
!"#$%"&%"#'

#'

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating
Systems Chapter 12: Reliable
Storage, NUMA & The Future

Source: xkcd

spcl.inf.ethz.ch
@spcl_eth

! ! Friday (tomorrow) is a holiday, exercises will be skip ped
! ! Exercises this Thursday (today!) will also be skipped
! ! Apologies for the late notice

! ! The last OS exercises will be the week after Easter
! ! First week of Networking part

! ! This is my last lecture this semester Ð Enjoy!!

Administrivia

!"#$%"&%"#'

!'

spcl.inf.ethz.ch
@spcl_eth

Basic exam tips

! ! First of all, read the instructions

! ! Then, read the whole exam paper through

! ! Look at the number of points for each question
! ! This shows how long we think it will take to answer!

! ! Find one you know you can answer, and answer it
! ! This will make you feel better early on.

! ! Watch the clock!
! ! If you are taking too long on a question, consider dropping it and moving

on to another one.

! ! Always show your working

! ! You should be able to explain each summary slide
! ! Tip: form learning groups and present the slides to each other
! ! Do NOT overly focus on the quiz questions!
! ! Ask TAs if there are questions

spcl.inf.ethz.ch
@spcl_eth

! ! True or false (raise hand)
! ! Receiver side scaling randomizes on a per-packet basis
! ! Virtual machines can be used to improve application performance
! ! Virtual machines can be used to consolidate servers
! ! A hypervisor implements functions similar to a normal OS
! ! If a CPU is strictly virtualizable, then OS code execution causes nearly no

overheads
! ! x86 is not strictly virtualizable because some instructions fail when

executed in ring 1
! ! x86 can be virtualized by binary rewriting
! ! A virtualized host operating system can set the hardware PTBR
! ! Paravirtualization does not require changes to the guest OS
! ! A page fault with shadow page tables is faster than nested page tables
! ! A page fault with writeable page tables is faster than shadow page tables
! ! Shadow page tables are safer than writable page tables
! ! Shadow page tables require paravirtualization

Our Small Quiz

!"#$%"&%"#'

('

spcl.inf.ethz.ch
@spcl_eth

Reliable Storage

OSPP Chapter 14

spcl.inf.ethz.ch
@spcl_eth

Reliability and Availabilty

A storage system is:

! ! Reliable if it continues to store data and can read and write it.
! Reliability : probability it will be reliable for some period of
time

! ! Available if it responds to requests
! Availability : probability it is available at any given time

!"#$%"&%"#'

&'

spcl.inf.ethz.ch
@spcl_eth

What goes wrong?

1.! Operating interruption: Crash, power failure
! ! Approach: use transactions to ensure data is consistent
! ! Covered in the databases course
! ! See book for additional material

2.! Loss of data: Media failure
! ! Approach: use redundancy to tolerate loss of media
! ! E.g. RAID storage
! ! Topic for today

spcl.inf.ethz.ch
@spcl_eth

File system transactions

! ! Not widely supported

! ! Only one atomic operation in POSIX:
! ! Rename

! ! Careful design of file system data structures

! ! Recovery using fsck

! ! Superseded by transactions
! ! Internal to the file system
! ! Exposed to applications

!"#$%"&%"#'

$'

spcl.inf.ethz.ch
@spcl_eth

What goes wrong?

1.! Operating interruption: Crash, power failure
! ! Approach: use transactions to ensure data is consistent
! ! Covered in the databases course
! ! See book for additional material

2.! Loss of data: Media failure
! ! Approach: use redundancy to tolerate loss of media
! ! E.g. RAID storage
! ! Topic for today

spcl.inf.ethz.ch
@spcl_eth

Media failures 1: Sector and page failures

Disk keeps working, but a sector doesnÕt
! ! Sector writes donÕt work, reads are corrupted
! ! Page failure: the same for Flash memory

Approaches:

1.! Error correcting codes:
! ! Encode data with redundancy to recover from errors
! ! Internally in the drive

2.! Remapping: identify bad sectors and avoid them
! ! Internally in the disk drive
! ! Externally in the OS / file system

!"#$%"&%"#'

)'

spcl.inf.ethz.ch
@spcl_eth

Caveats

! ! Nonrecoverable error rates are significant
! ! And getting more so!

