
!"#$%"&%#!'

#'

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)!
Chapter 7: Filesystem Abstractions

spcl.inf.ethz.ch
@spcl_eth

Paging OS back in É

! ! Base + limit registers

! ! Segmentation

! ! Paging

! ! Page protection

! ! Page sharing

! ! Page table structures

! ! TLB shootdown

! ! Uses for virtual memory

! ! Copy-on-write

! ! Demand paging
! ! Page fault handling
! ! Page replacement algorithms
! ! É

!"#$%"&%#!'

!'

spcl.inf.ethz.ch
@spcl_eth

Frame allocation policies

spcl.inf.ethz.ch
@spcl_eth

Thrashing

! ! If a process does not have ÒenoughÓ pages, the page-
fault rate is very high. This leads to:
! ! low CPU utilization
! ! operating system thinks that it needs to

increase the degree of multiprogramming
! ! another process added to the system

! ! Thrashing ! a process is busy
swapping pages in and out

Source: wikipedia

!"#$%"&%#!'

&'

spcl.inf.ethz.ch
@spcl_eth

Allocation of frames

! ! Each process needs minimum number of pages

! ! Example: IBM 370 Ð 6 pages to handle SS MOVE instruction:
! ! instruction is 6 bytes, might span 2 pages
! ! 2 pages to handle from
! ! 2 pages to handle to

! ! Two major allocation schemes
! ! fixed allocation
! ! priority allocation

spcl.inf.ethz.ch
@spcl_eth

! ! Equal allocation
! ! all processes get equal share

! ! Proportional allocation
! ! allocate according to the size of process

Fixed allocation

m
S
s

pa

m

sS

ps

i
ii

i

ii

!==

=

=

=

"

for allocation

frames ofnumber total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

1

!"=

!"=

=

=

=

a

a

s

s

m

!"#$%"&%#!'

('

spcl.inf.ethz.ch
@spcl_eth

Global vs. local allocation

! ! Global replacement Ð process selects a
replacement frame from the set of all frames;
one process can take a frame from another

! ! Local replacement Ð each process selects from
only its own set of allocated frames

spcl.inf.ethz.ch
@spcl_eth

Priority allocation

! ! Proportional allocation scheme

! ! Using priorities rather than size

! ! If process P i generates a page fault, replace:
1.! one of its frames, or
2.! frame from a process with lower priority

!"#$%"&%#!'

$'

spcl.inf.ethz.ch
@spcl_eth

Thrashing

! ! If a process does not have ÒenoughÓ pages, the page-
fault rate is very high. This leads to:
! ! low CPU utilization
! ! operating system thinks that it needs to increase the degree of

multiprogramming
! ! another process added to the system

! ! Thrashing ! a process is busy swapping pages in and
out

spcl.inf.ethz.ch
@spcl_eth

Thrashing

U
se

fu
l C

P
U

 u
til

iz
at

io
n

Demand for virtual memory (e.g., more procs)

Thrashing
begins!

!"#$%"&%#!'

)'

spcl.inf.ethz.ch
@spcl_eth

Demand paging and thrashing

! ! Why does demand paging work?
Locality model
! ! Process migrates from one locality to another
! ! Localities may overlap

! ! Why does thrashing occur?
" size of localities > total memory size

spcl.inf.ethz.ch
@spcl_eth

Locality in a memory reference pattern

!"#$%"&%#!'

*'

spcl.inf.ethz.ch
@spcl_eth

Working-set model

! ! # ! working-set window
 ! a fixed number of page references

! ! Example: 10,000 instructions

! ! WSSi (working set of process P i) = total number of different
pages referenced in the most recent # (varies in time)
! ! # too small $ will not encompass entire locality
! ! # too large $ will encompass several localities
! ! # = % $ will encompass entire program

spcl.inf.ethz.ch
@spcl_eth

Allocate demand frames

! ! D = " WSSi ! total demand frames
! ! Intuition: how much space is really needed

! ! D > m $ Thrashing

! ! Policy: if D > m, suspend some processes

!"#$%"&%#!'

