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Networks and Operating Systems (252-0062-00)!  
Chapter 11: Virtual Machine Monitors  
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! ! True or false (raise hand) 
! ! Spooling can be used to improve access times 
! ! Buffering can cope with device speed mismatches 
! ! The Linux kernel identifies devices using a number 
! ! From userspace, devices in Linux are identified through files 
! ! Standard BSD sockets require two or more copies at the host 
! ! Protocols are processed in the first level interrupt handler 
! ! The second level interrupt handler copies the packet data to userspace 
! ! Deferred procedure calls can be executed in any process context 
! ! Unix mbufs (and skbufs) enable protocol-independent processing 
! ! Network I/O is not performance-critical 
! ! NAPIÕs design aims to reduce the CPU load 
! ! NAPI uses polling to accelerate packet processing 
! ! TCP offload reduces the server CPU load 
! ! TCP offload can accelerate applications 

2 

Our Small Quiz 
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Receive-side scaling  

! ! Insight: 
! ! Too much traffic for one core to handle 
! ! Cores arenÕt getting any faster 

!  Must parallelize across cores 

! ! Key idea: handle different flows on different cores 
! ! But: how to determine flow for each packet? 
! ! CanÕt do this on a core: same problem! 

! ! Solution: demultiplex on the NIC 
! ! DMA packets to per-flow buffers / queues 
! ! Send interrupt only to core handling flow 

spcl.inf.ethz.ch 
@spcl_eth 

Receive-side scaling  

Received 
packet 

Hash of 
packet 
header 

pointer 
Flow state: 
¥! Ring buffer 
¥! Message-signalled interrupt 

Flow table 

¥! IP src + dest 
¥! TCP src + dest 
Etc. 

DMA  
address 

Core to  
interrupt 
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Receive-side scaling  

! ! Can balance flows across cores 
! ! Note: doesnÕt help with one big flow! 

! ! Assumes : 
! ! n cores processing m flows is faster than one core 

! ! Hence:  
! ! Network stack and protocol graph must scale on a multiprocessor. 

! ! Multiprocessor scaling: topic for later (see DPHPC class) 
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Virtual Machine Monitors 

6 

Literature: Barham  et al.: Xen and the art of virtualization 
and Anderson, Dahlin : Operating Systems: Principles and 
Practice, Chapter 14  
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Virtual Machine Monitors 

! ! Basic definitions 

! ! Why would you want one? 

! ! Structure 

! ! How does it work? 
! ! CPU 
! ! MMU 
! ! Memory 
! ! Devices 
! ! Network 

¥! Acknowledgement: 
Thanks to Steve 
Hand for some of 
the slides! 
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What is a Virtual Machine Monitor?  

! ! Virtualizes an entire (hardware) machine  
! ! Contrast with OS processes 
! ! Interface provided is Òillusion of real hardwareÓ 
! ! Applications are therefore complete Operating Systems themselves 
! ! Terminology: Guest Operating Systems 

! ! Old idea: IBM VM/CMS (1960s) 
! ! Recently revived: VMware, Xen, Hyper-V, kvm, etc. 
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VMMs and Hypervisors  
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Some folks 
distinguish the 
Virtual Machine 
Monitor from the 

Hypervisor  
(we wonÕt) 

Creates 
illusion of 
hardware 
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Why would you want one? 

! ! Server consolidation (program assumes own machine) 

! ! Performance isolation 

! ! Backward compatibility 

! ! Cloud computing (unit of selling cycles) 

! ! OS development/testing 

! ! Something under the OS: replay, auditing, trusted computing,  
rootkits 
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Running multiple OSes on one machine  

! ! Application 
compatibility  
! ! I use Debian for 

almost everything, 
but I edit slides in 
PowerPoint 

! ! Some people 
compile Barrelfish in 
a Debian VM over 
Windows 7 with 
Hyper-V  

! ! Backward 
compatibility 
! ! Nothing beats a 

Windows 98 virtual 
machine for playing 
old computer games 
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Server consolidation  

! ! Many applications 
assume they have 
the machine to 
themselves 

! ! Each machine is 
mostly idle 

! ! Consolidate 
servers onto a 
single physical 
machine 

Real hardware 
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Resource isolation  

! ! Surprisingly, 
modern OSes do 
not have an 
abstraction for a 
single application 

! ! Performance 
isolation can be 
critical in some 
enterprises 

! ! Use virtual 
machines as 
resource 
containers Real hardware 

Hypervisor 
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Cloud computing  

! ! Selling computing 
capacity on 
demand  
! ! E.g. Amazon EC2, 

GoGrid, etc. 

