
!"#$%"&%!'(

#(

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)!
Chapter 11: Virtual Machine Monitors

A SIGINT in time saves a kill -9

!"#$%&'(%()*+,-.(/01#",(2*+(#3"(4"+567-8*9(*2(!"#:*+;1(
)*+,*-(./0*1 2(3/-1*44(5167*-86,9(
(
:/1;<92(:<-=>(&"2(!"#$(
#'?#$(%(#@?#$2(3AB(C'#(
(
%</&=%>&'(
D*,.AE(68(<(-*4<F7*49(1*G(H-/I-<JJ61I(4<1IK<I*(<1;(4/I6=(L/-(-*<8/161I(<M/K,((H<=N*,(8G6,=>61I(
1*,G/-N8(,><,(O,8(G*44(G6,>(,>*(H/HK4<-(8/PG<-*(;*O1*;((1*,G/-N61I(QR)DS(H<-<;6IJT(D*,.AE(
G<8(61,-/;K=*;(UK6,*(-*=*1,49(M9((A1;*-8/1(*,(<4T(QVWVX(!"#YS(<1;(LK-,>*-(;*7*4/H*;(M9(Z/8,*-(*,(
<4T(QVWVX(!"#$ST((E>*(898,*J(H-/76;*8(I*1*-<4%HK-H/8*(H-/I-<JJ61I(=/18,-K=,8(8K=>(<8(H<-<44*4((
<1;(8*UK*1F<4(=/JH/86F/12(=/1;6F/1<4(,*8,8(<1;(6,*-<F/1(<8(G*44(<8(8H*=6<4%HK-H/8*(H-6J6F7*8(
L/-(UK*-961I(<1;(J/;6L961I(H<=N*,(>*<;*-8(<1;(*1=/;61I((1*,G/-N(,/H/4/I6*8T(!"#$%&'()&(#$
&%%*+,$-"#$.#,/0#.$1#"&2/*0$*3$&$'#-+*04$-*$1#$$,5#6/7#.$#8)&9*'&%%:;$<-$"&,$&$3*0=&%$$
=&-"#=&96&%$,#=&'96,(<1;(<(;*;K=F7*(898,*J(,><,(68(8/K1;(<1;(=/JH4*,*(/7*-(,><,(8*J<1F=82(
<8(G*44(<8(<1(*[=6*1,(;*=686/1(H-/=*;K-*(L/-(,>*(<K,/J<F=(7*-6O=<F/1(/L(*UK<F/1<449%;*O1*;(
H-/H*-F*8(/L(1*,G/-N8T(

spcl.inf.ethz.ch
@spcl_eth

! ! True or false (raise hand)
! ! Spooling can be used to improve access times
! ! Buffering can cope with device speed mismatches
! ! The Linux kernel identifies devices using a number
! ! From userspace, devices in Linux are identified through files
! ! Standard BSD sockets require two or more copies at the host
! ! Protocols are processed in the first level interrupt handler
! ! The second level interrupt handler copies the packet data to userspace
! ! Deferred procedure calls can be executed in any process context
! ! Unix mbufs (and skbufs) enable protocol-independent processing
! ! Network I/O is not performance-critical
! ! NAPIÕs design aims to reduce the CPU load
! ! NAPI uses polling to accelerate packet processing
! ! TCP offload reduces the server CPU load
! ! TCP offload can accelerate applications

2

Our Small Quiz

!"#$%"&%!'(

!(

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

! ! Insight:
! ! Too much traffic for one core to handle
! ! Cores arenÕt getting any faster

! Must parallelize across cores

! ! Key idea: handle different flows on different cores
! ! But: how to determine flow for each packet?
! ! CanÕt do this on a core: same problem!

! ! Solution: demultiplex on the NIC
! ! DMA packets to per-flow buffers / queues
! ! Send interrupt only to core handling flow

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

Received
packet

Hash of
packet
header

pointer
Flow state:
¥! Ring buffer
¥! Message-signalled interrupt

Flow table

¥! IP src + dest
¥! TCP src + dest
Etc.