+'

spcl.inf.ethz.ch
@spcl_eth

Working-set model

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

WS(t1) = {1,2,5,6,7}
t1

WS(t2) = {3,4}
t2

Page reference string:

spcl.inf.ethz.ch
@spcl_eth

Keeping track of the working set

! ! Approximate with interval timer + a reference bit

! ! Example: # = 10,000
! ! Timer interrupts after every 5000 time units
! ! Keep in memory 2 bits for each page
! ! Whenever a timer interrupts shift+copy and sets the

values of all reference bits to 0
! ! If one of the bits in memory = 1 $ page in working set

! ! Why is this not completely accurate?
! ! Hint: Nyquist-Shannon!

!"#$%"&%#!'

,'

spcl.inf.ethz.ch
@spcl_eth

Keeping track of the working set

! ! Approximate with interval timer + a reference bit

! ! Example: # = 10,000
! ! Timer interrupts after every 5000 time units
! ! Keep in memory 2 bits for each page
! ! Whenever a timer interrupts shift+copy and sets the

values of all reference bits to 0
! ! If one of the bits in memory = 1 $ page in working set

! ! Why is this not completely accurate?
! ! Cannot tell (within 5000 units) where the reference occurred

! ! Improvement = 10 bits and interrupt every 1000 time units

spcl.inf.ethz.ch
@spcl_eth

Page-fault frequency scheme

! ! Establish ÒacceptableÓ page-fault rate
! ! If actual rate too low, process loses frame
! ! If actual rate too high, process gains frame

Number of
frames

R
at

e
of

 p
ag

e
fa

ul
ts

Lower bound

Upper bound

Increase
number of

frames

Decrease
number of

frames

!"#$%"&%#!'

#"'

spcl.inf.ethz.ch
@spcl_eth

! ! True or false (raise hand)
! ! Copy-on-write can be used to communicate between processes
! ! Copy-on-write leads to faster process creation (with fork)
! ! Copy-on-write saves memory
! ! Paging can be seen as a cache for memory on disk
! ! Paging supports an address space larger than main memory
! ! ItÕs always optimal to replace the least recently used (LRU) page
! ! The Òsecond chanceÓ (clock) algorithm approximates LRU
! ! Thrashing can bring the system to a complete halt
! ! Thrashing occurs only when a single process allocates too much memory
! ! The working set model allows to select processes to suspend
! ! Paging requires no memory management unit
! ! Page-faults are handled by the disk
! ! A priority allocation scheme for memory frames may suffer from priority

inversion

19

Our Small Quiz

spcl.inf.ethz.ch
@spcl_eth

Filesystem Abstractions

!"#$%"&%#!'

##'

spcl.inf.ethz.ch
@spcl_eth

What is the filing system?

! ! Virtualizes the disk

! ! Between disk (blocks) and programmer abstractions (files)

! ! Combination of multiplexing and emulation

! ! Generally part of the core OS

! ! Other utilities come extra:
! ! Mostly administrative

! ! Book: OSPP Sections 11+13

spcl.inf.ethz.ch
@spcl_eth

What does the file system need to provide?

Goal Physical characteristic Design implication

High performance High cost of I/O access Organize placement: access
data in large, sequential
units
Use caching to reduce I/O

Named data Large capacity, persistent
across crashes, shared
between programs

Support files and directories
with meaningful names

Controlled sharing Device stores many usersÕ
data

Include access control
metadata with files

Reliable storage Crashes occur during
update

Transactions to make set of
updates atomic

Storage devices fail Redundancy to detect and
correct failures

Flash memory wears out Wear-levelling to prolong life

!"#$%"&%#!'

#!'

spcl.inf.ethz.ch
@spcl_eth

What the file system builds on

Application

Library

File system

Block cache

Block device interface

Device driver

I/O, DMA, Interrupts

Physical device

File system API
and implementation

I/O system
(see later)

spcl.inf.ethz.ch
@spcl_eth

Filing System Interface

!"#$%"&%#!'