! ! Hypervisors  
decouple 
allocation  of 
resources (VMs) 
from provisioning  
of infrastructure 
(physical 
machines) 
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Operating System development  

! ! Building and 
testing a new OS 
without needing 
to reboot real 
hardware 

! ! VMM often gives 
you more 
information about 
faults than real 
hardware anyway 

Real hardware 

Hypervisor 
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Other cool applicationsÉ  

! ! Tracing 

! ! Debugging 

! ! Execution replay 

! ! Lock-step 
execution 

! ! Live migration 

! ! Rollback 

! ! Speculation 

! ! EtcÉ. 
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How does it all work? 

! ! Note: a hypervisor is basically an OS 
! ! With an Òunusual APIÓ 

! ! Many functions quite similar:  
! ! Multiplexing resources 
! ! Scheduling, virtual memory, device drivers 

! ! Different:  
! ! Creating the illusion of hardware to ÒapplicationsÓ 
! ! Guest OSes are less flexible in resource requirements 
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Hosted VMMs  
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¥! Linux KVM 
¥! Microsoft Hyper-V 
¥! VirtualBox 
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Hypervisor-based VMMs  
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Examples: 
¥! VMware ESX 
¥! IBM VM/CMS 
¥! Xen 
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How to virtualizeÉ 

! ! The CPU (s)? 

! ! The MMU? 

! ! Physical memory? 

! ! Devices (disks, etc.)? 

! ! The Network 

 

and? 
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Virtualizing the CPU  

! ! A CPU architecture is strictly virtualizable  if it can be perfectly 
emulated over itself, with all non-privileged instructions  
executed natively 

! ! Privileged instructions !  trap 
! ! Kernel-mode (i.e., the VMM) emulates instruction 
! ! GuestÕs kernel mode is actually user mode 

Or another, extra privilege level (such as ring 1) 
 

! ! Examples: IBM S/390, Alpha, PowerPC 
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Virtualizing the CPU  

! ! A strictly virtualizable processor can execute a complete  native 
Guest OS 
! ! Guest applications run in user mode as before 
! ! Guest kernel works exactly as before 

! ! Problem: x86 architecture is not virtualizable !  
! ! About 20 instructions are sensitive but not privileged 
! ! Mostly segment loads and processor flag manipulation 
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Non-virtualizable x86: example  

! ! PUSHF/POPF instructions 
! ! Push/pop condition code register 
! ! Includes interrupt enable flag (IF ) 

! ! Unprivileged instructions: fine in user space! 
! ! IF  is ignored by POPF in user mode, not in kernel mode 

!  VMM canÕt determine if Guest OS wants interrupts disabled! 
! ! CanÕt cause a trap on a (privileged) POPF 
! ! Prevents correct functioning of the Guest OS 
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Solutions  

1.! Emulation: emulate all kernel-mode code in software 
! ! Very slow Ð particularly for I/O intensive workloads 
! ! Used by, e.g., SoftPC 

2.! Paravirtualization : modify Guest OS kernel 
! ! Replace critical calls with explicit trap instruction to VMM 
! ! Also called a ÒHyperCallÓ (used for all kinds of things) 
! ! Used by, e.g., Xen 

3.! Binary rewriting: 
! ! Protect kernel instruction pages, trap to VMM on first IFetch 
! ! Scan page for POPF instructions and replace 
! ! Restart instruction in Guest OS and continue 
! ! Used by, e.g. VMware 

4.! Hardware support: Intel VT-x, AMD-V 
! ! Extra processor mode causes POPF to trap 
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Virtualizing the MMU  

! ! Hypervisor allocates memory to VMs 
! ! Guest assumes control over all physical memory 
! ! VMM canÕt let Guest OS to install mappings 

! ! Definitions needed: 
! ! Virtual address: a virtual address in the guest 
! ! Physical address: as seen by the guest 
! ! Machine address: real physical address  

As seen by the Hypervisor 
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Virtual/Physical/Machine  

Guest 
Virtual AS 

Guest 
Physical AS 

Machine 
Memory 

5 

5 

9 

2 

6 

17 
Guest 1: 

Guest 2: 
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MMU Virtualization 

! ! Critical for performance, challenging to make fast, espec ially 
SMP 
! ! Hot-unplug unnecessary virtual CPUs 
! ! Use multicast TLB flush paravirtualizations etc. 

