
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Languages and Locks

Instructor: Torsten Hoefler & Markus Püschel

TAs: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=1o4YViBAGU0

Administrivia

 You should have a project partner by now

 And a topic!

 Progress presentations: Monday 11/7 (two weeks from today!)

 Send slides (ppt or pdf) by Sunday 11/6 11:59pm to Salvatore!

 10 minutes per team (hard limit)

 Prepare! This is your first impression, gather feedback from us!

 Rough guidelines:

Present your plan

Related work (what exists, careful literature review!)

Preliminary results (what are your detailed plans, milestones)

Main goal is to gather feedback, so present some details

Ideally one presenter (make sure to switch for other presentations!)

 Final project presentation: Monday 12/19 during last lecture
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Review of last lecture

 Locked Queue

 Correctness

 Lock-free two-thread queue

 Linearizability

 Combine object pre- and postconditions with serializability

 Additional (semantic) constraints!

 Histories

 Analyze given histories

Projections, Sequential/Concurrent, Completeness, Equivalence, Well 
formed, Linearizability (formal)

3

Peer Quiz

 Instructions: 

 Pick some partners (locally) and discuss each question for 2 minutes

 We then select a random student (team) to answer the question

 How can histories be used to proof a parallel code correct?

 How do histories relate to the source code?

 Can proofing be automated?

 What are the practical limits of linearizability?

 Can it always be applied?

 Is there a performance tradeoff? Always? Sometimes? Never?
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DPHPC Overview
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Goals of this lecture

 Languages and Memory Models

 Java/C++ definition

 Recap serial consistency

 Races (now in practice)

 Mutual exclusion

 Locks

 Two-thread

 Peterson

 N-thread

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Problems and outline to next class
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Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)
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Recap: Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)
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Case Study: Locks - Lecture Goals

 Among the simplest concurrency constructs

 Yet, complex enough to illustrate many optimization principles

 Goal 1: You understand locks in detail

 Requirements / guarantees

 Correctness / validation

 Performance / scalability

 Goal 2: Acquire the ability to design your own locks

 Understand techniques and weaknesses/traps

 Extend to other concurrent algorithms

Issues are very much the same 

 Goal 3: Feel the complexity of shared memory!
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Preliminary Comments

 All code examples are in C/C++ style

 Neither C nor C++ <11 have a clear memory model

 C++ is one of the languages of choice in HPC

 Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most of the examples are incorrect in anything but 
sequential consistency!

In fact, you’ll most likely not need those algorithms, but the principles 
will be useful!

 x86 is really only used because it’s common

 This does not mean that we consider the ISA or memory model elegant!

 We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

 Number of threads/processes is p, tid is the thread id
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Recap Concurrent Updates

 Multi-threaded execution!

 Value of a for p=1?

 Value of a for p>1?

Why? Isn’t it a single instruction?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;
gcc -O3

movl $1000, %eax // i=n=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  
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movl $1000, %eax // i=n=1000
movl $0, -24(%rsp)  // a = 0
mfence // a is visible!

.L2:
lock addl $1 , -24(%rsp)  // (*a)++
subl $1, %eax // i—
jne .L2                     // loop if i>0  

const int n=1000;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 

a++;

g++ -O3

One instruction less! Performance!?

 run with larger n (108)

 Compiler: gcc version 4.9.2 (enabled experimental c++11 support, -O3)

 Single-threaded execution only!
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const int n= 108;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;

const int n= 108;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 

a++;

0.23s

Guess! 0.78s

Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, PACT’15



Some Statistics

 Nondeterministic execution

 Result depends on timing  (probably not desired)

 What do you think are the most significant results? 

 Running two threads on Core i5 dual core

 a=1000? 2000? 1500? 1223? 1999?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;
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Some Statistics
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Conflicting Accesses

 (recap) two memory accesses conflict if they can happen at the same time 
(in happens-before) and one of them is a write (store)

 Such a code is said to have a “race condition”

 Also data-race

 Trivia around races:

The Therac-25 killed three people 
due to a race

A data-race lead to a large blackout 
in 2003, leaving 55 million people 
without power causing $1bn damage

 Can be avoided by critical regions

 Mutually exclusive access to a set of operations
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Mutual Exclusion

 Control access to a critical region

 Memory accesses of all processes happen in program order (a partial 
order, many interleavings)

An execution history defines a total order of memory accesses

 Some subsets of memory accesses (issued by the same process) need to 
happen atomically (thread a’s memory accesses may not be interleaved
with other thread’s accesses)

To achieve linearizability!