#&'

spcl.inf.ethz.ch
@spcl_eth

What is a file, to the filing system?

! ! Some data
! ! A size (how many bytes or records)
! ! One or more names for the file
! ! Other metadata and attributes
! ! The type of the file
! ! Some structure (how the data is organized)
! ! Where on (disk) etc. the data is stored

! ! Next weekÕs topic

spcl.inf.ethz.ch
@spcl_eth

File metadata

! ! Metadata: important concept!
! ! Data about an object, not the object itself

! ! File metadata examples:
! ! Name
! ! Location on disk (next lecture)
! ! Times of creation, last change, last access
! ! Ownership, access control rights (perhaps)
! ! File type, file structure (later)
! ! Arbitrary descriptive data (used for searching)

!"#$%"&%#!'

#('

spcl.inf.ethz.ch
@spcl_eth

Naming

spcl.inf.ethz.ch
@spcl_eth

Background

! ! Good place to introduce Naming in general

! ! Naming in computer systems is:
! ! Complex
! ! Fundamental

! ! Computer systems are composed of many, many layers of
different name systems.
! ! E.g., virtual memory, file systems, Internet, É

!"#$%"&%#!'

#$'

spcl.inf.ethz.ch
@spcl_eth

Basics: We need to name objects

Socket clientSocket = new Socket("hostname", 6789);

Create a new object

Give it a name

spcl.inf.ethz.ch
@spcl_eth

Naming provides indirection

 DataOutputStream outToServer = new
DataOutputStream (clientSocket.getOutputStream ());

Could be any
socket we have
now

!"#$%"&%#!'

#)'

spcl.inf.ethz.ch
@spcl_eth

Indirection

! ! Well-known quote by David Wheeler:

ÒAll problems in computer science can be solved by an other level
of indirectionÓ

! ! Might be less elegantly paraphrased as:

ÒAny problem in computer science can be recast as a su fficiently
complex naming problemÓ

spcl.inf.ethz.ch
@spcl_eth

Binding

! ! The association between a name and a value is called a binding .

! ! In most cases, the binding isnÕt immediately visible
! ! Most people miss it, or donÕt know it exists
! ! Often conflated with creating the value itself

! ! Sometimes bindings are explicit , and are objects themselves.

!"#$%"&%#!'

#*'

spcl.inf.ethz.ch
@spcl_eth

A General Naming Model

spcl.inf.ethz.ch
@spcl_eth

A general model of naming

! ! Designer creates a naming scheme .
1.! Name space: what names are valid?
2.! Universe of values: what values are valid?
3.! Name mapping algorithm: what is the association of names to values?

! ! Mapping algorithm also known as a resolver

! ! Requires a context

!"#$%"&%#!'

#+'

spcl.inf.ethz.ch
@spcl_eth

General model

N1
N2
N3
N4
N5
N6
N7

Foo

Bar
Gronk

 Baz

Name
mapping
algorithm

Context A

spcl.inf.ethz.ch
@spcl_eth

Context

! ! ÒyouÓ, ÒhereÓ, ÒUeli MaurerÓ are names that require a context to
be useful

! ! Any naming scheme must have " 1 context

! ! Context may not be stated: always look for it!

!"#$%"&%#!'

#,'

spcl.inf.ethz.ch
@spcl_eth

Example naming scheme: Virtual address space

! ! Name space:
! ! Virtual memory addresses (e.g., 64-bit numbers)

! ! Universe of values:
! ! Physical memory addresses (e.g., 64-bit numbers)

! ! Mapping algorithm:
! ! Translation via a page table

! ! Context:
! ! Page table root

spcl.inf.ethz.ch
@spcl_eth

! ! IPv4 addresses:
! ! E.g., 129.132.102.54
! ! Single (global) context: routable from anywhere
! ! Well, sort ofÉ

! ! ATM virtual circuit/path identifiers
! ! E.g., 43:4435
! ! Local context: only valid on a particular link/port
! ! Many contexts!