! ! Xen supports 3 MMU virtualization modes 
1.!Direct (ÒWritableÓ) pagetables 
2.!Shadow pagetables 
3.!Hardware Assisted Paging 

! ! OS Paravirtualization  compulsory for #1, optional (and very 
beneficial) for #2&3  
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Paravirtualization approach  

! ! Guest OS creates page tables the hardware uses  
! ! VMM must validate all updates to page tables 
! ! Requires modifications to Guest OS 
! ! Not quite enoughÉ 

! ! VMM must check all  writes to PTEs 
! ! Write-protect all PTEs to the Guest kernel 
! ! Add a HyperCall to update PTEs 
! ! Batch updates to avoid trap overhead 
! ! OS is now aware of machine addresses 
! ! Significant overhead! 
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Paravirtualizing  the MMU 

! ! Guest OSes allocate and manage own PTs 
! ! Hypercall to change PT base 

! ! VMM must validate PT updates before use 
! ! Allows incremental updates, avoids revalidation 

! ! Validation rules applied to each PTE: 
! ! 1. Guest may only map pages it owns 
! ! 2. Pagetable pages may only be mapped RO 

! ! VMM traps PTE updates and emulates, or ÔunhooksÕ PTE page 
for bulk updates 
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Writeable Page Tables : 1 Ð Write fault  

MMU 

Guest OS 

VMM 

Hardware 

page fault 

first guest 
write 

guest reads 

Virtual !  Machine 
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Writeable Page Tables : 2 Ð Emulate?  

Guest OS 

VMM 

Hardware 

first guest 
write 

guest reads 

Virtual !  Machine 

emulate? 

yes 

MMU 
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Writeable Page Tables : 3 - Unhook 

Guest OS 

VMM 

Hardware 

guest writes 

guest reads 

Virtual !  Machine X 

MMU 
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Writeable Page Tables : 4 - First Use 

Guest OS 

VMM 

Hardware 

page fault 

guest writes 

guest reads 

Virtual !  Machine X 

MMU 
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Writeable Page Tables : 5 Ð Re-hook 

Guest OS 

VMM 

Hardware 

validate 

guest writes 

guest reads 

Virtual !  Machine 

MMU 
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Writeable page tables require paravirtualization  

Guest 
Virtual AS 

Machine 
Memory 

5 

5 

6 

17 
Guest 1: 

Guest 2: 

Guests directly share  
Machine Memory 
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Shadow page tables  

! ! Guest OS sets up its own page tables 
! ! Not used by the hardware! 

! ! VMM maintains shadow page tables  
! ! Map directly from Guest VAs to Machine Addresses 
! ! Hardware switched whenever Guest reloads PTBR 

! ! VMM must keep V " M table consistent with Guest V " P table and 
itÕs own P" M table 
! ! VMM write-protects all guest page tables 
! ! Write !  trap: apply write to shadow table as well 
! ! Significant overhead! 
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Shadow page tables  

Guest 
Virtual AS 

Guest 
Physical AS 

Machine 
Memory 

5 

5 

6 

17 
Guest 1: 

Guest 2: 

Shadow page 
table mappings 

spcl.inf.ethz.ch 
@spcl_eth 

Shadow page tables 

MMU 

Guest OS 

VMM 

Hardware 

accessed and  
dirty bits 

guest writes 

guest reads 

Virtual !  Guest-Physical 

Virtual !  Machine 

updates 

¥! Guest changes 
optional, but help 
with batching, 
knowing when to 
unshadow 

¥! Latest algorithms 
work remarkably 
well 
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Hardware support  

! ! ÒNested page tablesÓ 
! ! Relatively new in AMD (NPT) and Intel (EPT) hardware 

! ! Two-level translation of addresses in the MMU 
! ! Hardware knows about: 

V! P tables (in the Guest) 
P! M tables (in the Hypervisor) 

! ! Tagged TLBs to avoid expensive flush on a VM entry/exit 

! ! Very nice and easy to code to 
! ! One reason kvm is so small 

! ! Significant performance overheadÉ 
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Memory allocation 

! ! Guest OS is not expecting physical memory to change in s ize! 

! ! Two problems:  
! ! Hypervisor wants to overcommit RAM 
! ! How to reallocate (machine) memory between VMs 

! ! Phenomenon: Double Paging 
! ! Hypervisor pages out memory 
! ! GuestOS decides to page out physical frame 
! ! (Unwittingly) faults it in via the Hypervisor, only to write it out again 
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Ballooning  

! ! Technique to reclaim memory from a Guest 

! ! Install a Òballoon driverÓ in Guest kernel 
! ! Can allocate and free kernel physical memory 

Just like any other part of the kernel 
! ! Uses HyperCalls to return frames to the Hypervisor, and have them 

returned 
Guest OS is unware, simply allocates physical memory 
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Ballooning: taking RAM away from a VM  