We need to restrict the valid executions

  Requires synchronization of some sort

 Many possible techniques (e.g., TM, CAS, T&S, …)

 We first discuss locks which have wait semantics

movl $1000, %eax // i=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  
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Fixing it with locks

 What must the functions lock and unlock guarantee?

 #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

 #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

 Any performance guesses (remember, 0.23s  0.78s for atomics)

 2.26s

const int n=1000;
volatile int a=0;
omp_lock_t lck; 
for (int i=0; i<n; ++i) {

omp_set_lock(&lck); 
a++;
omp_unset_lock(&lck);

}

gcc -O3

movl $1000, %ebx // i=1000
.L2:

movq 0(%rbp), %rdi // (SystemV CC)
call omp_set_lock // get lock
movq 0(%rbp), %rdi // (SystemV CC)
movl (%rax), %edx // edx = *a
addl $1, %edx // edx++
movl %edx, (%rax)   // *a = edx
call omp_unset_lock // release lock
subl $1, %ebx // i—
jne .L2                   // repeat if i>0
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Lock Overview

 Lock/unlock or acquire/release

 Lock/acquire: before entering CR

 Unlock/release: after leaving CR

 Semantics:

 Lock/unlock pairs have to match

 Between lock/unlock, a thread holds the lock
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?

Desired Lock Properties

 Mutual exclusion 
 Only one thread is on the critical region 

 Consistency
 Memory operations are visible when critical region is left

 Progress
 If any thread a is not in the critical region, it cannot prevent another thread b from 

entering

 Starvation-freedom (implies deadlock-freedom)
 If a thread is requesting access to a critical region, then it will eventually be 

granted access

 Fairness
 A thread a requested access to a critical region before thread b. Did is also granted 

access to this region before b?

 Performance
 Scaling to large numbers of contending threads
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Simplified Notation (cf. Histories)

 Time defined by precedence (a total order on events)

 Events are instantaneous (linearizable)

 Threads produce sequences of events a0,a1,a2,…

 Program statements may be repeated, denote i-th instance of a as ai

 Event a occurs before event b: a → b

 An interval (a,b) is the duration between events a → b

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

 Critical regions

 A critical region CR is an interval (a,b), where a is the first operation in the 
CR and b the last

 Mutual exclusion

 Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA  for all valid executions!

 Assume atomic registers (for now)
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Simple Two-Thread Locks

 A first simple spinlock

Why does this not guarantee
mutual exclusion?

volatile int flag=0;

void lock() {
while(flag);
flag = 1;

}

void unlock() {
flag = 0;

}

Busy-wait to acquire lock 
(spinning)

Is this lock correct?
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Proof Intuition

 Construct a sequentially consistent history that permits both 
processes to enter the CR 
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Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this 
guarantee mutual exclusion?
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Correctness Proof

 In sequential consistency!

 Intuitions:

 Situation: both threads are ready to enter

 Show that situation that allows both to enter leads to a schedule violating 
sequential consistency

Using transitivity of program and synchronization orders
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Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this 
guarantee mutual exclusion?

Does it work in practice?
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Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee 
mutual exclusion?
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Correctness Proof

 Intuition:

 Victim is only written once per lock()

 A can only enter after B wrote

 B cannot enter in any sequentially consistent schedule
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Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee 
mutual exclusion?

Does it work in practice?
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Simple Two-Thread Locks

 The last two locks provide mutual exclusion

 LockOne succeeds iff lock attempts do not overlap

 LockTwo succeeds iff lock attempts do overlap

 Combine both into one locking strategy!

 Peterson’s lock (1981)
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Peterson’s Two-Thread Lock (1981)

 Combines the first lock (request access) with the second lock (grant 
access) 

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}
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Proof Correctness

 Intuition:

 Victim is written once

 Pick thread that wrote victim last

 Show thread must have read flag==0

 Show that no sequentially consistent schedule permits that
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Starvation Freedom

 (recap) definition: Every thread that calls lock() eventually 
gets the lock.

 Implies deadlock-freedom!

 Is Peterson’s lock 
starvation-free?