! ! Nonrecoverable error rates are not constant
! ! Affected by age, workload, etc.

! ! Failures are not independent
! ! Correlation in time and space

! ! Error rates are not uniform
! ! Different models of disk have different behavior over time

spcl.inf.ethz.ch
@spcl_eth

A well-respected disk available now from pcp.ch

Seagate Barracuda 3TB,
7200rpm, 64MB, 3TB, SATA-3

Price this weekend: CHF 119.-

 (last year CHF 105,-)

 (in 2013 CHF 150,-)

!"#$%"&%"#'

*'

spcl.inf.ethz.ch
@spcl_eth

Specifications (from manufacturerÕs website)

Persistent
errors that are
not masked by
coding inside

the drive

spcl.inf.ethz.ch
@spcl_eth

Unrecoverable read errors

Lots of assumptions:
Independent errors,

etc.

!"#$%"&%"#'

+'

spcl.inf.ethz.ch
@spcl_eth

Media failures 2: Device failure

! ! Entire disk (or SSD) just stops working
! ! Note: always detected by the OS
! ! Explicit failure ! less redundancy required

! ! Expressed as:
! ! Mean Time to Failure (MTTF)

(expected time before disk fails)
! ! Annual Failure Rate = 1/MTTF

(fraction of disks failing in a year)

spcl.inf.ethz.ch
@spcl_eth

Specifications (from manufacturerÕs website)

!"#$%"&%"#'

,'

spcl.inf.ethz.ch
@spcl_eth

Caveats

! ! Advertised failure rates can be misleading
! ! Depend on conditions, tests, definitions of failureÉ

! ! Failures are not uncorrelated
! ! Disks of similar age, close together in a rack, etc.

! ! MTTF is not useful life!
! ! Annual failure rate only applies during design life!

! ! Failure rates are not constant
! ! Devices fail very quickly or last a long time

spcl.inf.ethz.ch
@spcl_eth

And Reality?

(S.M.A.R.T Ð Self-Monitoring,
Analysis, and Reporting Technology)

!"#$%"&%"#'

#"'

spcl.inf.ethz.ch
@spcl_eth

Bathtub curve

Time

F
ai

lu
re

 r
at

e

Advertised failure rate

Infant
mortality

Disk
wears out

5 years

0.34%
per
year

spcl.inf.ethz.ch
@spcl_eth

RAID 1: simple mirroring

Disk 0

Data block 0
Data block 1
Data block 2
Data block 3
Data block 4
Data block 5
Data block 6
Data block 7
Data block 8
Data block 9

Data block 10
Data block 11

É

Disk 1

Data block 0
Data block 1
Data block 2
Data block 3
Data block 4
Data block 5
Data block 6
Data block 7
Data block 8
Data block 9

Data block 10
Data block 11

É

Writes go to
both disks

Reads from
either disk

(may be faster)

Sector or whole
disk failure !

data can still be
recovered

!"#$%"&%"#'

##'

spcl.inf.ethz.ch
@spcl_eth

Parity disks and striping

Disk 0

Block 0
Block 4
Block 8

Block 12
Block 16
Block 20
Block 24
Block 28
Block 32
Block 36
Block 40
Block 44

É

Disk 1

Block 1
Block 5
Block 9

Block 13
Block 17
Block 21
Block 25
Block 29
Block 33
Block 37
Block 41
Block 45

É

Disk 2

Block 2
Block 6

Block 10
Block 14
Block 18
Block 22
Block 26
Block 30
Block 34
Block 38
Block 42
Block 46

É

Disk 3

Block 3
Block 7
Block 11
Block 15
Block 19
Block 23
Block 27
Block 31
Block 35
Block 39
Block 43
Block 47

É

Disk 4

Parity(0-3)
Parity(4-7)
Parity(8-11)

Parity(12-15)
Parity(16-19)
Parity(20-23)
Parity(24-27)
Parity(28-31)
Parity(32-35)
Parity(36-39)
Parity(40-43)
Parity(44-47)

É

spcl.inf.ethz.ch
@spcl_eth

Parity disks

High
overhead for
small writes

!"#$%"&%"#'

#!'

spcl.inf.ethz.ch
@spcl_eth

RAID5: Rotating parity

Disk 0

É

Block 32
Block 33
Block 34
Block 35

Strip(0,2)