Balloon 

Guest physical address space 

Balloon 
driver  
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Ballooning: taking RAM away from a VM  

1.! VMM asks balloon driver 
for memory 

2.! Balloon driver asks 
Guest OS kernel for more 
frames 

! ! Òinflates the balloonÓ 

3.! Balloon driver sends 
physical frame numbers 
to VMM 

4.! VMM translates into 
machine address and 
claims the frames  

Balloon 

Guest physical address space 

Balloon 
driver  
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Ballooning: taking RAM away from a VM  

1.! VMM asks balloon driver 
for memory 

2.! Balloon driver asks 
Guest OS kernel for more 
frames 

! ! Òinflates the balloonÓ 

3.! Balloon driver sends 
physical frame numbers 
to VMM 

4.! VMM translates into 
machine address and 
claims the frames  
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Ballooning: taking RAM away from a VM  
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Returning RAM to a VM  

1.! VMM converts machine 
address into a physical 
address previously 
allocated by the balloon 
driver 

2.! VMM hands PFN to 
balloon driver 

3.! Balloon driver frees 
physical frame back to 
Guest OS kernel  

! ! Òdeflates the balloonÓ Balloon 

Guest physical address space 

Balloon 
driver  
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Virtualizing Devices  

! ! Familiar by now: trap-and-emulate 
! ! I/O space traps 
! ! Protect memory and trap 
! ! ÒDevice modelÓ: software model of device in VMM 

! ! Interrupts "  upcalls to Guest OS 
! ! Emulate interrupt controller (APIC) in Guest 
! ! Emulate DMA with copy into Guest PAS 

! ! Significant performance overhead! 
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Paravirtualized devices  

! ! ÒFakeÓ device drivers which communicate efficiently with VMM 
via hypercalls  
! ! Used for block devices like disk controllers 
! ! Network interfaces 
! ! ÒVMware toolsÓ is mostly about these 

! ! Dramatically better performance! 
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Networking  

! ! Virtual network device in the Guest VM 

! ! Hypervisor implements a Òsoft switchÓ 
! ! Entire virtual IP/Ethernet network on a machine 

! ! Many different addressing options 
! ! Separate IP addresses 
! ! Separate MAC addresses 
! ! NAT 

! ! Etc. 
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Where are the real drivers?  

1.! In the Hypervisor 
! ! E.g. VMware ESX 
! ! Problem: need to rewrite device drivers (new OS) 

2.! In the console OS 
! ! Export virtual devices to other VMs 

3.! In Òdriver domainsÓ 
! ! Map hardware directly into a ÒtrustedÓ VM  

Device Passthrough 
! ! Run your favorite OS just for the device driver 
! ! Use IOMMU hardware to protect other memory from driver VM 

4.! Use Òself-virtualizing devicesÓ 
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Xen 3.x Architecture 

Xen Virtual Machine Monitor 
Event Channel Virtual MMU Virtual CPU  Control IF 

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE) 

GuestOS 
(XenLinux) 

Device  
Manager &  
Control s/w 

Native 
Device 
Drivers 

VM0 

GuestOS 
(XenLinux) 

Unmodified 
User 

Software 

VM1 

SMP  
GuestOS 
(XenLinux) 

Unmodified 
User 

Software 

Front-End 
Device Drivers 

VM2 

Unmodified 
GuestOS 
(WinXP) 

Unmodified 
User 

Software 

Front-End 
Device Drivers 

VM3 

Safe HW IF 

Front-End 
Device Drivers 

Thanks to Steve Hand for some of these diagrams 
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Xen 3.x Architecture 
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Thanks to Steve Hand for some of these diagrams 
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Thanks to Steve Hand for some of these diagrams 
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Remember this card?  

spcl.inf.ethz.ch 
@spcl_eth 

SR-IOV 

! ! Single-Root I/O Virtualization 

! ! Key idea: dynamically create new Ò PCIe devicesÓ 
! ! Physical Function (PF): original device, full functionality 
! ! Virtual Function (VF): extra ÒdeviceÓ, limited funtionality 
! ! VFs created/destroyed via PF registers 

! ! For networking: 
! ! Partitions a network cardÕs resources 
! ! With direct assignment can implement passthrough 
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SR-IOV in action 
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Self-virtualizing devices  

! ! Can dynamically create up to 2048  
distinct PCI devices on demand! 
! ! Hypervisor can create a virtual NIC for each VM 
! ! Softswitch driver programs ÒmasterÓ NIC to demux packets to each virtual 

NIC 
! ! PCI bus is virtualized in each VM 
! ! Each Guest OS appears to have ÒrealÓ NIC, talks direct to the real 

hardware 
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Next week  
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