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  I will try to indicate book chapters 

  But this will not be complete (no book covers 100%) 
  So consider it a rough approximation 
  Last lecture OSPP Sections 3.1 and 4.1 

  Lecture recording 

  http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L 
  Content of the OS part did not change 

  Please let me know if you find the quick quiz silly! 
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  True or false (raise hand) 

  A process has a virtual CPU  
  A thread has a virtual CPU 
  A thread has a private set of open files 
  A process is a resource container 
  A context switch can be caused by a thread 
  When a process calls a blocking I/O, it is put into runnable state 
  A zombie is a dead process waiting for its parent 
  Simple user-level threads run efficiently on multiprocessors 
  A device can trigger a system call 
  A device can trigger an upcall 
  Unix fork() starts a new program 
  Windows CreateProcess starts a new program 
  A buggy process can overwrite the stack of another process 
  User-level threads can context switch without a syscall 
  The scheduler always runs in a kernel thread 

A Small Quiz 
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Last time 

  Process concepts and lifecycle 

  Context switching 

  Process creation 

  Kernel threads 

  Kernel architecture 

  System calls in more detail 

  User-space threads  

  This time 

  OSPP Chapter 7 
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Scheduling is… 

Deciding how to allocate a single resource among multiple clients 

  In what order and for how long 

  Usually refers to CPU scheduling 

  Focus of this lecture – we will look at selected systems/research 
  OS also schedules other resources (e.g., disk and network IO) 

  CPU scheduling involves deciding: 

  Which task next on a given CPU? 
  For how long should a given task run? 
  On which CPU should a task run? 

 
Task: process, thread, domain, dispatcher, …  
 

5 

spcl.inf.ethz.ch 

@spcl_eth 

Scheduling 

•  What metric is to be optimized? 

–  Fairness (but what does this mean?) 
–  Policy (of some kind) 
–  Balance/Utilization (keep everything being used) 
–  Increasingly: Power (or Energy usage) 

  Usually these are in contradiction… 
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  General: 

  Fairness 
  Enforcement of policy 
  Balance/Utilization 

  Others depend on workload, or architecture: 

  Batch jobs, Interactive, Realtime and multimedia 
  SMP, SMT, NUMA, multi-node 

Objectives 
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Challenge: Complexity of scheduling algorithms 

  Scheduler needs CPU to decide what to schedule 

  Any time spent in scheduler is “wasted” time 
  Want to minimize overhead of decisions  

To maximize utilization of CPU 
  But low overhead is no good if your scheduler picks the  

“wrong” things to run! 

⇒  Trade-off between: 

scheduler complexity/overhead and 
optimality of resulting schedule 
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Challenge: Frequency of scheduling decisions 

  Increased scheduling frequency  

⇒ increasing chance of running something different 

Leads to higher context switching rates,  

⇒ lower throughput 

  Flush pipeline, reload register state 
  Maybe flush TLB, caches 
  Reduces locality (e.g., in cache) 
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Batch workloads 

•  “Run this job to completion and tell me when you’re done” 

–  Typical mainframe or supercomputer use-case 
–  Much used in old textbooks  
–  Used in large clusters of different sorts … 

•  Goals: 

–  Throughput (jobs per hour) 
–  Wait time (time to execution) 
–  Turnaround time (submission to termination) 
–  Utilization (don’t waste resources) 
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Interactive workloads 

  “Wait for external events, and react before the user gets 

annoyed”  

  Word processing, browsing, fragging, etc.  
  Common for PCs, phones, etc.  

