
2015‐02‐25

1

spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00) ‏

Chapter 3: Scheduling

Source: slashdot, Feb. 2014

spcl.inf.ethz.ch

@spcl_eth

  I will try to indicate book chapters

  But this will not be complete (no book covers 100%)
  So consider it a rough approximation
  Last lecture OSPP Sections 3.1 and 4.1

  Lecture recording

  http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L
  Content of the OS part did not change

  Please let me know if you find the quick quiz silly!

2

Administrivia

2015‐02‐25

2

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

  A process has a virtual CPU
  A thread has a virtual CPU
  A thread has a private set of open files
  A process is a resource container
  A context switch can be caused by a thread
  When a process calls a blocking I/O, it is put into runnable state
  A zombie is a dead process waiting for its parent
  Simple user-level threads run efficiently on multiprocessors
  A device can trigger a system call
  A device can trigger an upcall
  Unix fork() starts a new program
  Windows CreateProcess starts a new program
  A buggy process can overwrite the stack of another process
  User-level threads can context switch without a syscall
  The scheduler always runs in a kernel thread

A Small Quiz

3

spcl.inf.ethz.ch

@spcl_eth

Last time

  Process concepts and lifecycle

  Context switching

  Process creation

  Kernel threads

  Kernel architecture

  System calls in more detail

  User-space threads

  This time

  OSPP Chapter 7

4

2015‐02‐25

3

spcl.inf.ethz.ch

@spcl_eth

Scheduling is…

Deciding how to allocate a single resource among multiple clients

  In what order and for how long

  Usually refers to CPU scheduling

  Focus of this lecture – we will look at selected systems/research
  OS also schedules other resources (e.g., disk and network IO)

  CPU scheduling involves deciding:

  Which task next on a given CPU?
  For how long should a given task run?
  On which CPU should a task run?

Task: process, thread, domain, dispatcher, …

5

spcl.inf.ethz.ch

@spcl_eth

Scheduling

•  What metric is to be optimized?

–  Fairness (but what does this mean?)
–  Policy (of some kind)
–  Balance/Utilization (keep everything being used)
–  Increasingly: Power (or Energy usage)

  Usually these are in contradiction…

6

2015‐02‐25

4

spcl.inf.ethz.ch

@spcl_eth

  General:

  Fairness
  Enforcement of policy
  Balance/Utilization

  Others depend on workload, or architecture:

  Batch jobs, Interactive, Realtime and multimedia
  SMP, SMT, NUMA, multi-node

Objectives

7

spcl.inf.ethz.ch

@spcl_eth

Challenge: Complexity of scheduling algorithms

  Scheduler needs CPU to decide what to schedule

  Any time spent in scheduler is “wasted” time
  Want to minimize overhead of decisions

To maximize utilization of CPU
  But low overhead is no good if your scheduler picks the

“wrong” things to run!

⇒  Trade-off between:

scheduler complexity/overhead and
optimality of resulting schedule

8

2015‐02‐25

5

spcl.inf.ethz.ch

@spcl_eth

Challenge: Frequency of scheduling decisions

  Increased scheduling frequency

⇒ increasing chance of running something different

Leads to higher context switching rates,

⇒ lower throughput

  Flush pipeline, reload register state
  Maybe flush TLB, caches
  Reduces locality (e.g., in cache)

9

spcl.inf.ethz.ch

@spcl_eth

Batch workloads

•  “Run this job to completion and tell me when you’re done”

–  Typical mainframe or supercomputer use-case
–  Much used in old textbooks 
–  Used in large clusters of different sorts …

•  Goals:

–  Throughput (jobs per hour)
–  Wait time (time to execution)
–  Turnaround time (submission to termination)
–  Utilization (don’t waste resources)

10

2015‐02‐25

6

spcl.inf.ethz.ch

@spcl_eth

Interactive workloads

  “Wait for external events, and react before the user gets

annoyed”

  Word processing, browsing, fragging, etc.
  Common for PCs, phones, etc.

  Goals:

  Response time: how quickly does something happen?
  Proportionality: some things should be quicker

11

spcl.inf.ethz.ch

@spcl_eth

Soft Realtime workloads

•  “This task must complete in less than 50ms”, or

•  “This program must get 10ms CPU every 50ms”

–  Data acquisition, I/O processing
–  Multimedia applications (audio and video)

•  Goals:

–  Deadlines
–  Guarantees
–  Predictability (real time ≠ fast!)

