Operating Systems and Networks

Networks Part: Project 1

Network Security Group
ETH Zirich

Reliable Transport

Implement a reliable packet stream (not byte stream!)

* Packet drops
* Packet corruption
* Flow control
* Packet reordering

StdL>+ Client + JoP + Server +—St30m

Fundamental Mechanisms

* Error Detection

* Corrupt packets must be discarded
* Implemented via Checksum

* Acknowledgements (ACK)

* Small control packet to confirm the reception of a
packet

* When sender gets an ACK, sender learns that recipient
has successfully gotten a packet

* Timeouts

* |f sender doesn’t get an ACK after “reasonable” time,
it retransmits the original packet

Naive Approach: Stop-and-Wait

e Algorithm
* After transmitting one packet, sender waits for an ACK
* If the ACK doesn’t arrive in time, sender retransmits

e Disadvantage
* Inefficient use of link’s capacity

Sliding Window Protocol

* Objective: Better utilization of link bandwidth
=> Sender is allowed to send multiple
unacknowledged packets (how many?)

* Windows
* Number of Unacknowledged packets are
determined by Windows
- Sender Window (SW)
- Receiver Window (RW)
* Requirement: Need to keep sender’s and
receiver’s windows synchronized (how?)

Sliding Window: Sender

* Assigns sequence number to each frame (seqno)
* Maintain three state variables:
- Send Window Size (SWS): max # of unacknowledged
frames that sender can transmit
- Last Acknowledgement Received (LAR): seqno of last ACK
- Last Frame Sent (LFS)

< SWS

LAR LFS

Sliding Window: Sender Invariant

< SWS

LAR LFS

* Maintain invariant: LFS — LAR £ SWS
e Buffer up to SWS unacknowledged packets
* Associates timeout with each frame sent
- Retransmits if no ACK received before timeout
 Advance LAR when ACK arrives
- Another frame can be sent

Sliding Window: Receiver

Maintain three state variables:
- Receive Window Size (RWS): max # of out-of-order
frames it will accept
- Last Acceptable Frame (LAF)
- Last Frame Received (LFR)
<RWS

LFR LAF

Sliding Window: Receiver Invariant

<RWS

i }

LFR LAF

* Maintain invariant: LAF — LFR < RWS
* When frame #seqno arrives:
- if LFR < seqno < LAF accept
- if segno < LFR or segno > LAF discard
* Receiver ACKs the next seqno it’s expecting (CumACK)
- LFR =CumACK -1
- LAF = CumACK + RWS-1

