Operating Systems and Networks

Networks Part: Project 2

Network Security Group
ETH Zirich

Distance-Vector Routing

The protocol uses vectors (arrays) of distances/costs to reach
other nodes in the network.

As opposed to link-state routing, routers send route
advertisements only to neighbors. These advertisements are
sent both periodically and under certain other conditions.

When an advertisement is received by a router, its internal
routing table is updated.

One of the most well-known algorithms (in particular, the one
used by RIP) is Bellman-Ford.

Distance-Vector Routing Example (2)

All nodes broadcast distance vectors to their neighbors and
then update their routing table.

FromA ViaA ViaB ViaC

- 2 5
- 3 4
From B Via A ViaB ViaC
2 - 5

6 - 1

FromC ViaA ViaB ViaC

Dynamic Routing with RIP

RIP is a routing protocol based on the Bellman-Ford algorithm
(distance-vector routing).

Destination are associated with a metric (cost), which is—
usually, but not always—the hop-count.

Several technics are used to avoid routing loops:

- maximum cost of 15

- “split-horizon with poisoned reverse” mechanism
- triggered updates

Distance-Vector Routing Example (1)

The routing tables are initialized with the distances to
immediate neighbors.

FromA ViaA ViaB ViaC

- 2

- 4
FromB ViaA ViaB ViaC

2 -

- 1

FromC ViaA ViaB ViaC

Some Differences (1)

There are a few subtle differences between the previous
theoretical example and your assignment:

- Destinations are not necessarily other nodes in the topology
graph. If the destination is a network, it will usually be
represented by an edge.

- The virtual network system that we use (LVNS) allows to set
asymmetrical costs to a link, i.e., a cost can be assigned to
each interface.

- For each destination, only one entry (the one with the lowest
cost) is kept.

Some Differences (2)

g 0001 10.0.0.2 Kdz\ 192.168.0.2 19216803 (
r r. I
1 10.0.0.0/8 3 v 5 192.168.0.0/16 7

For example, dr1’s routing table should include:

destination [mask ___|gateway ___lcost |

10.0.0.0 255.0.0.0 0.0.0.0 1
192.168.0.0 255.255.0.0 10.0.0.2 6

Split Horizon with Poisoned Reverse

Instead of omitting certain routes in the updates, the cost is set
to infinity. In the case of RIP, infinity equals to 16.

“If two routers have routes pointing at each other, advertising
reverse routes with a metric of 16 will break the loop
immediately. If the reverse routes are simply not advertised,
the erroneous routes will have to be eliminated by waiting for a
timeout.” [RFC 2453]

Objective: avoiding routing loops, more safely and quickly
compared to the simple split-horizon scheme (at the cost of
increasing the size of advertisements)

Timers

- RIP_ADVERT_INTERVAL_SEC: periodic update timer
An unsolicited message containing the complete routing
table is sent to every neighbor.

- RIP_TIMEOUT_SEC: route timeout
Upon expiration of this timeout, the route is no longer valid,
but it is retained in the routing table so that neighbors can
be notified that the route has been dropped.

- RIP_GARBAGE_SEC: garbage-collection timer
Upon expiration of the garbage-collection timer, the route is
finally removed from the routing table.

Split Horizon

A router should not claim reachability for a destination network
to the neighbor(s) from which the route was learned.

In the simple split-horizon scheme, routers completely omit
routes learned from neighbors in the updates they send to

these neighbors.

Objective: avoiding routing loops

Triggered Updates

Whenever a router changes the cost associated with a route in
its routing table, an advertisement is sent immediately.

Objective: avoiding larger routing loops, by accelerating the
convergence to an infinite cost in such loops.

Tips

Here are a few other tips that you might find useful:

- If an update does not change the cost of a specific route, it
should not trigger the transmission of an advertisement for
that route. However, the timeout should still be updated.

- If a cost is equal to or greater than infinity (i.e., 16 for RIP),
then the corresponding destination should be considered as
unreachable.

Getting Started

1. Get a Linux distribution
Install the g++ compiler
3. Compile the project with:
make

N

4. Run the LVNS server, for example, with an existing topology:

./1lvns -t complex.topo
5. Run the dynamic routing instances, one by one:
./dr -v drl

or all at once:
./launch_dr.sh 5

Evaluation

We will run your code with the topologies that were provided +
other topologies that we will create.

Then, we will look at the resulting routing table.

LVNS Commands

To obtain the set of all possible LVNS commands that you can
use to create and manipulate topologies, just type:

./1lvns
then

help

