
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Linearizability

Instructor: Torsten Hoefler & Markus Püschel

TAs: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs

Review of last lecture

 Cache-coherence is not enough!

 Many more subtle issues for parallel programs!

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library

 Relaxed consistency models

 x86 TLO+CC case study

 Complexity of reasoning about parallel objects

 Serial specifications (e.g., pre-/postconditions)

 Started to lock things …

2

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 2 minutes

 We then select a random student (team) to answer the question

 What are the problems with sequential consistency?

 Is it practical? Explain!

 Is it sufficient for simple parallel programming? Explain!

 How would you improve the situation?

 How could memory models of practical CPUs be described?

 Is Intel’s definition useful?

 Why would one need a better definition?

 Threads cannot be implemented as a library? Why does Pthreads work?

3

DPHPC Overview

4

Goals of this lecture

 Queue:

 Problems with the locked queue

 Wait-free two-thread queue

 Linearizability

 Intuitive understanding (sequential order on objects!)

 Linearization points

 Linearizable executions

 Formal definitions (Histories, Projections, Precedence)

 Linearizability vs. Sequential Consistency

 Modularity

 Maybe: lock implementations

5

Lock-based queue

class Queue {

private:

int head, tail;

std::vector<Item> items;

std::mutex lock;

public:

Queue(int capacity) {

head = tail = 0;

items.resize(capacity);

}

…

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

6

class Queue {

…

public:

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size()==head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

return item;

}

};

Lock-based queue
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

7

Example execution

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
behavior”

8

Correctness

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC

It does not scale!

What is the solution here?

9

Threads working at the same time?

 Same thing (concurrent queue)

 For simplicity, assume only two threads

 Thread A calls only enq()

 Thread B calls only deq()
head

tail0

2

1

5 4

7

36

yx

10

Wait-free 2-Thread Queue

tail0

2

5 4

7

36

yx
1

enq(z)
deq()

z

head

11

Wait-free 2-Thread Queue

head

tail0

2

5 4

7

36

y
1

queue[tail]

= z

result = x

z

x

12

Wait-free 2-Thread Queue

tail0

2

5 4

7

36

y
1

tail++
head++

z

head

x

13

Is this correct?

 Hard to reason about correctness

 What could go wrong?

 Nothing (at least no crash)

 Yet, the semantics of the queue are funny (define “FIFO” now)!

void enq(Item x) {

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

return item;

}

14

Serial to Concurrent Specifications

 Serial specifications are complex enough, so lets stick to them

 Define invocation and response events (start and end of method)

 Extend the sequential concept to concurrency: linearizability

 Each method should “take effect”

 Instantaneously

 Between invocation and response events

 A concurrent object is correct if its “sequential” behavior is correct

 Called “linearizable”

method execution

Linearization point = when method takes effect

15

Linearizability

 Sounds like a property of an execution …

 An object is called linearizable if all possible executions on the object
are linearizable

 Says nothing about the order of executions!

16

Example

timetime

17

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

time

18

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

q.enq(y)

time

19

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

20

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

21

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

22

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

23

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

}

linearization points

Example 2

time

24

Example 2

time

q.enq(x)

25

Example 2

time

q.enq(x) q.deq(y)

26

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)

27

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

28

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

29

Example 3

timetime

30

Example 3

time

q.enq(x)

time

31

Example 3

time

q.enq(x)

q.deq(x)

time

32

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

33

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

34

Example 4

time

q.enq(x)

time

35

Example 4

time

q.enq(x)

q.enq(y)

time

36

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

time

37

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

38

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

Example 4

39

Is the lock-free queue linearizable?

 A) Only two threads, one calls only deq() and one calls only enq()?

 B) Only two threads but both may call enq() or deq() independently

 C) An arbitrary number of threads, but only one calls enq()

 D) An arbitrary number of threads can call enq() or deq()

 E) If it’s linearizable, where are the linearization points?