Block 16
Block 17
Block 18
Block 19

Strip(0,1)

Parity(0,0)
Parity(1,0)
Parity(2,0)
Parity(3,0)

Strip(0,0)

Disk 1

É

Block 36
Block 37
Block 38
Block 39

Strip(1,2)

Parity(0,1)
Parity(1,1)
Parity(2,1)
Parity(3,1)

Strip(1,1)

Block 0
Block 1
Block 2
Block 3

Strip(1,0)

Disk 2

É

Parity(0,2)
Parity(1,2)
Parity(2,2)
Parity(3,2)

Strip(2,2)

Block 20
Block 21
Block 22
Block 23

Strip(2,1)

Block 4
Block 5
Block 6
Block 7

Strip(2,0)

Disk 3

É

Block 40
Block 41
Block 42
Block 43

Strip(3,2)

Block 24
Block 25
Block 26
Block 27

Strip(3,1)

Block 8
Block 9

Block 10
Block 11

Strip(3,0)

Disk 4

É

Block 44
Block 45
Block 46
Block 47

Strip(4,2)

Block 28
Block 29
Block 30
Block 31

Strip(4,1)

Block 12
Block 13
Block 14
Block 15

Strip(4,0)

S
tr

ip
e

0
S

tr
ip

e
1

S
tr

ip
e

2

A strip of sequential
block on each disk
! balance
parallelism with
sequential access
efficiency

Parity strip rotates
around disks with
successive stripes

Can service
widely-spaced
requests in
parallel

spcl.inf.ethz.ch
@spcl_eth

Atomic update of data and parity

What if system crashes in the middle?

1.! Use non-volatile write buffer

2.! Transactional update to blocks

3.! Recovery scan
! ! And hope nothing goes wrong during the scan

4.! Do nothing (seriously)

!"#$%"&%"#'

#('

spcl.inf.ethz.ch
@spcl_eth

Recovery

! ! Unrecoverable read error on a sector:
! ! Remap bad sector
! ! Reconstruct contents from stripe and parity

! ! Whole disk failure:
! ! Replace disk
! ! Reconstruct data from the other disks
! ! Hope nothing else goes wrongÉ

spcl.inf.ethz.ch
@spcl_eth

Mean time to repair (MTTR)

RAID-5 can lose data in three ways:

1.! Two full disk failures (second while the first is recover ing)

2.! Full disk failure and sector failure on another disk

3.! Overlapping sector failures on two disks

! ! MTTR: Mean time to repair
! ! Expected time from disk failure to when new disk is fully rewritten, often

hours

! ! MTTDL: Mean time to data loss
! ! Expected time until 1, 2 or 3 happens

!"#$%"&%"#'

#&'

spcl.inf.ethz.ch
@spcl_eth

Analysis

See the book for independent failures

! ! Key result: most likely scenario is #2.

Solutions:

1.! More redundant disks, erasure coding

2.! Scrubbing
! ! Regularly read the whole disk to catch UREs early

3.! Buy more expensive disks.
! ! I.e. disks with much lower error rates

4.! Hot spares
! ! Reduce time to plug/unplug disk

spcl.inf.ethz.ch
@spcl_eth

Hardware Trends

!"#$%"&%"#'

#$'

spcl.inf.ethz.ch
@spcl_eth

The future is exciting!
Intel (2006): ÒMulti-core processing is taking the
industry on a fast-moving and exciting ride into
profoundly new territory. The defining paradigm

in computing performance has shifted inexorably
from raw clock speed to parallel operations and

energy efficiency.Ó

Dan Reed (2011): ÒTo address these challenges
and battle dark silicon, we need new ideas in

computer architecture, system software,
programming models and end-to-end user

experiences. ItÕs an epic struggle for the future
of computing.Ó

spcl.inf.ethz.ch
@spcl_eth

More and more cores É

! ! Like this dual-socket Sandy Bridge system:

2.3ns

35 ns

10 ns

70 ns

94 ns

107 ns

1 us

!"#$%"&%"#'

#)'

spcl.inf.ethz.ch
@spcl_eth

What does that mean, a nanosecond is short!!

