
!"#$%"!%#&'

#'

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)!
Chapter 1:
Introduction to Operating Systems
 If Operating Systems were Airways (~year 2000)

UNIX Airways Everyone brings one piece of the plane along when they come to the airport. They all go out on the
runway and put the plane together piece by piece, arguing non-stop about what kind of plane they are supposed to

be building.

Air DOS Everybody pushes the airplane until it glides, then they jump on and let the plane coast until it hits the
ground again. Then they push again, jump on again, and so on ...

Mac Airlines All the stewards, captains, baggage handlers, and ticket agents look and act exactly the same. Every
time you ask questions about details, you are gently but firmly told that you don't need to know, don't want to know,

and everything will be done for you without your ever having to know, so just shut up.

Windows Air The terminal is pretty and colorful, with friendly stewards, easy baggage check and boarding, and a
smooth take-off. After about 10 minutes in the air, the plane explodes with no warning whatsoever.

Windows NT Air Just like Windows Air, but costs more, uses much bigger planes, and takes out all the other

aircraft within a 40-mile radius when it explodes.

Linux Air Disgruntled employees of all the other OS airlines decide to start their own airline. They build the planes,
ticket counters, and pave the runways themselves. They charge a small fee to cover the cost of printing the ticket,

but you can also download and print the ticket yourself. When you board the plane, you are given a seat, four bolts,
a wrench and a copy of the Seat-HOWTO.html. Once settled, the fully adjustable seat is very comfortable, the plane
leaves and arrives on time without a single problem, the in-flight meal is wonderful. You try to tell customers of the

other airlines about the great trip, but all they can say is, "You had to do what with the seat?Ò (Author unknown)

spcl.inf.ethz.ch
@spcl_eth

! ! Two parts:
! ! Networks Ð Adrian Perrig
! ! Operating Systems Ð Torsten Hoefler

! ! Lecture:
! ! Thu 8-10am, CAB G61
! ! Fri 10am-noon, CAB G11

! ! Practice sessions
! ! Thu 3-6pm, ML F 40, ML H 41.1
! ! Fri 1-4pm, CHN G 22, CHN D 42, CHN D 48, CAB G 57 (may merge)

! ! Go to one of these sessions!
! ! And participate!
! ! Well, and participate in the lecture as well "

2

Administrivia

!"#$%"!%#&'

!'

spcl.inf.ethz.ch
@spcl_eth

! ! Course webpage (the authoritative information source)
! ! http://spcl.inf.ethz.ch/Teaching/2015-osnet/
! ! All slides will be there before the lecture (so you can take notes)

! ! Exercises are:
! ! Theoretical: Analysis of performance properties
! ! Practical: Trying out stuff + Programming exercises

! ! We assume you know both C and Java.
! ! Exercises start today!

! ! There is a mailing list for questions to the TAs
! ! You are not subscribed but can sign up at (if you want)
! ! https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/2015-osnet-ta

! ! Please register during the break
! ! put your name into lists at front desk of lecture hall

3

More Administrivia

spcl.inf.ethz.ch
@spcl_eth

! ! (No mid-term.)

! ! Final exam: tbd (in Exam Session)

! ! Material:
! ! Covered in the lectures, and/or
! ! Learned during the lab exercises

! ! We will not follow the books closely.
! ! All pieces will be in books though

! ! Optional extra readings may appear on the web

4

Exam

!"#$%"!%#&'

('

spcl.inf.ethz.ch
@spcl_eth

5

Course Outline

19.02.: OS Introduction
20.02.: Processes
26.02.: Scheduling
27.02.: Synchronization
05.03.: Memory Management
06.03.: Demand Paging
12.03.: NO CLASS
13.03.: File System Abstractions
19.03.: File System Implementations
20.03.: I/O Subsystem I
26.03.: I/O Subsystem II
27.03.: Virtual Machine Monitors
02.04.: Reliable Storage, Specials

16.04.: Network Intro / OSI Model
17.04.: Physical Layer
23.04.: Data Link Layer I
24.04.: Data Link Layer II
30.04.: Network Layer I
07.05.: Network Layer I
08.05.: Network Layer II
15.05.: Transport Layer
21.05.: Congestion Control
22.05.: Congestion Control
29.05.: Application Layer

spcl.inf.ethz.ch
@spcl_eth

! ! Networks
! ! bridge space

! ! Databases
! ! bridge time

! ! Networks, Operating Systems, Databases
! ! they all manage resources
! ! OS, DB: all resources (storage, computation, communication)
! ! Networks: focus on communication

Birds-eye perspective

6

!"#$%"!%#&'

)'

spcl.inf.ethz.ch
@spcl_eth

7

~200 sensors

Who knows what CAN is?