 Remark: typically executions are not constrained, so this is NOT
linearizable

void enq(Item x) {

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

return item;

}

40

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

41

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already

happened

42

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already

happened

43

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already

happened

44

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already

happened

45

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already

happened

46

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

47

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

48

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

49

 Assume atomic update to a single read/write register!

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)

50

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

51

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

write(2)

52

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

write(2)

53

About Executions

 Why?

 Can’t we specify the linearization point of each operation statically
without describing an execution?

 Not always

 In some cases, the linearization point depends on the execution

Imagine a “check if one should lock” (not recommended!)

 Define a formal model for executions!

54

Properties of concurrent method executions

 Method executions take time

 May overlap

 Method execution = operation

 Defined by invocation and response events

 Duration of method call

 Interval between the events

q.enq(x)

time

q.deq(): x

invocation response

pending

55

Formalization - Notation

 Invocation

 Response

 Question: why is the method name not needed in the response?

Method is implicit (correctness criterion)!

A: q.enq(x)

thread object method arguments

A: q:void

thread object result

A: q:FullException()

thread object exception

56

Concurrency

 A concurrent system consists of a collection of sequential threads Pi

 Threads communicate via shared objects

For now!

57

History

 Describes an execution

 Sequence of invocations and responses

 H=

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

Invocation and response match if
 thread names are the same
 objects are the same

Remember: Method name is implicit!

Side Question: Is this history linearizable?

58

Projections on Threads

 Threads subhistory H|P (“H at P”)

 Subsequences of all events in H whose thread name is P

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

A: q.enq(a)
A: q:void
A: q.enq(b)

B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|A= H|B=

59

Projections on Objects

 Objects subhistory H|o (“H at o”)

 Subsequence of all events in H whose object name is o

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|p= H|q=

B: p.enq(c)
B: p:void

A: q.enq(a)
A: q:void
A: q.enq(b)

B: q.deq()
B: q:a

60

Sequential Histories

 A history H is sequential if

 A history H is concurrent if

 It is not sequential

A: q.enq(a)
A: q:void
B: p.enq(b)
B: p:void
B: q.deq(c)
B: q:void
B: q.enq()
…

 The first event of H is an invocation
 Each invocation (except possibly

the last) is immediately followed
by a matching response
 Each response is immediately

followed by an invocation

Method calls of different threads
do not interleave

61

Well-formed histories

 Per-thread projections must be sequential

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=

 The first event of H is an invocation
 Each invocation (except possibly

the last) is immediately followed
by a matching response
 Each response is immediately

followed by an invocation

a history is sequential if

62

Equivalent histories

 Per-thread projections must be the same

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=G|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=G|B=

A: q.enq(x)
B: p.enq(y)
A: q:void
B: p:void
B: q.deq()
B: q:x

G=

63

Legal Histories

 Sequential specification allows to describe what behavior we expect
and tolerate

 When is a single-thread, single-object history legal?

 Recall: Example

 Preconditions and Postconditions

 Many others exist!

 A sequential (multi-object) history H is legal if

 For every object x

 H|x adheres to the sequential specification for x

 Example: FIFO queue

 Correct internal state

Order of removal equals order of addition

 Full and Empty Exceptions

64

Precedence

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x A: q.enq(x) B: q.deq()

A method execution precedes
another if response event
precedes invocation event

65

Precedence vs. Overlapping

 Non-precedence = overlapping

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)

B: q.enq(y)

Some method executions
overlap with others

Side Question: Is this a correct linearization order?

66

Complete Histories

 A history H is complete

 If all invocations are matched with a response

67

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
A: q.enq(z)
B: q:x

H= G=

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x
B: q.deq()

I=

Which histories are complete and which are not?

