why?
! ! You want to play with networking equipment (well, RAW sockets

are easier)
! ! You want to develop specialized protocols

E.g., application-specific ÒTCPÓ
E.g., for low-latency cluster computing

! ! YouÕll understand how it works!

spcl.inf.ethz.ch
@spcl_eth

Sending Data in Linux 3.x

¥! Many layers

¥! Most use the sk_buf struct
tcp_send_msg

tcp_transmit_skb

ip_queue_xmit

char*

struct sk_buff

struct sk_buff,
TCP Header

Socket

ip_fragment

ip_route_output_flow

ip_forward
dev_queue_xmit

Driver

spcl.inf.ethz.ch
@spcl_eth

¥! Fill packet_type struct:
! ! .type = your ethertype
! ! .func = your receive function

¥! Receive handler recv_hook(...)
! ! Gets sk_buff, packet_type, net_device, ...
! ! Called for each incoming frame
! ! Reads skb->data field and processes protocols

Register a receive hook

0x0800

0x8864

0x8915

É

IPv4 hdlr.

PPPOE hdlr.

RoCE hdlr.

Receive hook table:

spcl.inf.ethz.ch
@spcl_eth

! ! Socket Interface
! ! Need to implement handlers for connect(), bind(), listen(), etc.

! ! Call sock_register(struct net_proto_family*)
! ! Register a protocol family
! ! Enables user to create socket of this type

Interaction with applications

spcl.inf.ethz.ch
@spcl_eth

! ! Called ÒskbÓ in Linux jargon
! ! Allocate via alloc_skb() (or dev_alloc_skb() if in driver)
! ! Free with kfree_skb() (dev_kfree_skb())
! ! Use pskb_may_pull(skb, len) to check if data is available
! ! skb_pull(skb, len) to advance the data pointer

... it even has a webpage! http://www.skbuff.net/

Anatomy of struct sk_buff

spcl.inf.ethz.ch
@spcl_eth

! ! Double-linked list, each skb has .next/.prev
! ! .data contains payload (size of data field is set by skb_alloc)
! ! .sk is the socket this skb is owned by
! ! .mac_header, .network_header, .transport_header contain headers of

various layers
! ! .dev is the device this skb uses
! ! ... 58 member fields total

SKB Fields

!"#$%"&%!$'

+'

spcl.inf.ethz.ch
@spcl_eth

! ! Linux <2.0.32:
! ! Two fragments:
! ! #1

Offset: 0
Length: 100

! ! #2
Offset 100
Length: 100

Case Study: TCP Fragmenting

// Determine the position of this fragment.
end = offset + iph->tot_len - ihl;
// Check for overlap with preceding fragment, and, if needed,
// align things so that any overlaps are eliminated.
if (prev != NULL && offset < prev->end) {
 i = prev->end - offset;
 offset += i; /* ptr into datagram */
 ptr += i; /* ptr into fragment data */
}
// initialize segment structure
fp->offset = offset;
fp->end = end;
fp->len = end - offset;
.... // collect multiple such fragments in queue
// process each fragment
if(count+fp->len > skb->len) {
 error_to_big;
}
memcpy((ptr + fp->offset), fp->ptr, fp->len);
count += fp->len;
fp = fp->next;

#1: 100, #2: 200

#1: 100, #2: 100

#1: 100, #2: 200

#1: 0, #2: 100

spcl.inf.ethz.ch
@spcl_eth

// Determine the position of this fragment.
end = offset + iph->tot_len - ihl;
// Check for overlap with preceding fragment, and, if needed,
// align things so that any overlaps are eliminated.
if (prev != NULL && offset < prev->end) {
 i = prev->end - offset;
 offset += i; /* ptr into datagram */
 ptr += i; /* ptr into fragment data */
}
// initialize segment structure
fp->offset = offset;
fp->end = end;
fp->len = end - offset;
.... // collect multiple such fragments in queue
// process each fragment
if(count+fp->len > skb->len) {
 error_to_big;
}
memcpy((ptr + fp->offset), fp->ptr, fp->len);
count += fp->len;
fp = fp->next;