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}
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Proof Starvation Freedom

 Intuition:

 Threads can only wait/starve in while()

Until flag==0 or victim==other

 Other thread enters lock()  sets victim to other

Will definitely “unstuck” first thread

 So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads  one 
must leave!
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Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?
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volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])
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volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?
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volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}



Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!
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volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm (“mfence”);
flag[tid] = 0;  // I’m not interested

}

Correct Peterson Lock on x86

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm (“mfence”);
flag[tid] = 0;  // I’m not interested

}
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Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it correct?
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volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { //attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}

Filter Lock - Correctness

 Lemma: For 0<j<n-1, there are at most n-j threads at level j!

 Intuition:

 Recursive proof (induction on j)

 By contradiction, assume n-j+1 threads at level j-1 and j

 Assume last thread to write victim

 Any other thread writes level before victim

 Last thread will stop at spin due to other thread’s write

 j=n-1 is critical region

40

Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it starvation-free?
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volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { //attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}

Filter Lock Starvation Freedom

 Intuition:

 Inductive argument over j (levels)

 Base-case: level n-1 has one thread (not stuck)

 Level j: assume thread is stuck

Eventually, higher levels will drain (induction)

Last entering thread is victim, it will wait

Thus, only one thread can be stuck at each level

Victim can only have one value  older threads will advance!
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Filter Lock

 What are the disadvantages of this lock?
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volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { // attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}

 Starvation freedom provides no guarantee on how long a thread 
waits or if it is “passed”!

 To reason about fairness, we define two sections of each lock 
algorithm:

 Doorway D (bounded # of steps)

 Waiting W (unbounded # of steps)

 FIFO locks:

 If TA finishes its doorway before TB the CRA  CRB

 Implies fairness

void lock() {
int j = 1 - tid;
flag[tid] = true; // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; 

}

Lock Fairness
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Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes a number in the doorway and threads enter in the 
order of their number!

volatile int flag[n] = {0,0,…,0};
volatile int label[n] = {0,0,….,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {

flag[tid] = 0;
}
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Lamport’s Bakery Algorithm (1974)

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why? 

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory
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A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes”

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993
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Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates 
committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)
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Relative Power of Synchronization

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Concept of “consensus number” C if a primitive can be used to solve the 
“consensus problem” in a finite number of steps (even if threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞
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Test-and-Set Locks

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!
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Test-and-Set Locks

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval

 When will the lock be 
granted?

 Does this work well in 
practice?

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}
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Contention

 On x86, the XCHG instruction is used to implement TAS

 For experts: x86 LOCK is superfluous!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 bus lock is essentially a full memory barrier 

movl $1, %eax
xchg %eax, (%ebx)
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Test-and-Test-and-Set (TATAS) Locks

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time,  no cache coherency/memory traffic

 Danger!

 Efficient but use with great 
care!

 Generalizations are 
dangerous

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}
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Warning: Even Experts get it wrong!

 Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

1997
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Contention?

 Do TATAS locks still have contention?

 When lock is released, k threads fight for 
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good 
solution? (think “collision
avoidance”)

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}
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TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1) {

wait(time);
time *= 2; // double waiting time 

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990
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TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

volatile int lck = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lck) == 1) {

wait(time);
time = min(time * 2, maxtime); 

}
}

void unlock() {
lck = 0;

}
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Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

Comparison of TAS Locks
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Improvements?

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive 
atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry 
to CR)

 What would be a fix for that? 

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness
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Array Queue Lock

 Array to implement 
queue

 Tail-pointer shows next free 
queue position

 Each thread spins on own 
location

CL padding!

 index[] array can be put in TLS

 So are we done  now?

 What’s wrong?

 Synchronizing M objects 
requires Θ(NM) storage

 What do we do now?
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volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one

}



CLH Lock (1993)

 List-based (same queue 
principle)

 Discovered twice by Craig, 
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!
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typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

CLH Lock (1993)

 Qnode objects represent 
thread state!

 succ_blocked == 1 if waiting 
or acquired lock

 succ_blocked == 0 if released 
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?
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typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

MCS Lock (1991)

 Make queue explicit

 Acquire lock by 
appending to queue

 Spin on own node 
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

63

typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL; 

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}

Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!
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Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested
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