Complete Not complete Not complete

Precedence Relations

 Given history H

 Method executions m0 and m1 in H

 m0 →H m1 (m0 precedes m1 in H) if

 Response event of m0 precedes invocation event of m1

 Precedence relation m0 →H m1 is a

 Strict partial order on method executions

Irreflexive, antisymmetric, transitive

 Considerations

 Precedence forms a total order if H is sequential

 Unrelated method calls may overlap concurrent

68

Definition Linearizability

 A history H induces a strict partial order <H on operations

 m0 <H m1 if m0 →H m1

 A history H is linearizable if

 H can be extended to a complete history H’

by appending responses to pending operations or dropping pending operations

 H’ is equivalent to some legal sequential history S and

 <H’ ⊆ <S

 S is a linearization of H

 Remarks:

 For each H, there may be many valid extensions to H’

 For each extension H’, there may be many S

 Interleaving at the granularity of methods

69

Ensuring <H’ ⊆ <S

 Find an S that contains H’

time

a

b

time <S

c<H’

<H’ = {a → c,b → c}

<S = {a → b,a → c,b → c}

70

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

A. q.enq(3)

71

time

B.q.enq(4) B.q.deq(): 4 B. q.enq(6)

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(): 4 B. q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A. q.enq(3)

72

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(): 4 B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

73

Example

time

B.q.enq(4) B.q.deq(): 4 B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one

74

Example

time

B.q.enq(4) B.q.deq(): 4

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one

75

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B.q.enq(4) B.q.deq(): 4

A.q.enq(3)

76

What would be an equivalent
sequential history?

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B.q.enq(4) B.q.deq(): 4

A.q.enq(3)

77

B.q.enq(4) B.q.deq(): 4

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history

78

Remember: Linearization Points

 Identify one atomic step where a method “happens” (effects become
visible to others)

 Critical section

 Machine instruction (atomics, transactional memory …)

 Does not always succeed

 One may need to define several different steps for a given method

 If so, extreme care must be taken to ensure pre-/postconditions

 All possible executions on the object must be linearizable

void enq(Item x) {

std::lock_guard<std::mutex> l(lock)

if((tail+1)%items.size() == head) {

throw FullException;

}

items[tail] = x;

tail = (tail+1)%items.size();

}

Item deq() {

std::lock_guard<std::mutex> l(lock)

if(tail == head) {

throw EmptyException;

}

Item item = items[head];

head = (head+1)%items.size();

return item;

} 79

Composition

 H is linearizable iff for every object x, H|x is linearizable!

 Corrollary: Composing linearizable objects results in a linearizable system

 Reasoning

 Consider linearizability of objects in isolation

 Modularity

 Allows concurrent systems to be constructed in a modular fashion

 Compose independently-implemented objects

80

Linearizability vs. Sequential Consistency

 Sequential consistency

 Correctness condition

 For describing hardware memory interfaces

 Remember: not actual ones!

 Linearizability

 Stronger correctness condition

 For describing higher-level systems composed from linearizable
components

Requires understanding of object semantics

81

Map linearizability to sequential consistency

 Variables with read and write operations

 Sequential consistency

 Objects with a type and methods

 Linearizability

 Map sequential consistency ↔ linearizability

 Reduce data types to variables with read and write operations

 → Model variables as data types with read() and write() methods

 Remember: Sequential consistency

 A history H is sequential if it can be extended to H’ and H’ is equivalent to
some sequential history S

 Note: Precedence order (<H ⊆ <S) does not need to be maintained

82

Example

time

83

Example

time

q.enq(x)

84

Example

time

q.enq(x) q.deq(y)

85

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Linearizable?

86

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Linearizable?

87

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Linearizable?

88

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Sequentially consistent?

89

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Sequentially consistent?

90

Properties of sequential consistency

 Theorem: Sequential consistency is not compositional

H=

Compositional would mean:
“If H|p and H|q are sequentially consistent,
then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

91

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time

92

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

93

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time

94

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

95

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

96

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

97

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

98

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

99

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

100

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|p

H=

A: p.enq(x)
A: p:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y

H|p=

A: p.enq(x)
A: p:void
A: p.deq()
A: p:y

B: p.enq(y)
B: p:void

(H|p)|A= (H|p)|B=

H|p is sequentially consistent!

101

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|q

H= H|q= (H|q)|A= (H|q)|B=

H|q is sequentially consistent!