! ! How fast can you add two numbers?
! ! YouÕre smart, so letÕs say 1s "

! ! One core performs 8 floating point operations per cycle
! ! A cycle takes 0.45ns

! ! Then É.
! ! A L1 cache access (2.3ns) takes 5s
! ! A L2 cache access (10ns) takes 22s
! ! A L3 cache access (35ns) takes 78s
! ! A local DRAM access (70ns) takes 2.5 mins
! ! A remote chip access (94ns) takes 3.5 mins
! ! A remote DRAM access (107ns) takes 4 mins
! ! A remote node memory access (1us) takes 37 mins

spcl.inf.ethz.ch
@spcl_eth

Non-Uniform Memory Access (NUMA)

!"#$%"&%"#'

#*'

spcl.inf.ethz.ch
@spcl_eth

NUMA in Operating Systems

! ! Classify memory into NUMA nodes
! ! Affinity to processors and devices
! ! Node-local accesses are fastest

! ! Memory allocator and scheduler should cooperate!
! ! Schedule processes close to the NUMA node with their memory

! ! State of the art:
! ! Ignore it (no semantic difference)
! ! Striping in hardware (consecutive CLs come from different NUMA nodes)

Homogeneous performance, no support in OS needed
! ! Heuristics in NUMA-aware OS
! ! Special NUMA control in OS
! ! Application control

spcl.inf.ethz.ch
@spcl_eth

Heuristics in NUMA-aware OS

! ! ÒFirst touchÓ allocation policy
! ! Allocate memory in the node where the process is running
! ! Can create big problems for parallel applications (see DPHPC class)

! ! NUMA-aware scheduling
! ! Prefer CPUs in NUMA nodes where a process has memory

! ! Replicate ÒhotÓ OS data structures
! ! One copy per NUMA node

! ! Some do page striping in software
! ! Allocate pages round robin
! ! Unclear benefits

!"#$%"&%"#'

#+'

spcl.inf.ethz.ch
@spcl_eth

Special configurations

! ! Administrator/command line configurations
! ! Special tools (e.g., Linux)

taskset: set a processÕ CPU affinity
numactl: set NUMA policies

! ! Application configuration
! ! Syscalls to control NUMA (e.g., Linux)

cpuset and friends, see Òman 7 numaÓ

spcl.inf.ethz.ch
@spcl_eth

Non-local system times !

! ! One core performs 8 floating point operations per cycle
! ! A cycle takes 0.45ns

! ! Then É.
! ! A L1 cache access (2.3ns) takes 5s
! ! A L2 cache access (10ns) takes 22s
! ! A L3 cache access (35ns) takes 78s
! ! A local DRAM access (70ns) takes 2.5 mins
! ! A remote chip access (94ns) takes 3.5 mins
! ! A remote DRAM access (107ns) takes 4 mins
! ! A remote node memory access (1us) takes 37 mins
! ! Solid state disk access (100us) takes 2.6 days
! ! Magnetic disk access (5ms) takes 8.3 months
! ! Internet Zurich to Chicago (150ms) takes 10.3 years
! ! VMM OS reboot (4s) takes 277 years
! ! Physical machine reboot (30s) 2 millennia

!"#$%"&%"#'

#,'

spcl.inf.ethz.ch
@spcl_eth

How to compute fast?

spcl.inf.ethz.ch
@spcl_eth

Why computing fast?
! ! Computation is the third pillar

of science

!"#$%"&%"#'

!"'

spcl.inf.ethz.ch
@spcl_eth

1 Teraflop in 1997

$67 Million

spcl.inf.ethz.ch
@spcl_eth

1 Teraflop 18 years later (2015)

1 TF

ÒAmazon.com by Intel even has the
co-processor selling for just $142
(plus $12 shipping) though they
seem to be now out of stock until
early December.Ó (Nov. 11, 2014)

2.9TF

3 TF

!"#$%"&%"#'

!#'

spcl.inf.ethz.ch
@spcl_eth

1 Teraflop 23 years later (2020)

spcl.inf.ethz.ch
@spcl_eth

1 Teraflop 33 years later (2030)

!"#$%"&%"#'

!!'

spcl.inf.ethz.ch
@spcl_eth

High-performance Computing (Supercomputing)

Vectorization

Multicore/SMP

Heterogeneous Computing

IEEE Floating Point

Datacenter Networking/RDMA

É.

spcl.inf.ethz.ch
@spcl_eth

Top 500

! ! A benchmark, solve Ax=b
! ! As fast as possible! # as big as possible "
! ! Reflects some applications, not all, not even many
! ! Very good historic data!