  Goals: 

  Response time: how quickly does something happen? 
  Proportionality: some things should be quicker 
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Soft Realtime workloads 

•  “This task must complete in less than 50ms”, or 

•  “This program must get 10ms CPU every 50ms” 

–  Data acquisition, I/O processing 
–  Multimedia applications (audio and video) 

•  Goals: 

–  Deadlines 
–  Guarantees 
–  Predictability (real time ≠ fast!) 
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Hard Realtime workloads 

  “Ensure the plane’s control surfaces move correctly in response 
to the pilot’s actions” 

  “Fire the spark plugs in the car’s engine at the right time” 
  Mission-critical, extremely time-sensitive control applications 

  Not covered in this course: very different techniques required… 
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Scheduling assumptions and definitions 
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CPU- and I/O-bound tasks 

CPU‐bound task: 
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CPU- and I/O-bound tasks 

CPU‐bound task: 

I/O‐bound task: 
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CPU- and I/O-bound tasks 

CPU burst  Wai@ng for I/O 

CPU‐bound task: 

I/O‐bound task: 
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Simplifying assumptions 

  Only one processor 

  We’ll relax this (much) later 

  Processor runs at fixed speed 

  Realtime == CPU time 
  Not true in reality for power reasons 
  DVFS: Dynamic Voltage and Frequency Scaling 
  In many cases, however, efficiency ⇒ run flat-out until idle.   
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Simplifying assumptions 

  We only consider work-conserving scheduling 

  No processor is idle if there is a runnable task 
  Question: is this always a reasonable assumption? 

  The system can always preempt a task 

  Rules out some very small embedded systems 
  And hard real-time systems… 
  And early PC/Mac OSes… 
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When to schedule? 

When: 

 

1.  A running process blocks  
   e.g., initiates blocking I/O or waits on a child 

2.  A blocked process unblocks 

  I/O completes 

3.  A running or waiting process terminates 

4.  An interrupt occurs 

  I/O or timer 

  2 or 4 can involve preemption 

20 



2015‐02‐25 

11 

spcl.inf.ethz.ch 

@spcl_eth 

Preemption 

•  Non-preemptive scheduling: 

–  Require each process to explicitly give up the scheduler 
•  Start I/O, executes a “yield()” call, etc. 

–  Windows 3.1, older MacOS, some embedded systems 

•  Preemptive scheduling: 

–  Processes dispatched and descheduled without warning 
•  Often on a timer interrupt, page fault, etc. 

–  The most common case in most OSes 
–  Soft-realtime systems are usually preemptive 
–  Hard-realtime systems are often not! 
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Overhead 

  Dispatch latency:  

  Time taken to dispatch a runnable process 

  Scheduling cost  

= 2 x (half context switch) + (scheduling time)  

  Time slice allocated to a process should be significantly more 

than scheduling overhead! 
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Overhead example (from Tanenbaum) 

  Suppose process switch time is 1ms 

  Run each process for 4ms 

  What is the overhead? 
 

23 

spcl.inf.ethz.ch 

@spcl_eth 

Overhead example (from Tanenbaum) 

  Suppose process switch time is 1ms 

  Run each process for 4ms 

⇒ 20% of system time spent in scheduler ! 

  Run each process for 100ms 

50 jobs ⇒ maximum response time? 

24 
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Overhead example (from Tanenbaum) 

  Suppose process switch time is 1ms 

  Run each process for 4ms 

⇒ 20% of system time spent in scheduler ! 

  Run each process for 100ms 

50 jobs ⇒ response time up to 5 seconds ! 

  Tradeoff: response time vs. scheduling overhead 

25 

spcl.inf.ethz.ch 

@spcl_eth 

Batch-oriented scheduling 
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Batch scheduling: why bother? 

  Mainframes are sooooo 1970! 

  But:  

  Most systems have batch-like background tasks 
  Yes, even phones are beginning to. 
  CPU bursts can be modeled as batch jobs 
  Web services are request-based 
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Process  Execu@on 

@me 

A  24 

B  3 

C  3 

First-come first-served 

  Simplest algorithm! 

  Example: 

  Waiting times: 0, 24, 27 
  Avg.  = (0+24+27)/3 

  = 17 

  But.. 

B  C A 

0  24  27  30 
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  Different arrival order 

  Example: 

  Waiting times: 6, 0, 3 
  Avg.  = (0+3+6)/3 = 3 

  Much better ☺ 

  But unpredictable ! 