12

2015‐02‐25

7

spcl.inf.ethz.ch

@spcl_eth

Hard Realtime workloads

  “Ensure the plane’s control surfaces move correctly in response
to the pilot’s actions”

  “Fire the spark plugs in the car’s engine at the right time”
  Mission-critical, extremely time-sensitive control applications

  Not covered in this course: very different techniques required…

13

spcl.inf.ethz.ch

@spcl_eth

Scheduling assumptions and definitions

14

2015‐02‐25

8

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU‐bound task:

15

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU‐bound task:

I/O‐bound task:

16

2015‐02‐25

9

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU burst Wai@ng for I/O

CPU‐bound task:

I/O‐bound task:

17

spcl.inf.ethz.ch

@spcl_eth

Simplifying assumptions

  Only one processor

  We’ll relax this (much) later

  Processor runs at fixed speed

  Realtime == CPU time
  Not true in reality for power reasons
  DVFS: Dynamic Voltage and Frequency Scaling
  In many cases, however, efficiency ⇒ run flat-out until idle.

18

2015‐02‐25

10

spcl.inf.ethz.ch

@spcl_eth

Simplifying assumptions

  We only consider work-conserving scheduling

  No processor is idle if there is a runnable task
  Question: is this always a reasonable assumption?

  The system can always preempt a task

  Rules out some very small embedded systems
  And hard real-time systems…
  And early PC/Mac OSes…

19

spcl.inf.ethz.ch

@spcl_eth

When to schedule?

When:

1.  A running process blocks
  e.g., initiates blocking I/O or waits on a child

2.  A blocked process unblocks

  I/O completes

3.  A running or waiting process terminates

4.  An interrupt occurs

  I/O or timer

  2 or 4 can involve preemption

20

2015‐02‐25

11

spcl.inf.ethz.ch

@spcl_eth

Preemption

•  Non-preemptive scheduling:

–  Require each process to explicitly give up the scheduler
•  Start I/O, executes a “yield()” call, etc.

–  Windows 3.1, older MacOS, some embedded systems

•  Preemptive scheduling:

–  Processes dispatched and descheduled without warning
•  Often on a timer interrupt, page fault, etc.

–  The most common case in most OSes
–  Soft-realtime systems are usually preemptive
–  Hard-realtime systems are often not!

21

spcl.inf.ethz.ch

@spcl_eth

Overhead

  Dispatch latency:

  Time taken to dispatch a runnable process

  Scheduling cost

= 2 x (half context switch) + (scheduling time)

  Time slice allocated to a process should be significantly more

than scheduling overhead!

22

2015‐02‐25

12

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

  Suppose process switch time is 1ms

  Run each process for 4ms

  What is the overhead?

23

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

  Suppose process switch time is 1ms

  Run each process for 4ms

⇒ 20% of system time spent in scheduler !

  Run each process for 100ms

50 jobs ⇒ maximum response time?

24

2015‐02‐25

13

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

  Suppose process switch time is 1ms

  Run each process for 4ms

⇒ 20% of system time spent in scheduler !

  Run each process for 100ms

50 jobs ⇒ response time up to 5 seconds !

  Tradeoff: response time vs. scheduling overhead

25

spcl.inf.ethz.ch

@spcl_eth

Batch-oriented scheduling

26

2015‐02‐25

14

spcl.inf.ethz.ch

@spcl_eth

Batch scheduling: why bother?

  Mainframes are sooooo 1970!

  But:

  Most systems have batch-like background tasks
  Yes, even phones are beginning to.
  CPU bursts can be modeled as batch jobs
  Web services are request-based

27

spcl.inf.ethz.ch

@spcl_eth

Process Execu@on

@me

A 24

B 3

C 3

First-come first-served

  Simplest algorithm!

  Example:

  Waiting times: 0, 24, 27
  Avg. = (0+24+27)/3

 = 17

  But..

B C A

0 24 27 30

28

2015‐02‐25

15

spcl.inf.ethz.ch

@spcl_eth

  Different arrival order

  Example:

  Waiting times: 6, 0, 3
  Avg. = (0+3+6)/3 = 3

  Much better ☺

  But unpredictable !

First-come first-served

B C A

0 3 6 30

Process Execu@on

@me

A 24

B 3

C 3

29

spcl.inf.ethz.ch

@spcl_eth

Convoy phenomenon

  Short processes back up behind long-running processes

  Well-known (and widely seen!) problem

  Famously identified in databases with disk I/O
  Simple form of self-synchronization

  Generally undesirable…

  FIFO used for, e.g., memcached

30

2015‐02‐25

16

spcl.inf.ethz.ch

@spcl_eth

Shortest-Job First

  Always run process with

the shortest execution time.

