How to Write Fast Numerical Code

Fall 2016 Lecture: Balance Principles, Part II

Instructor: Torsten Hoefler & Markus Püschel TA: Salvatore Di Girolamo

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Balance Principles II

Czechowksi et al. 2011

 $T_{\text{mem}} \leq T_{\text{comp}}$

$$\frac{p\pi}{\beta} \left(1 + \frac{\alpha\beta/\lambda}{Q/D} \right) \le \frac{W}{Q\lambda} \left(1 + \frac{p}{W/D} \right)$$

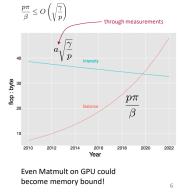
References

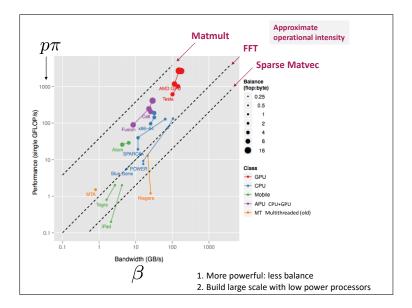

- These slides and the work is from Kenneth Czechowksi, Rich Vuduc et al., Georgia Tech
- Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, and Richard Vuduc. Balance principles for algorithmarchitecture co-design. In Proc. USENIX Wkshp. Hot Topics in Parallelism (HotPar), May 2011.
- Kenneth Czechowski, Chris McClanahan, Casey Battaglino, Kartik Iyer, P.-K. Yeung, Richard Vuduc. On the communication complexity of 3D FFTs and its implications for exascale. In Proceedings of the ACM International Conference on Supercomputing (ICS), 2012.

Application: Analyze Effect of HW Trends Czechowksi et al. 2012

10 year extrapolation (2010 - 2020)

Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C_{CPU} C_{GPU}	50.4 GF/s 515 GF/s	1.7	59.0×	3.0 TF/s 30 TF/s
Cores: ^a	$\rho_{\rm GPU}$ $\rho_{\rm GPU}$	6 448	1.87	$40.7 \times$	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	$\begin{array}{c} 21.3 \ \mathrm{GB/s} \\ 144 \ \mathrm{GB/s} \end{array}$	3.0	9.7×	206 GB/s 1.4 TB/s
Fast memory	$Z_{\rm CPU}$ $Z_{\rm GPU}$	6 MB 2.7 MB ^b	2.0	$32.0 \times$	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	$2.0 \times$	128 B 256 B
Link bandwidth:	β_{tink}	$10 \ \mathrm{GB/s}$	2.25	$21.8 \times$	218 GB/
Machine peak:	R_{peak}	$4 \mathrm{PF/s}$	1.0	1000×	4 EF/s
System memory:	Ε	635 TB	1.3	$208 \times$	132 PB
$(\frac{R_{\text{peak}}}{C})$;	P _{CPU} P _{GPU}	79,400 7,770	2.4	$17.4 \times$	1.3M 135.000


Application: Analyze Effect of HW Trends Czechowksi et al. 2012



Application: Analyze Effect of HW Trends Czechowksi et al. 2012

Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C _{CPU} C _{GPU}	50.4 GF/s 515 GF/s	1.7	59.0×	3.0 TF/s 30 TF/s
Cores: ^a	$\rho_{\rm GPU}$ $\rho_{\rm GPU}$	6 448	1.87	$40.7 \times$	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	$\begin{array}{c} 21.3 \ \mathrm{GB/s} \\ 144 \ \mathrm{GB/s} \end{array}$	3.0	$9.7 \times$	206 GB/s 1.4 TB/s
Fast memory	Z_{CPU} Z_{GPU}	6 MB 2.7 MB ^b	2.0	$32.0 \times$	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	$2.0 \times$	128 B 256 B
Link bandwidth:	β_{link}	$10~{\rm GB/s}$	2.25	$21.8 \times$	218 GB/s
Machine peak:	R_{peak}	$4 \mathrm{PF/s}$	1.0	1000×	$4 \mathrm{EF/s}$
System memory:	Ε	635 TB	1.3	$208 \times$	132 PB
$(\frac{R_{\text{peak}}}{C})$:	PCPU PCPU	79,400 7,770	2.4	$17.4 \times$	1.3M 135.000