DMA
address

Core to
interrupt

!"#$%"&%!'(

&(

spcl.inf.ethz.ch
@spcl_eth

Receive-side scaling

! ! Can balance flows across cores
! ! Note: doesnÕt help with one big flow!

! ! Assumes :
! ! n cores processing m flows is faster than one core

! ! Hence:
! ! Network stack and protocol graph must scale on a multiprocessor.

! ! Multiprocessor scaling: topic for later (see DPHPC class)

spcl.inf.ethz.ch
@spcl_eth

Virtual Machine Monitors

6

Literature: Barham et al.: Xen and the art of virtualization
and Anderson, Dahlin : Operating Systems: Principles and
Practice, Chapter 14

!"#$%"&%!'(

Y(

spcl.inf.ethz.ch
@spcl_eth

Virtual Machine Monitors

! ! Basic definitions

! ! Why would you want one?

! ! Structure

! ! How does it work?
! ! CPU
! ! MMU
! ! Memory
! ! Devices
! ! Network

¥! Acknowledgement:
Thanks to Steve
Hand for some of
the slides!

spcl.inf.ethz.ch
@spcl_eth

What is a Virtual Machine Monitor?

! ! Virtualizes an entire (hardware) machine
! ! Contrast with OS processes
! ! Interface provided is Òillusion of real hardwareÓ
! ! Applications are therefore complete Operating Systems themselves
! ! Terminology: Guest Operating Systems

! ! Old idea: IBM VM/CMS (1960s)
! ! Recently revived: VMware, Xen, Hyper-V, kvm, etc.

!"#$%"&%!'(

$(

spcl.inf.ethz.ch
@spcl_eth

VMMs and Hypervisors

Real hardware

Hypervisor

Guest
operating
system

A
pp

A
pp

Guest
operating
system

A
pp

A
pp

VMM VMM

Some folks
distinguish the
Virtual Machine
Monitor from the

Hypervisor
(we wonÕt)

Creates
illusion of
hardware

spcl.inf.ethz.ch
@spcl_eth

Why would you want one?

! ! Server consolidation (program assumes own machine)

! ! Performance isolation

! ! Backward compatibility

! ! Cloud computing (unit of selling cycles)

! ! OS development/testing

! ! Something under the OS: replay, auditing, trusted computing,
rootkits

!"#$%"&%!'(

'(

spcl.inf.ethz.ch
@spcl_eth

Running multiple OSes on one machine

! ! Application
compatibility
! ! I use Debian for

almost everything,
but I edit slides in
PowerPoint

! ! Some people
compile Barrelfish in
a Debian VM over
Windows 7 with
Hyper-V

! ! Backward
compatibility
! ! Nothing beats a

Windows 98 virtual
machine for playing
old computer games

Real hardware

Hypervisor

A
pp

A
pp

A
pp

A
pp

A
pp

A
pp

spcl.inf.ethz.ch
@spcl_eth

Server consolidation

! ! Many applications
assume they have
the machine to
themselves

! ! Each machine is
mostly idle

! ! Consolidate
servers onto a
single physical
machine

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

!"#$%"&%!'(

@(

spcl.inf.ethz.ch
@spcl_eth

Resource isolation

! ! Surprisingly,
modern OSes do
not have an
abstraction for a
single application

! ! Performance
isolation can be
critical in some
enterprises

! ! Use virtual
machines as
resource
containers Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

spcl.inf.ethz.ch
@spcl_eth

Cloud computing

! ! Selling computing
capacity on
demand
! ! E.g. Amazon EC2,

GoGrid, etc.