  Optimal: minimizes waiting

time (and hence turnaround

time)

Process Execu@on

@me

A 6

B 8

C 7

D 3

D A C B

31

spcl.inf.ethz.ch

@spcl_eth

Optimality

  Consider n jobs executed in sequence, each with processing

time ti, 0 ≤ i < n

  Mean turnaround time is:

  Minimized when shortest job is first

  E.g., for 4 jobs:

∑
−

=

⋅−=
1

0

)(
1

.
n

i

itin
n

Avg

4
)234(3210 tttt +++

32

2015‐02‐25

17

spcl.inf.ethz.ch

@spcl_eth

Execution time estimation

  Problem: what is the execution time?

  For mainframes or supercomputers, could punt to user
  And charge them more if they were wrong

  For non-batch workloads, use CPU burst times

  Keep exponential average of prior bursts

  cf., TCP RTT estimator

  Or just use application information

  Web pages: size of web page

nnn
t ταατ ⋅−+⋅=+)1(1

33

spcl.inf.ethz.ch

@spcl_eth

  Problem: jobs arrive all the time

  “Shortest remaining time next”

  New, short jobs may preempt longer jobs already running

  Still not an ideal match for dynamic, unpredictable workloads

  In particular, interactive ones

SJF & preemption

34

2015‐02‐25

18

spcl.inf.ethz.ch

@spcl_eth

Scheduling interactive loads

35

spcl.inf.ethz.ch

@spcl_eth

  Simplest interactive algorithm

  Run all runnable tasks for fixed quantum in turn

  Advantages:

  It’s easy to implement
  It’s easy to understand, and analyze
  Higher turnaround time than SJF, but better response

  Disadvantages:

  It’s rarely what you want
  Treats all tasks the same

Round-robin

36

2015‐02‐25

19

spcl.inf.ethz.ch

@spcl_eth

  Very general class of scheduling algorithms

  Assign every task a priority

  Dispatch highest priority runnable task

  Priorities can be dynamically changed

  Schedule processes with same priority using

  Round Robin
  FCFS
  etc.

Priority

37

spcl.inf.ethz.ch

@spcl_eth

Priority queues

38

Priority 100

Priority 4

Priority 3

Priority 2

Priority 1 T

T

T T

T T T

T

T

Runnable tasks

P
rio

rit
y

…

2015‐02‐25

20

spcl.inf.ethz.ch

@spcl_eth

  Can schedule different priority levels differently:

  Interactive, high-priority: round robin
  Batch, background, low priority: FCFS

  Ideally generalizes to hierarchical scheduling

Multi-level queues

39

spcl.inf.ethz.ch

@spcl_eth

Starvation

  Strict priority schemes do not guarantee progress for all tasks

  Solution: Ageing

  Tasks which have waited a long time are gradually increased in priority
  Eventually, any starving task ends up with the highest priority
  Reset priority when quantum is used up

40

2015‐02‐25

21

spcl.inf.ethz.ch

@spcl_eth

  Idea: penalize CPU-bound tasks to benefit I/O bound tasks
  Reduce priority for processes which consume their entire quantum
  Eventually, re-promote process
  I/O bound tasks tend to block before using their quantum ⇒ remain at high

priority

  Very general: any scheduling algorithm can reduce to this
(problem is implementation)

Multilevel Feedback Queues

41

spcl.inf.ethz.ch

@spcl_eth

Example: Linux o(1) scheduler

  140 level Multilevel Feedback Queue

  0-99 (high priority):
static, fixed, “realtime”
FCFS or RR

  100-139: User tasks, dynamic
Round-robin within a priority level
Priority ageing for interactive (I/O intensive) tasks

  Complexity of scheduling is independent of no. tasks

  Two arrays of queues: “runnable” & “waiting”
  When no more task in “runnable” array, swap arrays

42

2015‐02‐25

22

spcl.inf.ethz.ch

@spcl_eth

Example: Linux “completely fair scheduler”

•  Task’s priority = how little progress it has made

–  Adjusted by fudge factors over time

•  Implementation uses Red-Black tree

–  Sorted list of tasks
–  Operations now O(log n), but this is fast

•  Essentially, this is the old idea of “fair queuing” from packet

networks

–  Also called “generalized processor scheduling”
–  Ensures guaranteed service rate for all processes
–  CFS does not, however, expose (or maintain) the guarantees

43

spcl.inf.ethz.ch

@spcl_eth

Problems with UNIX Scheduling

  UNIX conflates protection domain and resource principal

  Priorities and scheduling decisions are per-process

  However, may want to allocate resources across processes, or

separate resource allocation within a process

  E.g., web server structure
Multi-process
Multi-threaded
Event-driven

  If I run more compiler jobs than you, I get more CPU time

  In-kernel processing is accounted to nobody

44

2015‐02‐25

23

spcl.inf.ethz.ch

@spcl_eth

Resource Containers [Banga et al., 1999]