ÒController Area NetworkÓ - connects elements

Why do we care here?

This is a complex system

And it has been broken # (not this vendor)

spcl.inf.ethz.ch
@spcl_eth

¥! Introduction: Why?

¥! Roles of the OS
¥! Referee
¥! Illusionist
¥! Glue

¥! Structure of an OS

8

Today: We start on Operating Systems!

!"#$%"!%#&'

$'

spcl.inf.ethz.ch
@spcl_eth

Goals

¥! Demystify operating systems themselves
Ð! What is an OS? What does it do?
Ð! What is its structure?
Ð! How do the OS and applications relate to each other?
Ð! What services does the OS provide?

¥! Quintessential ÒsystemsÓ problem
Ð! Non-idealizable / non-reducible
Ð! Scaling, emergent properties
Ð! Concurrency and asynchrony

9

spcl.inf.ethz.ch
@spcl_eth

The Book

! ! On the web:
http://ospp.cs.washington.edu/

10

!"#$%"!%#&'

*'

spcl.inf.ethz.ch
@spcl_eth

Also worth a look

! ! Jerome H. Saltzer and M. Frans
Kaashoek :
ÒPrinciples of Computer System
DesignÓ

! ! Focus on principles, with
illustrative examples

11

spcl.inf.ethz.ch
@spcl_eth

Also worth a look

! ! Andrew S. Tanebaum:
ÒModern Operating SystemsÓ

! ! Must be at least 3 rd Edition!

! ! Very broad Ð lots of references
to recent (2006) research.

12

!"#$%"!%#&'

+'

spcl.inf.ethz.ch
@spcl_eth

Introduction to
Operating Systems

13

spcl.inf.ethz.ch
@spcl_eth

Why learn about Operating Systems?

! ! One of the most complex topics in Computer Science!
! ! Very few simplifying assumptions
! ! Dealing with the real world
! ! Intersection of many areas

! ! Mainstream OSes are large:
! ! Windows 7 ~ 40-50 million lines of code

Average modern high-end car: 100 million [1]
! ! Linux rapidly catching up in complexity (~15 million LOC)

! ! Most other software systems are a subset
! ! Games, browsers, databases, servers, cloud, etc.

 other software systems are a subset
! ! Games, browsers, databases, servers, cloud, etc.

14 [1]: http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

!"#$%"!%#&'

&'

spcl.inf.ethz.ch
@spcl_eth

There are lots of operating systems conceptsÉ

! ! Systems calls

! ! Concurrency and asynchrony

! ! Processes and threads

! ! Security, authorization, protection

! ! Memory, virtual memory, and paging

! ! Files and file systems, data management

! ! I/O: Devices, Interrupts, DMA

! ! Network interfaces and protocol stacks

15

spcl.inf.ethz.ch
@spcl_eth

There are lots of operating systemsÉ

16

!"#$%"!%#&'

,'

spcl.inf.ethz.ch
@spcl_eth

Goals: what makes a good OS?

! ! Reliability: does it keep working?
! ! And availability

! ! Security: can it be compromised?
! ! And isolation: is it fair?

! ! Portability: how easily can it be retargeted?

! ! Performance: how fast/cheap/hungry is it?

! ! Adoption: will people use it?

! ! É

17

spcl.inf.ethz.ch
@spcl_eth

Operating Systems

Operating
System

Applications

Hardware

-./01234'546782362143'9:;'
<=>23/>'?4.@49//8:@'

?949AA3A'?4.@49//8:@'

B0349C:@'<=>23/>'
D43>2'.E'278>'6.14>3FG'

18

!"#$%"!%#&'

#"'

spcl.inf.ethz.ch
@spcl_eth

Operating System Roles

19

spcl.inf.ethz.ch
@spcl_eth

OS roles

Referee Illusionist

Glue

20

!"#$%"!%#&'

##'

spcl.inf.ethz.ch
@spcl_eth

The Referee:

Operating
System

Hardware

<=>23/'69AA>'

Resource Manager

Application Application Application

21

spcl.inf.ethz.ch
@spcl_eth

The OS as Referee

! ! Sharing:
! ! Multiplex hardware among applications

CPU, memory, devices
! ! Applications shouldnÕt need to be aware of each other

! ! Protection:
! ! Ensure one application canÕt r/w anotherÕs data

In memory, on disk, over network
! ! Ensure one application canÕt use anotherÕs resources

CPU, storage space, bandwidth, É

! ! Communication:
! ! Protected applications must still communicate

22

!"#$%"!%#&'

#!'