! ! Hypervisors
decouple
allocation of
resources (VMs)
from provisioning
of infrastructure
(physical
machines)

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Real hardware

Hypervisor

A
pp

lic
at

io
n

A
pp

lic
at

io
n

!"#$%"&%!'(

\(

spcl.inf.ethz.ch
@spcl_eth

Operating System development

! ! Building and
testing a new OS
without needing
to reboot real
hardware

! ! VMM often gives
you more
information about
faults than real
hardware anyway

Real hardware

Hypervisor

C
om

pi
le

r

E
di

to
r

V
is

ua
l

S
tu

di
o

spcl.inf.ethz.ch
@spcl_eth

Other cool applicationsÉ

! ! Tracing

! ! Debugging

! ! Execution replay

! ! Lock-step
execution

! ! Live migration

! ! Rollback

! ! Speculation

! ! EtcÉ.

Real hardware

Hypervisor

Tr
ac

er

A
pp

lic
at

io
n

A
pp

lic
at

io
n

!"#$%"&%!'(

](

spcl.inf.ethz.ch
@spcl_eth

How does it all work?

! ! Note: a hypervisor is basically an OS
! ! With an Òunusual APIÓ

! ! Many functions quite similar:
! ! Multiplexing resources
! ! Scheduling, virtual memory, device drivers

! ! Different:
! ! Creating the illusion of hardware to ÒapplicationsÓ
! ! Guest OSes are less flexible in resource requirements

spcl.inf.ethz.ch
@spcl_eth

Hosted VMMs

Real hardware

Host operating system

A
pp

lic
at

io
n

Guest

operating
system

A
pp

A
pp

VMM

A
pp

lic
at

io
n Examples:

¥! VMware workstation
¥! Linux KVM
¥! Microsoft Hyper-V
¥! VirtualBox

!"#$%"&%!'(

#"(

spcl.inf.ethz.ch
@spcl_eth

Hypervisor-based VMMs

Real hardware

Hypervisor

Console
(Mgmt)

operating
system

C
on

so
le

M
gm

t.

Guest
operating
system

A
pp

A
pp

VMM VMM

Guest
operating
system

A
pp

A
pp

VMM

Examples:
¥! VMware ESX
¥! IBM VM/CMS
¥! Xen

spcl.inf.ethz.ch
@spcl_eth

How to virtualizeÉ

! ! The CPU (s)?

! ! The MMU?

! ! Physical memory?

! ! Devices (disks, etc.)?

! ! The Network

and?

!"#$%"&%!'(

##(

spcl.inf.ethz.ch
@spcl_eth

Virtualizing the CPU

! ! A CPU architecture is strictly virtualizable if it can be perfectly
emulated over itself, with all non-privileged instructions
executed natively

! ! Privileged instructions ! trap
! ! Kernel-mode (i.e., the VMM) emulates instruction
! ! GuestÕs kernel mode is actually user mode

Or another, extra privilege level (such as ring 1)

! ! Examples: IBM S/390, Alpha, PowerPC

spcl.inf.ethz.ch
@spcl_eth

Virtualizing the CPU

! ! A strictly virtualizable processor can execute a complete native
Guest OS
! ! Guest applications run in user mode as before
! ! Guest kernel works exactly as before

! ! Problem: x86 architecture is not virtualizable !
! ! About 20 instructions are sensitive but not privileged
! ! Mostly segment loads and processor flag manipulation

!"#$%"&%!'(

#!(

spcl.inf.ethz.ch
@spcl_eth

Non-virtualizable x86: example

! ! PUSHF/POPF instructions
! ! Push/pop condition code register
! ! Includes interrupt enable flag (IF)

! ! Unprivileged instructions: fine in user space!
! ! IF is ignored by POPF in user mode, not in kernel mode

! VMM canÕt determine if Guest OS wants interrupts disabled!
! ! CanÕt cause a trap on a (privileged) POPF
! ! Prevents correct functioning of the Guest OS

spcl.inf.ethz.ch
@spcl_eth

Solutions

1.! Emulation: emulate all kernel-mode code in software
! ! Very slow Ð particularly for I/O intensive workloads
! ! Used by, e.g., SoftPC