New OS abstraction for explicit resource management, separate

from process structure

  Operations to create/destroy, manage hierarchy, and associate

threads or sockets with containers

  Independent of scheduling algorithms used

  All kernel operations and resource usage accounted to a

resource container

⇒  Explicit and fine-grained control over resource usage

⇒  Protects against some forms of DoS attack

  Most obvious modern form: virtual machines

45

spcl.inf.ethz.ch

@spcl_eth

Real Time

46

2015‐02‐25

24

spcl.inf.ethz.ch

@spcl_eth

Real-time scheduling

  Problem: giving real time-based guarantees to tasks
  Tasks can appear at any time
  Tasks can have deadlines
  Execution time is generally known
  Tasks can be periodic or aperiodic

  Must be possible to reject tasks which are unschedulable, or
which would result in no feasible schedule

47

spcl.inf.ethz.ch

@spcl_eth

Example: multimedia scheduling

48

2015‐02‐25

25

spcl.inf.ethz.ch

@spcl_eth

Rate-monotonic scheduling

  Schedule periodic tasks by always running task with shortest
period first.
  Static (offline) scheduling algorithm

  Suppose:
  m tasks
  Ci is the execution time of i’th task
  Pi is the period of i’th task

  Then RMS will find a feasible schedule if:

  (Proof is beyond scope of this course)

)12(
1

1

−≤∑
=

m
m

i i

i m
P
C

49

spcl.inf.ethz.ch

@spcl_eth

Earliest Deadline First

  Schedule task with earliest deadline first (duh..)

  Dynamic, online.
  Tasks don’t actually have to be periodic…
  More complex - O(n) – for scheduling decisions

  EDF will find a feasible schedule if:

  Which is very handy. Assuming zero context switch time…

1

1

≤∑
=

m

i i

i

P

C

50

2015‐02‐25

26

spcl.inf.ethz.ch

@spcl_eth

Guaranteeing processor rate

  E.g., you can use EDF to guarantee a rate of progress for a long-

running task

  Break task into periodic jobs, period p and time s.
  A task arrives at start of a period
  Deadline is the end of the period

  Provides a reservation scheduler which:

  Ensures task gets s seconds of time every p seconds
  Approximates weighted fair queuing

  Algorithm is regularly rediscovered…

51

spcl.inf.ethz.ch

@spcl_eth

Multiprocessor Scheduling

52

2015‐02‐25

27

spcl.inf.ethz.ch

@spcl_eth

Challenge 1: sequential programs on multiprocessors

  Queuing theory ⇒ straightforward, although:

  More complex than uniprocessor scheduling
  Harder to analyze

Task queue

Core 0

Core 1

Core 2

Core 3

But…

53

spcl.inf.ethz.ch

@spcl_eth

It’s much harder

  Overhead of locking and sharing queue

  Classic case of scaling bottleneck in OS design

  Solution: per-processor scheduling queues

Core 0

Core 1

Core 2

Core 3

In practice, each
is more complex

e.g., MFQ

54

2015‐02‐25

28

spcl.inf.ethz.ch

@spcl_eth

It’s much harder

  Threads allocated arbitrarily to cores

⇒ tend to move between cores
⇒ tend to move between caches
⇒  really bad locality and hence performance

  Solution: affinity scheduling

  Keep each thread on a core most of the time
  Periodically rebalance across cores
  Note: this is non-work-conserving!

  Alternative: hierarchical scheduling (Linux)

55

spcl.inf.ethz.ch

@spcl_eth

Challenge 2: parallel applications

  Global barriers in parallel applications ⇒

One slow thread has huge effect on performance

  Corollary of Amdahl’s Law

  Multiple threads would benefit from cache sharing

  Different applications pollute each others’ caches

  Leads to concept of “co-scheduling”

  Try to schedule all threads of an application together

  Critically dependent on synchronization concepts

56

2015‐02‐25

29

spcl.inf.ethz.ch

@spcl_eth

Multicore scheduling

  Multiprocessor scheduling is two-dimensional

  When to schedule a task?
  Where (which core) to schedule on?

  General problem is NP hard !

  But it’s worse than that:

  Don’t want a process holding a lock to sleep
⇒ Might be other running tasks spinning on it

  Not all cores are equal

  In general, this is a wide-open research problem

57

spcl.inf.ethz.ch

@spcl_eth

Little’s Law

  Assume, in a train station:

  100 people arrive per minute
  Each person spends 15 minutes in the station
  How big does the station have to be (house how many people)

  Little’s law: “The average number of active tasks in a system is

equal to the average arrival rate multiplied by the average time a

task spends in a system”

58

