How to Write Fast Numerical Code

Fall 2016

Lecture: Roofline model

Instructor: Torsten Hoefler & Markus Püschel **TA:** Salvatore Di Girolamo

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Roofline model (Williams et al. 2008)

Resources in a processor that bound performance:

- peak performance [flops/cycle]
- memory bandwidth [bytes/cycle]
- <others>

Platform model

Algorithm model (n is the input size)

Operational intensity I(n) = W(n)/Q(n) =

number of flops (cost) number of bytes transferred between memory and cache

Q(n): assumes empty cache; best measured with performance counters

Notes

In general, Q and hence W/Q depend on the cache size m [bytes]. For some functions the optimal achievable W/Q is known:

FFT/sorting: Θ(log(m))

Matrix multiplication: Θ(sqrt(m))

Roofline model

Example: one core with π = 2 and β = 1 and no SSE ops are double precision flops

Bound based on β?

- assume program as operational intensity of x ops/byte
- it can get only β bytes/cycle
- hence: performance = $y \le \beta x$
- in log scale: $log_2(y) \le log_2(\beta) + log_2(x)$
- line with slope 1; $y = \beta$ for x = 1

Variations

- vector instructions: peak bound goes up (e.g., 4 times for AVX)
- multiple cores: peak bound goes up (p times for p cores)
- program has uneven mix adds/mults: peak bound comes down (note: now this bound is program specific)
- accesses with little spatial locality: operational intensity decreases (because entire cache blocks are loaded)

Tool developed in our group

(G. Ofenbeck, R. Steinmann, V. Caparros-Cabezas, D. Spampinato) <u>http://www.spiral.net/software/roofline.html</u>

- Example plots follow
- Get (non-asymptotic) bounds on I:
 - daxpy: y = αx+y
 - dgemv: y = Ax + y
 - dgemm: C = AB + C
 - FFT

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, **sequential Cold cache**

What happens when we go to parallel code?

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, **parallel Cold cache**

What happens when we go to warm cache?

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, **sequential Warm cache**

Roofline Measurements

Core i7 Sandy Bridge, 6 cores Code: Various MMM **Cold cache**

MMM: Try to guess the basic shapes

Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable
- Interesting insights: use in your project!

References

- Samuel Williams, Andrew Waterman, David Patterson
 Roofline: an insightful visual performance model for multicore architectures
 Communications ACM 55(6): 121-130 (2012)
- Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato and Markus Püschel

Applying the Roofline Model

Proc. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2014, pp. 76-85

Victoria Caparros and Markus Püschel
 Extending the Roofline Model: Bottleneck Analysis with Microarchitectural Constraints
 Proc. IEEE International Symposium on Workload Characterization (IISWC), pp. 222-231, 2014