! ! Speed comparison for
computing centers, states,
countries, nations,
continents "
! ! Politicized (sometimes good,

sometimes bad)
! ! Yet, fun to watch

iPad 2

My Laptop

My Xeon Phi

!"#$%"&%"#'

!('

spcl.inf.ethz.ch
@spcl_eth

www.top500.org

IDC, 2009: Òexpects the
HPC technical server
market to grow at a
healthy 7% to 8% yearly
rate to reach revenues
of $13.4 billion by 2015.Ó

ÒThe non-HPC portion of
the server market was
actually down 20.5 per
cent, to $34.6bnÓ

The November 2014 List

spcl.inf.ethz.ch
@spcl_eth

Case study: OS for High-Performance Computing

! ! Remember the OS design goals?
! ! What if performance is #1?

! ! Different environment
! ! Clusters, special architectures, datacenters
! ! Tens of thousands of nodes
! ! Hundreds of thousands of cores
! ! Millions of CHFs
! ! Unlimited fun "

!"#$%"&%"#'

!&'

spcl.inf.ethz.ch
@spcl_eth

Case Study: IBM Blue Gene

spcl.inf.ethz.ch
@spcl_eth

BlueGene /Q Compute chip
! ! 360 mm! Cu-45 technology (SOI)

! ! ~ 1.47 B transistors

! ! 16 user + 1 service processors
! !plus 1 redundant processor
! !all processors are symmetric
! !each 4-way multi-threaded
! !64 bits PowerISAª
! !1.6 GHz
! !L1 I/D cache = 16kB/16kB
! !L1 prefetch engines
! !each processor has Quad FPU
 (4-wide double precision, SIMD)

! !peak performance 204.8
GFLOPS@55W

! ! Central shared L2 cache: 32 MB
! !eDRAM
! !multiversioned cache will support

transactional memory, speculative
execution.

! !supports atomic ops

! ! Dual memory controller
! !16 GB external DDR3 memory
! !1.33 Gb/s
! !2 * 16 byte-wide interface (+ECC)

! ! Chip-to-chip networking

! !Router logic integrated into BQC chip.
 Ref: SC2010, IBM

!"#$%"&%"#'

!$'

spcl.inf.ethz.ch
@spcl_eth

1. Chip
16 cores

2. Module
Single Chip

4. Node Card
32 Compute Cards,

Optical Modules, Link Chips,
Torus

5a. Midplane
16 Node Cards

6. Rack
2 Midplanes

1, 2 or 4 I/O Drawers

7. System
 20PF/s

3. Compute Card
One single chip module,
16 GB DDR3 Memory

5b. I/O Drawer
8 I/O Cards

8 PCIe Gen2 slots

Blue Gene/Q packaging hierarchy

Ref: SC2010, IBM

16

16
16

512

8192

16384
~2 Mio

spcl.inf.ethz.ch
@spcl_eth

Blue Gene/L System Organization

Heterogeneous nodes:
! ! Compute (BG/L specific)

! ! Run specialized OS supporting computations
efficiently

! ! I/O (BG/L specific)
! ! Use OS flexibly supporting various forms of I/O

! ! Service (generic)
! ! Uses conventional off-the-shelf OS

! ! Provides support for the execution of compute
and I/O node operating systems

! ! Front-end (generic)
! ! Support program compilation, submission and

debugging

! ! File server (generic)
! ! Store data that the I/O nodes read and write

Source: Jose Moreira et al. ÒDesigning Highly-Scalable Operating System: The Blue Gene/L StoryÓ,
http://sc06.supercomputing.org/schedule/pdf/pap178.pdf

!"#$%"&%"#'

!)'

spcl.inf.ethz.ch
@spcl_eth

! ! CNK controls all access to hardware, and enables bypa ss for
application use

! ! User-space libraries and applications can directly acc ess torus
and tree through bypass

! ! As a policy, user-space code should not directly touch hardware,
but there is no enforcement of that policy

Software Stack in Compute Node

BG/L ASIC

CNK Bypass

Application code

 User-space libraries

Source: http://www.research.ibm.com/bluegene/presentations/BGWS_05_SystemSoftware.ppt

spcl.inf.ethz.ch
@spcl_eth

! ! Lean Linux-like kernel (fits in 1MB of memory)
! ! stay out of way and let the application run