2.! Paravirtualization : modify Guest OS kernel
! ! Replace critical calls with explicit trap instruction to VMM
! ! Also called a ÒHyperCallÓ (used for all kinds of things)
! ! Used by, e.g., Xen

3.! Binary rewriting:
! ! Protect kernel instruction pages, trap to VMM on first IFetch
! ! Scan page for POPF instructions and replace
! ! Restart instruction in Guest OS and continue
! ! Used by, e.g. VMware

4.! Hardware support: Intel VT-x, AMD-V
! ! Extra processor mode causes POPF to trap

!"#$%"&%!'(

#&(

spcl.inf.ethz.ch
@spcl_eth

Virtualizing the MMU

! ! Hypervisor allocates memory to VMs
! ! Guest assumes control over all physical memory
! ! VMM canÕt let Guest OS to install mappings

! ! Definitions needed:
! ! Virtual address: a virtual address in the guest
! ! Physical address: as seen by the guest
! ! Machine address: real physical address

As seen by the Hypervisor

spcl.inf.ethz.ch
@spcl_eth

Virtual/Physical/Machine

Guest
Virtual AS

Guest
Physical AS

Machine
Memory

5

5

9

2

6

17
Guest 1:

Guest 2:

!"#$%"&%!'(

#Y(

spcl.inf.ethz.ch
@spcl_eth

MMU Virtualization

! ! Critical for performance, challenging to make fast, espec ially
SMP
! ! Hot-unplug unnecessary virtual CPUs
! ! Use multicast TLB flush paravirtualizations etc.

! ! Xen supports 3 MMU virtualization modes
1.!Direct (ÒWritableÓ) pagetables
2.!Shadow pagetables
3.!Hardware Assisted Paging

! ! OS Paravirtualization compulsory for #1, optional (and very
beneficial) for #2&3

spcl.inf.ethz.ch
@spcl_eth

Paravirtualization approach

! ! Guest OS creates page tables the hardware uses
! ! VMM must validate all updates to page tables
! ! Requires modifications to Guest OS
! ! Not quite enoughÉ

! ! VMM must check all writes to PTEs
! ! Write-protect all PTEs to the Guest kernel
! ! Add a HyperCall to update PTEs
! ! Batch updates to avoid trap overhead
! ! OS is now aware of machine addresses
! ! Significant overhead!

!"#$%"&%!'(

#$(

spcl.inf.ethz.ch
@spcl_eth

Paravirtualizing the MMU

! ! Guest OSes allocate and manage own PTs
! ! Hypercall to change PT base

! ! VMM must validate PT updates before use
! ! Allows incremental updates, avoids revalidation

! ! Validation rules applied to each PTE:
! ! 1. Guest may only map pages it owns
! ! 2. Pagetable pages may only be mapped RO

! ! VMM traps PTE updates and emulates, or ÔunhooksÕ PTE page
for bulk updates

spcl.inf.ethz.ch
@spcl_eth

Writeable Page Tables : 1 Ð Write fault

MMU

Guest OS

VMM

Hardware

page fault

first guest
write

guest reads

Virtual ! Machine

!"#$%"&%!'(

#'(

spcl.inf.ethz.ch
@spcl_eth

Writeable Page Tables : 2 Ð Emulate?

Guest OS

VMM

Hardware

first guest
write

guest reads

Virtual ! Machine

emulate?

yes

MMU

spcl.inf.ethz.ch
@spcl_eth

Writeable Page Tables : 3 - Unhook

Guest OS

VMM

Hardware

guest writes

guest reads

Virtual ! Machine X

MMU

!"#$%"&%!'(

#@(

spcl.inf.ethz.ch
@spcl_eth

Writeable Page Tables : 4 - First Use

Guest OS

VMM

Hardware

page fault

guest writes

guest reads

Virtual ! Machine X

MMU

spcl.inf.ethz.ch
@spcl_eth

Writeable Page Tables : 5 Ð Re-hook

Guest OS

VMM

Hardware

validate

guest writes

guest reads

Virtual ! Machine

MMU

!"#$%"&%!'(

#\(

spcl.inf.ethz.ch
@spcl_eth

Writeable page tables require paravirtualization

Guest
Virtual AS

Machine
Memory

5

5

6

17
Guest 1:

Guest 2:

