How to Write Fast Numerical Code

Fall 2016

Lecture: Balance Principles, Part II

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

References

- These slides and the work is from Kenneth Czechowksi, Rich Vuduc et al., Georgia Tech
- Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, and Richard Vuduc. Balance principles for algorithmarchitecture co-design. In Proc. USENIX Wkshp. Hot Topics in Parallelism (HotPar), May 2011.
- Kenneth Czechowski, Chris McClanahan, Casey Battaglino, Kartik Iyer, P.-K. Yeung, Richard Vuduc. On the communication complexity of 3D FFTs and its implications for exascale. In *Proceedings of the ACM International Conference on Supercomputing (ICS)*, 2012.

Balance Principles II

Czechowksi et al. 2011

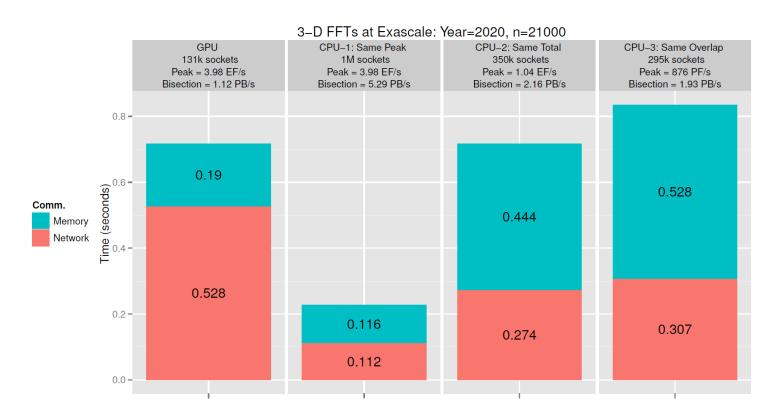
$$T_{\text{mem}} \leq T_{\text{comp}}$$

$$\frac{p\pi}{\beta} \left(1 + \frac{\alpha\beta/\lambda}{Q/D} \right) \le \frac{W}{Q\lambda} \left(1 + \frac{p}{W/D} \right)$$

Application: Analyze Effect of HW Trends

Czechowksi et al. 2012

10 year extrapolation (2010 – 2020)

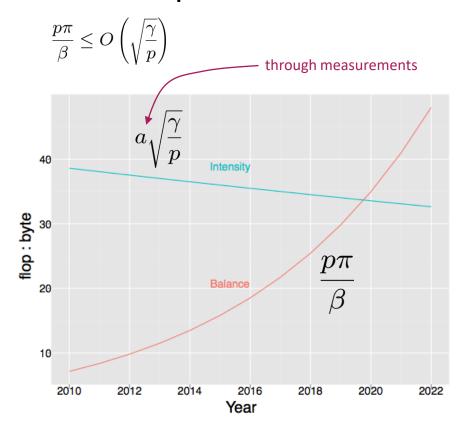

Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C_{CPU} C_{GPU}	$50.4 \mathrm{GF/s}$ $515 \mathrm{GF/s}$	1.7	59.0×	3.0 TF/s 30 TF/s
Cores: ^a	$ ho_{ ext{CPU}}$	6 448	1.87	$40.7 \times$	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	21.3 GB/s 144 GB/s	3.0	9.7×	206 GB/s 1.4 TB/s
Fast memory	$Z_{ m CPU}$ $Z_{ m GPU}$	6 MB $^{2.7}$ MB b	2.0	32.0×	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	$2.0 \times$	128 B 256 B
Link bandwidth:	$eta_{ m link}$	$10~\mathrm{GB/s}$	2.25	21.8×	218 GB/s
Machine peak:	R_{peak}	$4 \mathrm{\ PF/s}$	1.0	1000×	$4 \; \mathrm{EF/s}$
System memory:	E	635 TB	1.3	208×	132 PB
$(\frac{R_{\text{peak}}}{C}):$	P_{CPU} P_{GPU}	79,400 7,770	2.4	17.4×	1.3M 135,000

Application: Analyze Effect of HW Trends

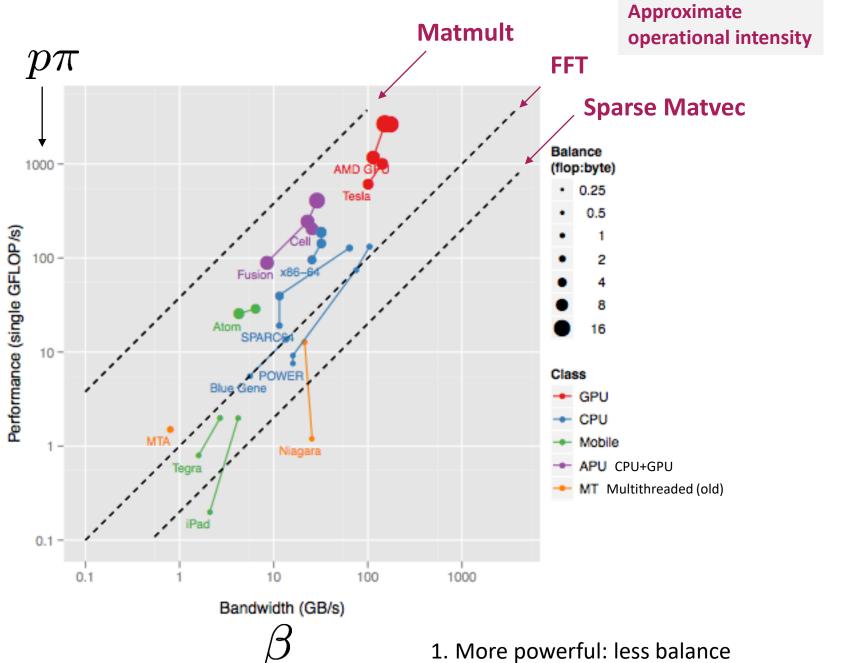
Czechowksi et al. 2012

3D-FFT in 2020:

Faster on CPU or GPU?


Application: Analyze Effect of HW Trends

Czechowksi et al. 2012


10 year extrapolation (2010 – 2020)

-		•	·		•
Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C_{CPU} C_{GPU}	50.4 GF/s 515 GF/s	1.7	59.0×	3.0 TF/s 30 TF/s
Cores: ^a	$ ho_{ ext{CPU}}$	6 448	1.87	$40.7 \times$	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	21.3 GB/s 144 GB/s	3.0	9.7×	206 GB/s 1.4 TB/s
Fast memory	$Z_{ m CPU}$ $Z_{ m GPU}$	$^{6~\mathrm{MB}}_{2.7~\mathrm{MB}^b}$	2.0	32.0×	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	$2.0 \times$	128 B 256 B
Link bandwidth:	$eta_{ m link}$	$10~\mathrm{GB/s}$	2.25	21.8×	218 GB/s
Machine peak:	R_{peak}	4 PF/s	1.0	1000×	$4 \; \mathrm{EF/s}$
System memory:	E	635 TB	1.3	208×	132 PB
$(\frac{R_{\text{peak}}}{C}):$	P_{CPU} P_{GPU}	79,400 7,770	2.4	17.4×	1.3M 135,000

Matrix-multiplication on GPU

Even Matmult on GPU could become memory bound!

- 2. Build large scale with low power processors