Single vs. multiple contexts

!"#$%"&%#!'

!"'

spcl.inf.ethz.ch
@spcl_eth

Naming operations

spcl.inf.ethz.ch
@spcl_eth

Resolution

! ! Basic operation:

! ! value ! RESOLVE(name, context)

! ! In practice, resolution mechanism depends on context:

! ! value ! context.RESOLVE(name)

!"#$%"&%#!'

!#'

spcl.inf.ethz.ch
@spcl_eth

Resolution example

! ! Problem:
! ! How does A determine

BÕs MAC address given
its IP address?

! ! Name space:
! ! IP addresses

! ! Universe of values:
! ! Ethernet MAC addresses

! ! Mapping algorithm:
! ! ARP: the Address

Resolution protocol

-./'01'23345'#"6#"6$6!&'
789:4;:85'""5#:5<,5*(53=5)&'

>./'01'23345'#"6#"6,6(#'
789:4;:85'""5#?5&=5&25*&5$$'

spcl.inf.ethz.ch
@spcl_eth

Managing bindings

! ! Typical operations:

! ! status ! BIND(name, value, context)
! ! status ! UNBIND(name, context)

! ! May fail according to naming scheme rules

! ! Unbind may need a value

!"#$%"&%#!'

!!'

spcl.inf.ethz.ch
@spcl_eth

Example

! ! Unix file system (more on this later):

$ ln target new_link

! ! Binds Ònew_link Ó to value obtained by resolving ÒtargetÓ in the
current context (working directory)

$ rm new_link

! ! Removes binding of Ò new_link Ó in cwd

! ! Actually called unlink at the system call level!

spcl.inf.ethz.ch
@spcl_eth

Enumeration

! ! Not always available:

! ! list ! ENUMERATE(context)

! ! Return all the bindings (or names) in a context

!"#$%"&%#!'

!&'

spcl.inf.ethz.ch
@spcl_eth

Example enumeration

$ ls

or

C:/> dir

spcl.inf.ethz.ch
@spcl_eth

Comparing names

Ð! result ! COMPARE(name1, name2)

¥! But what does this mean?
Ð! Are the names themselves the same?
Ð! Are they bound to the same object?
Ð! Do they refer to identical copies of one thing?

¥! All these are different!

¥! Requires a definition of ÒequalityÓ on objects

¥! In general, impossibleÉ

!"#$%"&%#!'

!('

spcl.inf.ethz.ch
@spcl_eth

Examples

! ! Different names, same referent:

/home/ htor /bio.txt

~/bio.txt

! ! Different names, same content:

htor.inf.ethz.ch://home/ htor /hg/personal/websites/eth/bio.txt

free.inf.ethz.ch://home/ htor / public_html /bio.txt

spcl.inf.ethz.ch
@spcl_eth

Naming policy alternatives

!"#$%"&%#!'

!$'

spcl.inf.ethz.ch
@spcl_eth

How many values for a name? (in a single context)

! ! If 1, mapping is injective or Ò1-1Ó
! ! Car number plates
! ! Virtual memory addresses

! ! Otherwise: multiple values for a name
! ! Phone book (people have more than 1 number)
! ! DNS names (can return multiple ÔAÕ records)

spcl.inf.ethz.ch
@spcl_eth

How many names for a value?

! ! Only one name for each value
! ! Names of models of car
! ! IP protocol identifiers

! ! Multiple names for the same value
! ! Phone book again (people sharing a home phone)
! ! URLs (multiple links to same page)

!"#$%"&%#!'

!)'

spcl.inf.ethz.ch
@spcl_eth

Unique identifier spaces and stable bindings

! ! At most one value bound to a name

! ! Once created, bindings can never be changed

! ! Useful: can always determine identity of two objects
! ! Social security numbers
! ! Ethernet MAC addresses

E8:92:A4:*:*:* " LG corporation
E8:92:A4:F2:0B:97 " TorstenÕs phoneÕs WiFi interface

spcl.inf.ethz.ch
@spcl_eth

Types of lookup

!"#$%"&%#!'