Case Study: TCP Fragmenting

! ! Linux <2.0.32:
! ! Two fragments:
! ! #1

Offset: 0
Length: 100

! ! #2
Offset 10
Length: 20

#1: 100, #2: 30

#2: 100-10=90

#1: 100, #2: -70

#1: 100, #2: 30

#1: 0, #2: 100

(size_t)-70 = 4294967226

#2: 100

spcl.inf.ethz.ch
@spcl_eth

Case Study: TCP Fragmenting

! ! Linux <2.0.32:
! ! Two fragments:
! ! #1

Offset: 0
Length: 100

! ! #2
Offset 10
Length: 20

// Determine the position of this fragment.
end = offset + iph->tot_len - ihl;
// Check for overlap with preceding fragment, and, if needed,
// align things so that any overlaps are eliminated.
if (prev != NULL && offset < prev->end) {
 i = prev->end - offset;
 offset += i; /* ptr into datagram */
 ptr += i; /* ptr into fragment data */
}
// initialize segment structure
fp->offset = offset;
fp->end = end;
fp->len = end - offset;
.... // collect multiple such fragments in queue
// process each fragment
if(count+fp->len > skb->len) {
 error_to_big;
}
memcpy((ptr + fp->offset), fp->ptr, fp->len);
count += fp->len;
fp = fp->next;

#1: 100, #2: 30

#2: 100-10=90

#1: 100, #2: -70

#1: 100, #2: 30

#1: 0, #2: 100

(size_t)-70 = 4294967226

#2: 100

spcl.inf.ethz.ch
@spcl_eth

2.0.32 É thatÕs so last century!

spcl.inf.ethz.ch
@spcl_eth

Performance issues

spcl.inf.ethz.ch
@spcl_eth

Life Cycle of an I/O Request

¥! Send request to driver
¥! Block process if needed

¥! Request I/O

¥! Issue commands to
device

¥! Block until interrupted

¥! Issue interrupt when I/O
completed

Time

¥! I/O complete

¥! Transfer data to/from user
space,

¥! Return completion code

¥! Demultiplex I/O complete
¥! Determine source of

request

¥! Handle interrupt
¥! Signal device driver

¥! I/O complete
¥! Generate Interrupt

Can satisfy
request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system call System call

Yes

No

Unfortunately, this

is a bit of a

convenient fiction

!"#$%"&%!$'

,'

spcl.inf.ethz.ch
@spcl_eth

Consider 10 Gb/s Ethernet

spcl.inf.ethz.ch
@spcl_eth

At full line rate for 1 x 10Gb port

! ! ~1GB (gigabyte) per second
" ! ~ 700k full-size Ethernet frames per second
" ! At 2GHz, must process a packet in " 3000 cycles

! ! This includes:
! ! IP and TCP checksums
! ! TCP window calculations and flow control
! ! Copying packet to user space

spcl.inf.ethz.ch
@spcl_eth

! ! L3 cache miss (64-byte lines) " 300 cycles
" ! At most 10 cache misses per packet

Note: DMA ensures cache is cold for the packet!

! ! Interrupt latency " 500 cycles
! ! Kernel entry/exit
! ! Hardware access
! ! Context switch / DPC
! ! Etc.

A few numbersÉ

spcl.inf.ethz.ch
@spcl_eth

PlusÉ

! ! You also have to send packets.
! ! Card is full duplex " can send at 10Gb/s

! ! You have to do something useful with the packets!
! ! Can an application can make use of 1.5kB of data every 1000 machine

cycles or so?

! ! This card has two 10Gb/s ports.

spcl.inf.ethz.ch
@spcl_eth

And Plus É

! ! And if you thought that
was fast É
! ! Mellanox 100 Gb/s Adapter
! ! Impossible to use without

advanced features
RDMA
SR-IOV
TOE
Interrupt coalescing

spcl.inf.ethz.ch
@spcl_eth

! ! TCP offload (TOE)
! ! Put TCP processing into hardware on the card

! ! Buffering
! ! Transfer lots of packets in a single transaction

! ! Interrupt coalescing / throttling
! ! DonÕt interrupt on every packet
! ! DonÕt interrupt at all if load is very high

! ! Receive-side scaling
! ! Parallelize: direct interrupts and data to different cores

What to do?