Guests directly share
Machine Memory

spcl.inf.ethz.ch
@spcl_eth

Shadow page tables

! ! Guest OS sets up its own page tables
! ! Not used by the hardware!

! ! VMM maintains shadow page tables
! ! Map directly from Guest VAs to Machine Addresses
! ! Hardware switched whenever Guest reloads PTBR

! ! VMM must keep V " M table consistent with Guest V " P table and
itÕs own P" M table
! ! VMM write-protects all guest page tables
! ! Write ! trap: apply write to shadow table as well
! ! Significant overhead!

!"#$%"&%!'(

#](

spcl.inf.ethz.ch
@spcl_eth

Shadow page tables

Guest
Virtual AS

Guest
Physical AS

Machine
Memory

5

5

6

17
Guest 1:

Guest 2:

Shadow page
table mappings

spcl.inf.ethz.ch
@spcl_eth

Shadow page tables

MMU

Guest OS

VMM

Hardware

accessed and
dirty bits

guest writes

guest reads

Virtual ! Guest-Physical

Virtual ! Machine

updates

¥! Guest changes
optional, but help
with batching,
knowing when to
unshadow

¥! Latest algorithms
work remarkably
well

!"#$%"&%!'(

!"(

spcl.inf.ethz.ch
@spcl_eth

Hardware support

! ! ÒNested page tablesÓ
! ! Relatively new in AMD (NPT) and Intel (EPT) hardware

! ! Two-level translation of addresses in the MMU
! ! Hardware knows about:

V! P tables (in the Guest)
P! M tables (in the Hypervisor)

! ! Tagged TLBs to avoid expensive flush on a VM entry/exit

! ! Very nice and easy to code to
! ! One reason kvm is so small

! ! Significant performance overheadÉ

spcl.inf.ethz.ch
@spcl_eth

Memory allocation

! ! Guest OS is not expecting physical memory to change in s ize!

! ! Two problems:
! ! Hypervisor wants to overcommit RAM
! ! How to reallocate (machine) memory between VMs

! ! Phenomenon: Double Paging
! ! Hypervisor pages out memory
! ! GuestOS decides to page out physical frame
! ! (Unwittingly) faults it in via the Hypervisor, only to write it out again

!"#$%"&%!'(

!#(

spcl.inf.ethz.ch
@spcl_eth

Ballooning

! ! Technique to reclaim memory from a Guest

! ! Install a Òballoon driverÓ in Guest kernel
! ! Can allocate and free kernel physical memory

Just like any other part of the kernel
! ! Uses HyperCalls to return frames to the Hypervisor, and have them

returned
Guest OS is unware, simply allocates physical memory

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

Balloon

Guest physical address space

Balloon
driver

!"#$%"&%!'(

!!(

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.! VMM asks balloon driver
for memory

2.! Balloon driver asks
Guest OS kernel for more
frames

! ! Òinflates the balloonÓ

3.! Balloon driver sends
physical frame numbers
to VMM

4.! VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.! VMM asks balloon driver
for memory

2.! Balloon driver asks
Guest OS kernel for more
frames

! ! Òinflates the balloonÓ

3.! Balloon driver sends
physical frame numbers
to VMM

4.! VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Balloon
driver

!"#$%"&%!'(

!&(

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.! VMM asks balloon driver
for memory

2.! Balloon driver asks
Guest OS kernel for more
frames

! ! Òinflates the balloonÓ

3.! Balloon driver sends
physical frame numbers
to VMM

4.! VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Physical
memory

claimed by
balloon driver

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.! VMM asks balloon driver
for memory