First-come first-served 

B  C  A 

0  3  6  30 

Process  Execu@on 

@me 

A  24 

B  3 

C  3 
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Convoy phenomenon 

  Short processes back up behind long-running processes 

  Well-known (and widely seen!) problem 

  Famously identified in databases with disk I/O 
  Simple form of self-synchronization 

  Generally undesirable… 

  FIFO used for, e.g., memcached 
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Shortest-Job First 

  Always run process with 

the shortest execution time. 

  Optimal: minimizes waiting 

time (and hence turnaround 

time) 

Process  Execu@on 

@me 

A  6 

B  8 

C  7 

D  3 

D  A  C  B 
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Optimality 

  Consider n jobs executed in sequence, each with processing 

time ti, 0 ≤ i < n 

  Mean turnaround time is: 

  Minimized when shortest job is first 

  E.g., for 4 jobs:  
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Execution time estimation 

  Problem: what is the execution time? 

  For mainframes or supercomputers, could punt to user 
  And charge them more if they were wrong 

  For non-batch workloads, use CPU burst times 

  Keep exponential average of prior bursts 

  cf., TCP RTT estimator 

  Or just use application information 

  Web pages: size of web page 
 

nnn
t ταατ ⋅−+⋅=+ )1(1
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  Problem: jobs arrive all the time 

  “Shortest remaining time next” 

  New, short jobs may preempt longer jobs already running 

  Still not an ideal match for dynamic, unpredictable workloads 

  In particular, interactive ones 

SJF & preemption 
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Scheduling interactive loads 
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  Simplest interactive algorithm 

  Run all runnable tasks for fixed quantum in turn 

  Advantages: 

  It’s easy to implement 
  It’s easy to understand, and analyze 
  Higher turnaround time than SJF, but better response 

  Disadvantages: 

  It’s rarely what you want 
  Treats all tasks the same 

Round-robin 
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  Very general class of scheduling algorithms 

  Assign every task a priority 

  Dispatch highest priority runnable task 

  Priorities can be dynamically changed 

  Schedule processes with same priority using  

  Round Robin 
  FCFS 
  etc. 

Priority 
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Priority queues 
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  Can schedule different priority levels differently: 

  Interactive, high-priority: round robin 
  Batch, background, low priority: FCFS 

  Ideally generalizes to hierarchical scheduling 

Multi-level queues 
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Starvation 

  Strict priority schemes do not guarantee progress for all tasks 

  Solution: Ageing 

  Tasks which have waited a long time are gradually increased in priority 
  Eventually, any starving task ends up with the highest priority 
  Reset priority when quantum is used up 
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  Idea: penalize CPU-bound tasks to benefit I/O bound tasks 
  Reduce priority for processes which consume their entire quantum 
  Eventually, re-promote process 
  I/O bound tasks tend to block before using their quantum ⇒ remain at high 

priority 

  Very general: any scheduling algorithm can reduce to this 
(problem is implementation) 

Multilevel Feedback Queues 
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Example: Linux o(1) scheduler 

  140 level Multilevel Feedback Queue 

  0-99 (high priority):  
static, fixed, “realtime” 
FCFS or RR 

  100-139: User tasks, dynamic 
Round-robin within a priority level 
Priority ageing for interactive (I/O intensive) tasks 
 

  Complexity of scheduling is independent of no. tasks 

  Two arrays of queues: “runnable” & “waiting” 
  When no more task in “runnable” array, swap arrays 
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Example: Linux “completely fair scheduler” 

•  Task’s priority = how little progress it has made 

–  Adjusted by fudge factors over time 

•  Implementation uses Red-Black tree 

–  Sorted list of tasks 
–  Operations now O(log n), but this is fast 

•  Essentially, this is the old idea of “fair queuing” from packet 

networks 

–  Also called “generalized processor scheduling” 
–  Ensures guaranteed service rate for all processes 
–  CFS does not, however, expose (or maintain) the guarantees 
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Problems with UNIX Scheduling 

  UNIX conflates protection domain and resource principal 

  Priorities and scheduling decisions are per-process 

  However, may want to allocate resources across processes, or 

separate resource allocation within a process 

  E.g., web server structure 
Multi-process 
Multi-threaded 
Event-driven 

  If I run more compiler jobs than you, I get more CPU time 

  In-kernel processing is accounted to nobody 
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Resource Containers  [Banga et al., 1999] 