!"#$%"&%!$'

#"'

spcl.inf.ethz.ch
@spcl_eth

! ! Mitigate interrupt pressure
1.! Each packet interrupts the CPU
2.! Vs. CPU polls driver

! ! NAPI switches between the two!

! ! NAPI-compliant drivers
! ! Offer a poll() function
! ! Which calls back into the receive path É

Linux New API (NAPI)

spcl.inf.ethz.ch
@spcl_eth

! ! Driver enables polling with netif_rx_schedule(struct net_d evice
*dev)
! ! Disables interrupts

! ! Driver deactivates polling with netif_rx_complete(struct
net_device *dev)
! ! Re-enable interrupts.

! ! ! but where does the data go???

Linux NAPI Balancing

spcl.inf.ethz.ch
@spcl_eth

Key ideas:

! ! Decouple sending and receiving
! ! Neither side should wait for the other
! ! Only use interrupts to unblock host

! ! Batch together requests
! ! Spread cost of transfer over several packets

Buffering

spcl.inf.ethz.ch
@spcl_eth

Consumer
pointer

Producer-consumer buffer descriptor rings

Producer
pointer

Free descriptors

Full descriptors

Physical address
Size in bytes
Misc. flags

Descriptor format

spcl.inf.ethz.ch
@spcl_eth

Buffering for network cards

Producer, consumer pointers are NIC registers

! ! Transmit path:
! ! Host updates producer pointer,

adds packets to ring
! ! Device updates consumer pointer

! ! Receive path:
! ! Host updates consumer pointer,

adds empty buffers to ring
! ! Device updates producer pointer,

fills buffers with received packets.

More complex protocols are possibleÉ

spcl.inf.ethz.ch
@spcl_eth

Example transmit state machine

Running Idle

Sends last packet;
None left in
descriptor ring

Host updates
producer pointer

Sends packet;
More packets in
descriptor ring

Running;
host blocked

Host updates
producer pointer;
Ring now full

Sends packet;
Ring occupancy
below threshold

Sends packet;
Ring still nearly full

!"#$%"&%!$'

##'

spcl.inf.ethz.ch
@spcl_eth

Transmit interrupts

! ! Ring empty
" all packets sent
" device going idle

! ! Ring occupancy drops
" host can now send again
" device continues running

Running Idle

Sends last packet;
None left in
descriptor ring

Host updates
producer pointer

Sends packet;
More packets in
descriptor ring

Running;
host blocked

Host updates
producer pointer;
Ring now full

Sends packet;
Ring occupancy
below threshold

Sends packet;
Ring still nearly full

Exercise: devise a
similar state machine

for receive!

spcl.inf.ethz.ch
@spcl_eth

Buffering summary

! ! DMA used twice
! ! Data transfer
! ! Reading and writing descriptors

! ! Similar schemes used for any fast DMA device
! ! SATA/SAS interfaces (such as AHCI)
! ! USB2/USB3 controllers
! ! etc.

! ! Descriptors send ownership of memory regions

! ! Flexible Ð many variations possible:
! ! Host can send lots of regions in advance
! ! Device might allocate out of regions, send back subsets
! ! Buffers might be used out-of-order

! ! Particularly powerful with multiple send and receive queues É

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

! ! Insight:
! ! Too much traffic for one core to handle
! ! Cores arenÕt getting any faster

" Must parallelize across cores

! ! Key idea: handle different flows on different cores
! ! But: how to determine flow for each packet?
! ! CanÕt do this on a core: same problem!

! ! Solution: demultiplex on the NIC
! ! DMA packets to per-flow buffers / queues
! ! Send interrupt only to core handling flow

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

Received
packet

Hash of
packet
header

pointer
Flow state:
¥! Ring buffer
¥! Message-signalled interrupt

Flow table

¥!IP src + dest
¥!TCP src + dest
Etc.

DMA
address

Core to
interrupt

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

! ! Can balance flows across cores
! ! Note: doesnÕt help with one big flow!

! ! Assumes :
! ! n cores processing m flows is faster than one core

! ! Hence:
! ! Network stack and protocol graph must scale on a multiprocessor.

! ! Multiprocessor scaling: topic for later

spcl.inf.ethz.ch
@spcl_eth

Tomorrow

! ! Virtual machines

! ! Multiprocessor operating systems