2.! Balloon driver asks
Guest OS kernel for more
frames

! ! Òinflates the balloonÓ

3.! Balloon driver sends
physical frame numbers
to VMM

4.! VMM translates into
machine addresses and
claims the frames

Balloon

Guest physical address space

Physical
memory

claimed by
balloon driver

Balloon
driver

!"#$%"&%!'(

!Y(

spcl.inf.ethz.ch
@spcl_eth

Returning RAM to a VM

1.! VMM converts machine
address into a physical
address previously
allocated by the balloon
driver

2.! VMM hands PFN to
balloon driver

3.! Balloon driver frees
physical frame back to
Guest OS kernel

! ! Òdeflates the balloonÓ Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Virtualizing Devices

! ! Familiar by now: trap-and-emulate
! ! I/O space traps
! ! Protect memory and trap
! ! ÒDevice modelÓ: software model of device in VMM

! ! Interrupts " upcalls to Guest OS
! ! Emulate interrupt controller (APIC) in Guest
! ! Emulate DMA with copy into Guest PAS

! ! Significant performance overhead!

!"#$%"&%!'(

!$(

spcl.inf.ethz.ch
@spcl_eth

Paravirtualized devices

! ! ÒFakeÓ device drivers which communicate efficiently with VMM
via hypercalls
! ! Used for block devices like disk controllers
! ! Network interfaces
! ! ÒVMware toolsÓ is mostly about these

! ! Dramatically better performance!

spcl.inf.ethz.ch
@spcl_eth

Networking

! ! Virtual network device in the Guest VM

! ! Hypervisor implements a Òsoft switchÓ
! ! Entire virtual IP/Ethernet network on a machine

! ! Many different addressing options
! ! Separate IP addresses
! ! Separate MAC addresses
! ! NAT

! ! Etc.

!"#$%"&%!'(

!'(

spcl.inf.ethz.ch
@spcl_eth

Where are the real drivers?

1.! In the Hypervisor
! ! E.g. VMware ESX
! ! Problem: need to rewrite device drivers (new OS)

2.! In the console OS
! ! Export virtual devices to other VMs

3.! In Òdriver domainsÓ
! ! Map hardware directly into a ÒtrustedÓ VM

Device Passthrough
! ! Run your favorite OS just for the device driver
! ! Use IOMMU hardware to protect other memory from driver VM

4.! Use Òself-virtualizing devicesÓ

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

!"#$%"&%!'(

!@(

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

!"#$%"&%!'(

!\(

spcl.inf.ethz.ch
@spcl_eth

Remember this card?

spcl.inf.ethz.ch
@spcl_eth

SR-IOV

! ! Single-Root I/O Virtualization

! ! Key idea: dynamically create new Ò PCIe devicesÓ
! ! Physical Function (PF): original device, full functionality
! ! Virtual Function (VF): extra ÒdeviceÓ, limited funtionality
! ! VFs created/destroyed via PF registers

! ! For networking:
! ! Partitions a network cardÕs resources
! ! With direct assignment can implement passthrough

!"#$%"&%!'(

!](

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

!"#$%"&%!'(

&"(

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function Physical function

PCIe

IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

!"#$%"&%!'(

&#(

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function

Virtual
function Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function

Virtual
function

Virtual
function Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

!"#$%"&%!'(

&!(

spcl.inf.ethz.ch
@spcl_eth

Self-virtualizing devices

! ! Can dynamically create up to 2048
distinct PCI devices on demand!
! ! Hypervisor can create a virtual NIC for each VM
! ! Softswitch driver programs ÒmasterÓ NIC to demux packets to each virtual

NIC
! ! PCI bus is virtualized in each VM
! ! Each Guest OS appears to have ÒrealÓ NIC, talks direct to the real

hardware

spcl.inf.ethz.ch
@spcl_eth

Next week

Reliable storage
OS Research/Future "