B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)
A: q:void

B: q.enq(y)
B: q:void
B: q.deq()
B: q:x

102

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

H= H|A= H|B=

H is not sequentially consistent!

A: p.enq(x)
A: p:void
A: q.enq(x)
A: q:void
A: p.deq()
A: p:y

B: q.enq(y)
B: q:void
B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

103

Correctness: Linearizability

 Sequential Consistency

 Not composable

 Harder to work with

 Good (simple) way to think about hardware models

Few assumptions (no semantics or time)

 We will use linearizability in the remainder of this course

unless stated otherwise

Consider routine entry and exit

104

Study Goals (Homework)

 Define linearizability with your own words!

 Describe the properties of linearizability!

 Explain the differences between sequential consistency and
linearizability!

 Given a history H

 Identify linearization points

 Find equivalent sequential history S

 Decide and explain whether H is linearizable

 Decide and explain whether H is sequentially consistent

 Give values for the response events such that the execution is linearizable

105

Language Memory Models

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed
concurrently

 A memory model is a contract

 Between platform and programmer

106

History of Memory Models

 Java’s original memory model was broken [1]

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised [2]

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition [3])

 C/C++ didn’t even have a memory model until recently

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, more conservative

107

[1] Pugh: “The Java Memory Model is Fatally Flawed”, CCPE 2000
[2] Manson, Pugh, Adve: “The Java memory model”, POPL’05
[3] Aspinall, Sevcik: “Java memory model examples: Good, bad and ugly”, VAMP’07

Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

108

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

109

Communication between Threads: Intuition

 Not guaranteed unless by:

 Synchronization

 Volatile/atomic variables

 Specialized functions/classes (e.g., java.util.concurrent, …)

x = 10
y = 5
flag = true

if(flag)
print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable
(atomic in C++, volatile in Java),

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

110

 Abstract relation between threads and memory

 Local thread view!

 Does not talk about classes, objects, methods, …

 Linearizability is a higher-level concept!

Memory Model: Intuition

Main Memory

Working

memory

T1

Working

memory

T1

Working

memory

T1

When are values transferred?

abstraction
of caches and
registers

111

Lock Synchronization

 Java

 Synchronized methods as
syntactic sugar

 C++

 Many flexible variants

synchronized (lock) {
// critical region

}

{
unique_lock<mutex> l(lock);
// critical region

}

 Semantics:
mutual exclusion
 at most one thread may own a lock
 a thread B trying to acquire a lock held by thread A blocks until thread A

releases lock
 note: threads may wait forever (no progress guarantee!)

112

Memory semantics

 Similar to synchronization variables

 All memory accesses before an unlock …

 are ordered before and are visible to …

 any memory access after a matching lock!

x = 10
…
y = 5
…
unlock(m)

lock(m)
print(x+y)

Thread 1

Thread 2

113

Synchronization Variables

 Variables can be declared volatile (Java) or atomic (C++)

 Reads and writes to synchronization variables

 Are totally ordered with respect to all threads

 Must not be reordered with normal reads and writes

 Compiler

 Must not allocate synchronization variables in registers

 Must not swap variables with synchronization variables

 May need to issue memory fences/barriers

 …

114

Synchronization Variables

 Write to a synchronization variable

 Similar memory semantics as unlock (no process synchronization!)

 Read from a synchronization variable

 Similar memory semantics as lock (no process synchronization!)

class example {
int x = 0;
atomic<bool> v = false

public void writer() {
x = 42;
v = true;

}

public void reader() {
if(v) {
print(x)
}

}

Thread 1

Thread 2

Without volatile, a
platform may reorder
these accesses!

115

Memory Model Rules

 Java/C++: Correctly synchronized programs will execute sequentially
consistent

 Correctly synchronized = data-race free

 iff all sequentially consistent executions are free of data races

 Two accesses to a shared memory location form a data race in the
execution of a program if

 The two accesses are from different threads

 At least one access is a write and

 The accesses are not synchronized

int x = 10

T1 T2 T3

read read
write

116