! ! Performs job startup sequence on every node of a
partition
! ! Creates address space for execution of compute process(es)
! ! Loads code and initialized data for the executable
! ! Transfers processor control to the loaded executable

! ! Memory management
! ! Address spaces are flat and fixed (no paging), and fit statically into PowerPC

440 TLBs

! ! No process scheduling: only one thread per processor
! ! Processor control stays within the application, unless:

! ! The application issues a system call
! ! Timer interrupt is received (requested by the application code)
! ! An abnormal event is detected, requiring kernelÕs attention

Compute Node Kernel (CNK)

!"#$%"&%"#'

!*'

spcl.inf.ethz.ch
@spcl_eth

CNK System Calls

! ! Compute Node Kernel supports
! ! 68 Linux system calls (file I/O, directory operations, signals, process

information, time, sockets)
! ! 18 CNK-specific calls (cache manipulation, SRAM and DRAM

management, machine and job information, special-purpose register
access)

! ! System call scenarios
! ! Simple calls requiring little OS functionality (e.g. accessing timing register)

are handled locally
! ! I/O calls using file system infrastructure or IP stack are shipped for

execution in the I/O node associated with the issuing compute node
! ! Unsupported calls requiring infrastructure not supported in BG/L (e.g.

fork() or mmap()) return immediately with error condition

spcl.inf.ethz.ch
@spcl_eth

! ! CIOD processes requests from
! ! Control system using socket to the service node
! ! Debug server using a pipe to a local process
! ! Compute nodes using the tree network

! ! I/O system call sequence:
! ! CNK trap
! ! Call parameters are packaged and

sent to CIOD in the corresponding I/O
node

! ! CIOD unpacks the message and
reissues it to Linux kernel on I/O node

! ! After call completes, the results are
sent back to the requesting CNK (and
the application)

Function Shipping from CNK to CIOD

Source: IBM

!"#$%"&%"#'

!+'

spcl.inf.ethz.ch
@spcl_eth

How to communicate?

! ! Communication is
key in problem
solving !
! ! Not just

relationships!
! ! Also scientific

computations

Source: top500.org

spcl.inf.ethz.ch
@spcl_eth

! ! Remember that guy?
! ! EDR
! ! 2x2x100 Gb/s # ~50 GB/s
! ! Memory bandwidth: ~80 GB/s
! ! 0.8 copies $

! ! Solution:
! ! RDMA, similar to DMA
! ! OS too expensive, bypass
! ! Communication offloading

Remote Direct Memory Access

!"#$%"&%"#'

!,'

spcl.inf.ethz.ch
@spcl_eth

! ! Components:
! ! Links/Channel adaptors
! ! Switches/Routers

! ! Routing is supported but rarely used, most IB networks a re
ÒLANsÓ

! ! Supports arbitrary topologies
! ! ÒTypicalÓ topologies: fat tree, torus, islands

! ! Link speed (all 4x):
! ! Single data rate (SDR): 10 Gb/s
! ! Double data rate (DDR): 20 Gb/s
! ! Quad data rate (QDR): 40 Gb/s
! ! Fourteen data rate (FDR): 56 Gb/s
! ! Enhanced data rate (EDR): 102 Gb/s

InfiniBand Overview

spcl.inf.ethz.ch
@spcl_eth

InfiniBand Network Structure

Source: IBA Spec

!"#$%"&%"#'

("'

spcl.inf.ethz.ch
@spcl_eth

! ! No spanning tree protocol, allows parallel links&loops ,
initialization phases:
! ! Topology discovery: discovery MADs
! ! Path computation: MinHop, É, DFSSSP
! ! Path distribution phase: Configure routing tables

! ! Problem: how to generate paths?
! ! MinHop == OSPF
! ! Potentially bad bandwidth allocation!