New OS abstraction for explicit resource management, separate 

from process structure 

  Operations to create/destroy, manage hierarchy, and associate 

threads or sockets with containers 

  Independent of scheduling algorithms used 

  All kernel operations and resource usage accounted to a 

resource container 

⇒  Explicit and fine-grained control over resource usage  

⇒  Protects against some forms of DoS attack 

  Most obvious modern form: virtual machines 
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Real Time 
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Real-time scheduling 

  Problem: giving real time-based guarantees to tasks 
  Tasks can appear at any time 
  Tasks can have deadlines 
  Execution time is generally known 
  Tasks can be periodic or aperiodic 

  Must be possible to reject tasks which are unschedulable, or 
which would result in no feasible schedule 
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Example: multimedia scheduling  
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Rate-monotonic scheduling 

  Schedule periodic tasks by always running task with shortest 
period first. 
  Static (offline) scheduling algorithm 

  Suppose: 
  m tasks 
  Ci is the execution time of i’th task 
  Pi is the period of i’th task 

  Then RMS will find a feasible schedule if: 

  (Proof is beyond scope of this course) 

)12(
1

1
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m
m
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C
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Earliest Deadline First 

  Schedule task with earliest deadline first (duh..) 

  Dynamic, online.   
  Tasks don’t actually have to be periodic… 
  More complex - O(n) – for scheduling decisions 

  EDF will find a feasible schedule if:  

  Which is very handy.  Assuming zero context switch time… 

1
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Guaranteeing processor rate 

  E.g., you can use EDF to guarantee a rate of progress for a long-

running task 

  Break task into periodic jobs, period p and time s.  
  A task arrives at start of a period 
  Deadline is the end of the period 

  Provides a reservation scheduler which: 

  Ensures task gets s seconds of time every p seconds 
  Approximates weighted fair queuing 

  Algorithm is regularly rediscovered… 
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Multiprocessor Scheduling 
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Challenge 1: sequential programs on multiprocessors 

  Queuing theory ⇒ straightforward, although: 

  More complex than uniprocessor scheduling 
  Harder to analyze 

Task queue 

Core 0 

Core 1 

Core 2 

Core 3 

But… 
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It’s much harder 

  Overhead of locking and sharing queue 

  Classic case of scaling bottleneck in OS design 

  Solution: per-processor scheduling queues 

Core 0 

Core 1 

Core 2 

Core 3 

In practice, each 
is more complex 

e.g., MFQ 
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It’s much harder 

  Threads allocated arbitrarily to cores 

⇒ tend to move between cores 
⇒ tend to move between caches 
⇒  really bad locality and hence performance 

  Solution: affinity scheduling 

  Keep each thread on a core most of the time 
  Periodically rebalance across cores 
  Note: this is non-work-conserving! 

  Alternative: hierarchical scheduling (Linux) 
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Challenge 2: parallel applications 

  Global barriers in parallel applications ⇒ 

One slow thread has huge effect on performance 

  Corollary of Amdahl’s Law 

  Multiple threads would benefit from cache sharing 

  Different applications pollute each others’ caches 

  Leads to concept of “co-scheduling” 

  Try to schedule all threads of an application together 

  Critically dependent on synchronization concepts 
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Multicore scheduling 

  Multiprocessor scheduling is two-dimensional 

  When to schedule a task? 
  Where (which core) to schedule on? 

  General problem is NP hard ! 

  But it’s worse than that: 

  Don’t want a process holding a lock to sleep 
⇒ Might be other running tasks spinning on it 

  Not all cores are equal 

  In general, this is a wide-open research problem 
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Little’s Law 

  Assume, in a train station: 

  100 people arrive per minute 
  Each person spends 15 minutes in the station 
  How big does the station have to be (house how many people) 

  Little’s law: “The average number of active tasks in a system is 

equal to the average arrival rate multiplied by the average time a 

task spends in a system” 
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