!*'

spcl.inf.ethz.ch
@spcl_eth

Name mapping algorithms

1.! Table lookup
! ! Simplest scheme
! ! Analogy: phone book

2.! Recursive lookup (pathnames)

3.! Multiple lookup (search paths)

spcl.inf.ethz.ch
@spcl_eth

Table lookup: other examples

! ! Processor registers are named by small integers.

! ! Memory cells are named by numbers.

! ! Ethernet interfaces are named by MAC addresses

! ! Unix accounts are named by small (16bit) numbers (userids)

! ! Unix userids are named by short strings

! ! Unix sockets are named by small integers

!"#$%"&%#!'

!+'

spcl.inf.ethz.ch
@spcl_eth

Default and explicit contexts,
qualified names

spcl.inf.ethz.ch
@spcl_eth

Where is the context?

1.! Default (implicit): supplied by the resolver
1.! Constant: built in to the resolver
2.! Variable: from current environment (state)

2.! Explicit: supplied by the object
1.! Per object
2.! Per name (qualified name)

!"#$%"&%#!'

!,'

spcl.inf.ethz.ch
@spcl_eth

Constant default context

! ! Universal name space:
e.g. DNS

! ! Short answer:
! ! context is the DNS root server

! ! Longer answer:
! ! /etc/hosts, plus DNS root server

! ! Even longer answer:
! ! /etc/nsswitch.conf, WINS resolver, domain search path, É "

spcl.inf.ethz.ch

spcl.inf.ethz.ch
@spcl_eth

Variable default context

! ! Example: current working directory

$ pwd
/home/ htor / svn
$ ls
osnet /
$ cd osnet
$ ls
archive/ lecture/ organisation/ svnadmin /
assignments / legis / recitation sessions/ svn-commit.tmp
$ ls lecture
chapter1/ chapter2/ chapter5/ chapter8/ templa te.pptx
chapter10/ chapter3/ chapter6/ chapter9/
chapter11/ chapter4/ chapter7/ dates.xls
$

!"#$%"&%#!'

&"'

spcl.inf.ethz.ch
@spcl_eth

Explicit per-object context

! ! Note: context reference is a name!
! ! Sometimes called a base name

! ! Examples:

$ ssh Ðl htor spcl.inf.ethz.ch
$ dig @8.8.8.8 -q a spcl.inf.ethz.ch
$ dig @google-public-dns-a.google.com -q a spcl

spcl.inf.ethz.ch
@spcl_eth

Explicit per-name context

! ! Each name comes with its context
! ! Actually, the name of the context
! ! (context,name) = qualified name

! ! Recursive resolution process:
! ! Resolve context to a context object
! ! Resolve name relative to resulting context

! ! Examples:
! ! htor@inf.ethz.ch
! ! /var/log/syslog

!"#$%"&%#!'

&#'

spcl.inf.ethz.ch
@spcl_eth

Path names, naming networks, recursive
resolution

spcl.inf.ethz.ch
@spcl_eth

Path names

¥! Recursive resolution $ path names

¥! Name can be written forwards or backwards
Ð! Examples: /var/log/messages or spcl.inf.ethz.ch

¥! Recursion must terminate:
Ð! Either at a fixed, known context reference

¥! (the root)
Ð! Or at another name, naming a default context

¥! Example: relative pathnames

¥! Syntax gives clue (leading Ô/Õ)
¥! Or trailing Ò.Ó as in spcl.inf.ethz.ch.

!"#$%"&%#!'