InfiniBand Subnet Routing

spcl.inf.ethz.ch
@spcl_eth

Interaction with IB HCAs

! ! Systems calls only for setup:
! ! Establish connection, register memory

! ! Communication (send/ recv, put, get, atomics)
all in user-level!
! ! Through ÒverbsÓ interface

InfiniBand Device (HCA)

Send Recv
QP

CQ

!"#$%"&%"#'

(#'

spcl.inf.ethz.ch
@spcl_eth

Open Fabrics Stack

! ! OFED offers a unified programming interface
! ! Cf. Sockets
! ! Originated in IB verbs
! ! Direct interaction with device
! ! Direct memory exposure

Requires page pinning (avoid OS interference)

! ! Device offers
! ! User-level driver interface
! ! Memory-mapped registers

spcl.inf.ethz.ch
@spcl_eth

iWARP and RoCE

! ! iWARP: RDMA over TCP/IP
! ! Ups:

Routable with existing infrastructure
Easily portable (filtering, etc.)

! ! Downs:
Higher latency (complex TOE)
Higher complexity in NIC
TCP/IP is not designed for datacenter networks

! ! RoCE: RDMA over Converged Ethernet
! ! Data-center Ethernet!

!"#$%"&%"#'

(!'

spcl.inf.ethz.ch
@spcl_eth

Student Cluster Competition

! ! 5 undergrads, 1 advisor, 1 cluster, 2x13 amps
! ! 8 teams, 4 continents @SC
! ! 48 hours, five applications, non-stop!
! ! top-class conference (>11000 attendees)

! ! Lots of fun
! ! Even more

experience!

! ! A Swiss team 2017?
! ! Search for ÒStudent

Cluster ChallengeÓ
! ! HPC-CH/CSCS may

help

spcl.inf.ethz.ch
@spcl_eth

What to remember in 10 years!

!"#$%"&%"#'

(('

spcl.inf.ethz.ch
@spcl_eth

The LectureÕs Elevator Pitch

! ! Roles:
! ! Referee, Illusionist, Glue

! ! Example: processes, threads, and scheduling
! ! R: Scheduling algorithms (batch, interactive, realtime)
! ! I: Resource abstractions (memory, CPU)
! ! G: Syscalls, services, driver interface

! ! Slicing along another dimension:
! ! Abstractions
! ! Mechanisms

spcl.inf.ethz.ch
@spcl_eth

The LectureÕs Elevator Pitch

! ! IPC and other communications
! ! A: Sockets, channels, read/write
! ! M: Network devices, packets, protocols

! ! Memory Protection
! ! A: Access control
! ! M: Paging, protection rings, MMU

! ! Paging/Segmentation
! ! A: Infinite memory, performance
! ! M: Caching, TLB, replacement algorithms, tables

!"#$%"&%"#'

(&'

spcl.inf.ethz.ch
@spcl_eth

The LectureÕs Elevator Pitch

! ! Naming
! ! A: (hierarchical) name spaces
! ! M: DNS, name lookup, directories

! ! File System
! ! A: Files, directories, links
! ! M: Block allocation, inodes, tables

! ! I/O
! ! A: Device services (music, pictures ")
! ! M: Registers, PIO, interrupts, DMA

spcl.inf.ethz.ch
@spcl_eth

The LectureÕs Elevator Pitch

! ! Reliability:
! ! A: reliable hardware (storage)
! ! M: Checksums, transactions, raid 0/5

! ! And everything can be virtualized!
! ! CPU, MMU, memory, devices, network
! ! A: virtualized x86 CPU
! ! M: paravirtualization, rewriting, hardware extensions
! ! A: virtualized memory protection/management
! ! M: writable pages, shadow pages, hw support, IOMMU

!"#$%"&%"#'

($'

spcl.inf.ethz.ch
@spcl_eth

The LectureÕs Elevator Pitch

! ! Ok, fine, it was an escalator
pitch É in Moscow

! ! Please remember all
for at least 10 years!
! ! Systems principles
! ! É and how to make

them fast "

Escalator

spcl.inf.ethz.ch
@spcl_eth

Finito Ð Happy Easter!!

! ! Thanks for being such fun to teach !
! ! Comments (also anonymous) are always appreciated!

! ! If you are interested in parallel
computing research, talk to me!
! ! Large-scale (datacenter) systems
! ! Parallel computing (SMP and MPI)
! ! GPUs (CUDA), FPGAs, Manycore É
! ! É on twitter: @spcl_eth "

! ! Hope to see you again!
Maybe in Design of Parallel
and High-Performance
Computing next semester !

! ! Or theses:
http://spcl.inf.ethz.ch/SeMa/