spcl.inf.ethz.ch
@spcl_eth

Resource management goals

! ! Fairness:
! ! No starvation, every application makes progress

! ! Efficiency:
! ! Best use of complete machine resources
! ! Minimize e.g. power consumption

! ! Predictability:
! ! Guarantee real-time performance

23

All in mutual
contradiction

spcl.inf.ethz.ch
@spcl_eth

Example: Threads

! ! Threads are virtual CPUs
! ! Physical resource: CPUs
! ! Virtual resource: Threads

! ! Mechanism: pre-emption, timeslicing, context switching, scheduling

! ! More on this later in the courseÉ

24

!"#$%"!%#&'

#('

spcl.inf.ethz.ch
@spcl_eth

The Illusionist

Virtualization:

! ! OS creates illusion of a ÒrealÓ resource
! ! Processor, storage, network, links, É

! ! Virtual resource looks a bit like a physical resource

! ! However, is frequently quite differentÉ
! ! Simpler, larger, better, É

25

spcl.inf.ethz.ch
@spcl_eth

How?

1.! Multiplexing
Ð! Divide resources up among clients

2.! Emulation
Ð! Create the illusion of a resource using software

3.! Aggregation
Ð! Join multiple resources together to create a new one

26

!"#$%"!%#&'

#)'

spcl.inf.ethz.ch
@spcl_eth

Why?

1.! Sharing
Ð! Enable multiple clients of a single resource

2.! Sandboxing
Ð! Prevent a client from accessing other resources

3.! Decoupling
Ð! Avoid tying a client to a particular instance of a resource

4.! Abstraction
Ð! Make a resource easier to use

27

spcl.inf.ethz.ch
@spcl_eth

Example: Virtual Memory

! ! Easier memory to manage
! ! Physical resource: RAM
! ! Virtual resource: Virtual Memory
! ! Method: Multiplexing
! ! Mechanism: virtual address translation

28

!"#$%"!%#&'

#$'

spcl.inf.ethz.ch
@spcl_eth

Example: Paged virtual memory

! ! More memory than you really have
! ! Physical resource: RAM and disk
! ! Virtual resource: paged virtual memory
! ! Method: multiplexing and emulation
! ! Mechanism: virtual memory + paging to/from disk

! ! Much more on this later in the courseÉ

29

spcl.inf.ethz.ch
@spcl_eth

Example: Virtual machines

¥! Quite popular topic commercially right now:
Ð! Xen, VMware, HyperV, kvm, etc.

¥! Many uses:
Ð! Run one OS on another
Ð! Consolidate servers
Ð! Migrate running machines around datacenter
Ð! Run hundreds of ÒhoneypotÓ machines
Ð! Deterministic replay of whole machines
Ð! Etc.

30

!"#$%"!%#&'

#*'

spcl.inf.ethz.ch
@spcl_eth

Example: Files (or database!)

! ! Virtual resource: persistent memory

! ! Physical resource: disk

! ! Method: multiplexing, emulation

! ! Mechanism: block allocation, metadata

! ! Again, more laterÉ

31

spcl.inf.ethz.ch
@spcl_eth

Example: Windows (not the Microsoft OS)

! ! Physical resource: Frame buffer and/or GPU

! ! Method: Multiplexing and emulation

! ! Mechanism: Windows as separate bitmaps/textures

32

!"#$%"!%#&'

#+'

spcl.inf.ethz.ch
@spcl_eth

Example: Virtual circuits

! ! Physical resource: network link

! ! Virtualization method: multiplexing

! ! Mechanism: VC identifiers, VC switching

#'

!' ('

)'

H-IJ()*' H-IJ#"))'

H-IJ#"))' H-IJ$*'

Virtual
circuits

Real circuits

33

spcl.inf.ethz.ch
@spcl_eth

Example: VLANs

34

! ! Methods: multiplexing

! ! Mechanisms: port assignment, tags

A

E G H

I

J

K
S2 S1

B C D

F

M

N

N

S2 S1

!"#$%"!%#&'

#&'

spcl.inf.ethz.ch
@spcl_eth

Glue: the OS as Abstract Machine

Operating
System

Applications

Hardware

Virtual machine
interface

Physical machine
interface

35

spcl.inf.ethz.ch
@spcl_eth

The OS as Glue

! ! Provides high-level abstractions
! ! Easier to program to
! ! Shared functionality for all applications
! ! Ties together disparate functions and services

! ! Extends hardware with added functionality
! ! Direct programming of hardware unnecessary

! ! Hides details of hardware
! ! Applications decoupled from particular devices

36

!"#$%"!%#&'

#,'

spcl.inf.ethz.ch
@spcl_eth

Services provided by an OS

¥! Program execution
Ð! Load program, execute on 1 or more processors

¥! Access to I/O devices
Ð! Disk, network, keyboard, screen,É

¥! Protection and access control
Ð! For files, connections, etc.