&!'

spcl.inf.ethz.ch
@spcl_eth

Naming networks

.
..
/
usr
home
É

.
..
bin
lib
share
É

.
..
htor
alonso
schuepb
É

spcl.inf.ethz.ch
@spcl_eth

ÒSoft linksÓ

! ! So far, names resolve to values
! ! Values may be names in a different naming scheme (usually areÉ)

! ! Names can resolve to other names in the same scheme:
! ! Unix symbolic links (ln Ðs), Windows Òshort cutsÓ
! ! Forwarding addresses (Die Post vs. USPS, WWW, Email)

!"#$%"&%#!'

&&'

spcl.inf.ethz.ch
@spcl_eth

Multiple lookup

spcl.inf.ethz.ch
@spcl_eth

Sometimes, one context is not enoughÉ

! ! Multiple lookup, or Òsearch pathÓ
! ! try several contexts in order

! ! Union mounts: overlay two or more contexts

! ! Examples:
! ! binary directories in Unix
! ! resolving symbols in link libraries

! ! Somewhat controversialÉ

! ! Note: ÒsearchÓ, but not in the Google senseÉ

!"#$%"&%#!'

&('

spcl.inf.ethz.ch
@spcl_eth

$ echo $PATH
/home/ htor /bin:/local/bin:/ usr /local/bin:/ usr /bin:
/bin:/sbin:/usr/sbin:/etc:/usr/bin/X11:/etc/local:
/ usr/local/sbin:/home/netos/tools/bin:/usr/bin :
/home/netos/tools/i686-pc-linux-gnu/bin
$ which bash
/bin/bash
$

ÒSearch pathÓ example

spcl.inf.ethz.ch
@spcl_eth

Name Discovery

!"#$%"&%#!'

&$'

spcl.inf.ethz.ch
@spcl_eth

How to find a name in the first place?

! ! Many options:
! ! Well-known.
! ! Broadcast the name.
! ! Query (google/bing search)
! ! Broadcast the query.
! ! Resolve some other name to a name space
! ! Introduction
! ! Physical rendezvous

! ! Often reduces to another name lookupÉ

spcl.inf.ethz.ch
@spcl_eth

Bad names

ÒThe Hideous NameÓ, Rob Pike and P.J. Weinberger, AT&T Bell
Labs

research!ucbvax !@cmu-cs-pt.arpa :@CMU-ITC-

LINUS:dave%CMU-ITC-LINUS@CMU-CS-PT

(Attributed to the Carnegie-Mellon mailer)

!"#$%"&%#!'

&)'

spcl.inf.ethz.ch
@spcl_eth

Warning

! ! DonÕt look too closely at names

! ! Almost everything can be viewed as naming
! ! This does not mean it should be.

ÒAll problems in computer science can be solved by another level of
indirectionÉÓ

Ò...except for the problem of too many layers of indirection.Ó

! ! A naming model is a good servant, but a poor master.

spcl.inf.ethz.ch
@spcl_eth

Conclusion

! ! Naming is everywhere in Computer Systems
! ! Name spaces
! ! Contexts
! ! Resolution mechanisms

! ! When understanding a system, ask:
! ! What are the naming schemes?
! ! WhatÕs the context?
! ! WhatÕs the policy?

! ! When designing a system, it will help stop you making (some)
silly mistakes!

!"#$%"&%#!'

&*'

spcl.inf.ethz.ch
@spcl_eth

File system operations

WeÕve already seen the file system as a naming scheme.

Directory (name space) operations:

! ! Link (bind a name)

! ! Unlink (unbind a name)

! ! Rename

! ! List entries

spcl.inf.ethz.ch
@spcl_eth

Acyclic-Graph Directories

! ! Two different names (aliasing)

! ! If dict deletes list $ dangling pointer

 Solutions:
! ! Backpointers, so we can delete all pointers

Variable size records can be a problem
! ! Backpointers using a daisy chain organization
! ! Entry-hold-count solution

! ! New directory entry type
! ! Link Ð another name (pointer) to an existing file
! ! Resolve the link Ð follow pointer to locate the file

dict

list

verbs spell

words

!"#$%"&%#!'