¥! Error detection and reporting
Ð! Trap handling, etc.

¥! Accounting and auditing
Ð! Statistics, billing, forensics, etc.

37

spcl.inf.ethz.ch
@spcl_eth

Operating System Structure

38

!"#$%"!%#&'

!"'

spcl.inf.ethz.ch
@spcl_eth

General OS structure

Kernel

?48K8A3@3;'/.;3'

L>34'/.;3'

CPU Device Device

Application

System Library

Application

System Library

Server process
(daemon)

System Library

<=>23/'69AA>'

CPU

39

spcl.inf.ethz.ch
@spcl_eth

Privileged Mode and User Mode

! ! As we saw in Computer Architecture,
most CPUs have a Òprivileged modeÓ:
! ! ia32 protection rings
! ! VAX kernel mode
! ! Etc.

! ! Most Operating Systems use this for protection
! ! In particular, protecting the OS from applications!

40

!"#$%"!%#&'

!#'

spcl.inf.ethz.ch
@spcl_eth

General OS structure

Kernel

?48K8A3@3;'/.;3'

L>34'/.;3'

Application

System Library

Application

System Library

Server process
(daemon)

System Library

<=>23/'69AA>'

CPU Device Device CPU

41

spcl.inf.ethz.ch
@spcl_eth

Kernel

! ! That part of the OS which runs in privileged mode
! ! Large part of Unix and Windows (except libraries)
! ! Small part of L4, Barrelfish, etc. (microkernels)
! ! Does not exist in some embedded systems

! ! Also known as:
! ! Nucleus, nub, supervisor, É

42

!"#$%"!%#&'

!!'

spcl.inf.ethz.ch
@spcl_eth

The kernel is a program!

! ! Kernel is just a (special) computer program.

! ! Typically an event-driven server.

! ! Responds to multiple entry points:
! ! System calls
! ! Hardware interrupts
! ! Program traps

! ! May also include internal threads.

43

spcl.inf.ethz.ch
@spcl_eth

General OS structure

Kernel

?48K8A3@3;'/.;3'

L>34'/.;3'

Application

System Library

Application

System Library

Server process
(daemon)

System Library

<=>23/'69AA>'

CPU Device Device CPU

44

!"#$%"!%#&'

!('

spcl.inf.ethz.ch
@spcl_eth

System Libraries

! ! Convenience functions
! ! strcmp(), etc.
! ! Common functionality

! ! System call wrappers
! ! Create and execute system calls from high-level languages
! ! See Ôman syscallsÕ on Linux

45

spcl.inf.ethz.ch
@spcl_eth

General OS structure

Kernel

?48K8A3@3;'/.;3'

L>34'/.;3'

Application

System Library

Application

System Library

Server process
(daemon)

System Library

<=>23/'69AA>'

CPU Device Device CPU

46

!"#$%"!%#&'

!)'

spcl.inf.ethz.ch
@spcl_eth

Daemons

! ! Processes which are part of the OS
! ! Microkernels: most of the OS
! ! Linux: increasingly large quantity

! ! Advantages:
! ! Modularity, fault tolerance
! ! Easier to scheduleÉ

47

spcl.inf.ethz.ch
@spcl_eth

Entering and exiting the kernel

48

!"#$%"!%#&'

!$'

spcl.inf.ethz.ch
@spcl_eth

When is the kernel entered?

! ! Startup

! ! Exception: caused by user program

! ! Interrupt: caused by Òsomething elseÓ

! ! System calls

49

spcl.inf.ethz.ch
@spcl_eth

Recall: System Calls

! ! RPC to the kernel

! ! Kernel is a series of syscall event handlers

! ! Mechanism is hardware-dependent

<=>23/'69AA>'

?48K8A3@3;'/.;3'

L>34'/.;3'

User process
runs

Process resumes

Execute kernel
code

Execute
syscall

50

!"#$%"!%#&'

!*'

spcl.inf.ethz.ch
@spcl_eth

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:
! ! Passed in processor registers
! ! Stored in memory (address in register)
! ! Pushed on the stack

! ! System library (libc) wraps as a C function
! ! Kernel code wraps handler as C call

51

spcl.inf.ethz.ch
@spcl_eth

When is the kernel exited?

! ! Creating a new process
! ! Including startup

! ! Resuming a process after a trap
! ! Exception, interrupt or system call

! ! User-level upcall
! ! Much like an interrupt, but to user-level

! ! Switching to another process

52