&+'

spcl.inf.ethz.ch
@spcl_eth

General Graph Directory

! ! How do we guarantee no cycles?
Options:
! ! Allow only links to files and not directories
! ! Garbage collection (with cycle collector)
! ! Check for cycles when every new

link is added
! ! Restrict directory links to parents

E.g., Ò.Ó and Ò..Ó
All cycles are therefore trivial

dict

list

verbs spell

words

course

root

spcl.inf.ethz.ch
@spcl_eth

Access Control

!"#$%"&%#!'

&,'

spcl.inf.ethz.ch
@spcl_eth

Protection

! ! File owner/creator should be able to control:
! ! what can be done
! ! by whom

! ! Types of access
! ! Read
! ! Write
! ! Execute
! ! Append
! ! Delete
! ! List

spcl.inf.ethz.ch
@spcl_eth

Access control matrix

A B C D E F G H J É

Read # # # # #

Write # # # #

Append # #

Execute # # # #

Delete #

List # #

É

Principals

R
ig

ht
s

For a single file or directory:

Problem: how to scalably represent this matrix?

!"#$%"&%#!'

("'

spcl.inf.ethz.ch
@spcl_eth

Row-wise: ACLs

! ! Access Control Lists
! ! For each right, list the principals
! ! Store with the file

! ! Good:
! ! Easy to change rights quickly
! ! Scales to large numbers of files

! ! Bad:
! ! DoesnÕt scale to large numbers of principals

spcl.inf.ethz.ch
@spcl_eth

Column-wise: Capabilities

! ! Each principal with a right on a file holds a capability for that
right
! ! Stored with principal, not object (file)
! ! Cannot be forged or (sometimes) copied

! ! Good:
! ! Very flexible, highly scalable in principals
! ! Access control resources charged to principal

! ! Bad:
! ! Revocation: hard to change access rights

(need to keep track of who has what capabilities)

!"#$%"&%#!'

(#'

spcl.inf.ethz.ch
@spcl_eth

POSIX (Unix) Access Control

! ! Simplifies ACLs : each file identifies 3 principals:
! ! Owner (a single user)
! ! Group (a collection of users, defined elsewhere)
! ! The World (everyone)

! ! For each principal, file defines 3 rights:
! ! Read (or traverse, if a directory)
! ! Write (or create a file, if a directory)
! ! Execute (or list, if a directory)

spcl.inf.ethz.ch
@spcl_eth

Example

!"#$%"&%#!'

(!'

spcl.inf.ethz.ch
@spcl_eth

Full ACLs

! ! POSIX now supports full ACLs
! ! Rarely used, interestingly
! ! setfacl, getfacl, É

! ! Windows has very powerful ACL support
! ! Arbitrary groups as principals
! ! Modification rights
! ! Delegation rights

spcl.inf.ethz.ch
@spcl_eth

Concurrency

!"#$%"&%#!'

(&'

spcl.inf.ethz.ch
@spcl_eth

Concurrency

1.! Must ensure that, regardless of concurrent access, file sy stem
integrity is ensured

! ! Careful design of file system structures
! ! Internal locking in the file system
! ! Ordering of writes to disk to provide transactions

2.! Provide mechanisms for users to avoid conflicts themselve s
! ! Advisory locks
! ! Mandatory locks

spcl.inf.ethz.ch
@spcl_eth

Common locking facilities

! ! Type:
! ! Advisory: separate locking facility
! ! Mandatory: write/read operations will fail

! ! Granularity:
! ! Whole-file
! ! Byte ranges (or record ranges)
! ! Write-protecting executing binaries

!"#$%"&%#!'

(('

spcl.inf.ethz.ch
@spcl_eth

Compare with databases

! ! Databases have a way better notions of:
! ! Locking between concurrent users
! ! Durability in the event of crashes

! ! Records and indexed files have largely disappeared i n favor of
databases

! ! File systems remain much easier to use
! ! And much, much faster
! ! As long as it doesnÕt matterÉ

