
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Locks and Lock-Free

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=jhApQIPQquw

https://www.youtube.com/watch?v=jhApQIPQquw


Administrivia

 Final project presentation: Monday 12/19 during last lecture

 Report will be due in January!

Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Some more ideas what to talk about:

What tools/programming language/parallelization scheme do you use?

Which architecture? (we only offer access to Xeon Phi, you may use different)

How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)

(Somewhat) realistic use-cases and input sets?

What are the key concepts employed?

What are the main obstacles?
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Review of last lecture

 Language memory models

 Java/C++ memory model overview 

 Synchronized programming

 Locks

 Broken two-thread locks 

 Peterson

 N-thread locks (filter lock)

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Formal proof methods

 Correctness (mutual exclusion as condition)

 Progress
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DPHPC Overview
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Goals of this lecture

 More N-thread locks!

 Hardware operations for concurrency control

 More on locks (using advanced operations)

 Spin locks

 Various optimized locks

 Even more on locks (issues and extended concepts)

 Deadlocks, priority inversion, competitive spinning, 
semaphores

 Case studies

 Barrier, reasoning about semantics

 Locks in practice: a set structure
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 Starvation freedom provides no guarantee on how long a thread 
waits or if it is “passed”!

 To reason about fairness, we define two sections of each lock 
algorithm:

 Doorway D (bounded # of steps)

 Waiting W (unbounded # of steps)

 FIFO locks:

 If TA finishes its doorway before TB the CRA  CRB

 Implies fairness

void lock() {
int j = 1 - tid;
flag[tid] = true; // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; 

}

Lock Fairness

6



Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes a number in doorway and threads enter in the 
order of their number!

volatile int flag[n] = {0,0,…,0};
volatile int label[n] = {0,0,….,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {

flag[tid] = 0;
}
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Lamport’s Bakery Algorithm

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why? 

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory
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A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes”

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993
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Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates 
committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)
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Relative Power of Synchronization

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Concept of “consensus number” C if a primitive can be used to solve the 
“consensus problem” in a finite number of steps (even if threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞
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Test-and-Set Locks

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!
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Test-and-Set Locks

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval

 When will the lock be 
granted?

 Does this work well in 
practice?

volatile int lock = 0;

void lock() {
while (TestAndSet(&lock) == 1);

}

void unlock() {
lock = 0;

}
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Contention

 On x86, the XCHG instruction is used to implement TAS

 For experts: x86 LOCK is superfluous!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 bus lock is essentially a full memory barrier 

movl $1, %eax
xchg %eax, (%ebx)

14
Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, PACT’15



Test-and-Test-and-Set (TATAS) Locks

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time,  no cache coherency/memory traffic

 Danger!

 Efficient but use with great 
care!

 Generalizations are 
dangerous

volatile int lock = 0;

void lock() {
do {

while (lock == 1);
} while (TestAndSet(&lock) == 1);

}

void unlock() {
lock = 0;

}
15



Warning: Even Experts get it wrong!

 Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

1997
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Contention?

 Do TATAS locks still have contention?

 When lock is released, k threads fight for 
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good 
solution? (think “collision
avoidance”)

volatile int lock = 0;

void lock() {
do {

while (lock == 1);
} while (TestAndSet(&lock) == 1);

}

void unlock() {
lock = 0;

}

17
Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, PACT’15



TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

volatile int lock = 0;

void lock() {
while (TestAndSet(&lock) == 1) {

wait(time);
time *= 2; // double waiting time 

}
}

void unlock() {
lock = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 18



TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

volatile int lock = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lock) == 1) {

wait(time);
time = min(time * 2, maxtime); 

}
}

void unlock() {
lock = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 19



Comparison of TAS Locks
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Improvements?

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive 
atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry 
to CR)

 What would be a fix for that? 

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness
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Array Queue Lock

 Array to implement 
queue

 Tail-pointer shows next free 
queue position

 Each thread spins on own 
location

CL padding!

 index[] array can be put in TLS

 So are we done now?

 What’s wrong?

 Synchronizing M objects 
requires Θ(NM) storage

 What do we do now?
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volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one

}



CLH Lock (1993)

 List-based (same queue 
principle)

 Discovered twice by Craig, 
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!
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typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}



CLH Lock (1993)

 Qnode objects represent 
thread state!

 succ_blocked == 1 if waiting 
or acquired lock

 succ_blocked == 0 if released 
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?
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typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}



MCS Lock (1991)

 Make queue explicit

 Acquire lock by 
appending to queue

 Spin on own node 
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!
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typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL; 

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}



Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!
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Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested
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More Practical Optimizations

 Let’s step back to “data race”

 (recap) two operations A and B on the same memory cause a data race if 
one of them is a write (“conflicting access”) and neither AB nor BA 

 So we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

 Let’s say you implement a web-based encyclopedia 

 Consider the “average two accesses” – do they conflict?
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Reader-Writer Locks

 Allows multiple concurrent reads

 Multiple reader locks concurrently in CR

 Guarantees mutual exclusion between writer and writer locks and reader 
and writer locks

 Syntax:

 read_(un)lock()

 write_(un)lock()
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A Simple RW Lock

 Seems efficient!?

 Is it? What’s wrong?

 Polling CAS!

 Is it fair?

 Readers are preferred!

 Can always delay 
writers (again and 
again and again) 
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const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
AtomicAdd(lock, R);
while(lock & W);  

}

void write_lock(lock_t lock) {
while(!CAS(lock, 0, W));  

}

void read_unlock(lock_t lock) {
AtomicAdd(lock, -R);

}

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}



Fixing those Issues?

 Polling issue:

 Combine with MCS lock idea of queue polling

 Fairness:

 Count readers and writers
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The final algorithm (Alg. 4) 
has a flaw that was 
corrected in 2003!

(1991)



Deadlocks

 Kansas state legislature: “When two trains approach each other at a 
crossing, both shall come to a full stop and neither shall start up again 
until the other has gone.”

[according to Botkin, Harlow  "A Treasury of Railroad Folklore" (pp. 381)]

32

What are necessary 

conditions for deadlock?



Deadlocks

 Necessary conditions:

 Mutual Exclusion

 Hold one resource, request another

 No preemption

 Circular wait in dependency graph

 One condition missing will prevent deadlocks!

 Different avoidance strategies (which?)
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Issues with Spinlocks

 Spin-locking is very wasteful

 The spinning thread occupies resources

 Potentially the PE where the waiting thread wants to run  requires 
context switch!

 Context switches due to

 Expiration of time-slices (forced)

 Yielding the CPU
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What is this?
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Why is the 1997 Mars Rover in our lecture?

 It landed, received program, and worked … until it spuriously 
rebooted!

  watchdog

 Scenario (vxWorks RT OS):

 Single CPU

 Two threads A,B sharing common bus, using locks

 (independent) thread C wrote data to flash

 Priority: ACB (A highest, B lowest)

 Thread C would run into a lifelock (infinite loop)

 Thread B was preempted by C while holding lock

 Thread A got stuck at lock 

36[http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]



Priority Inversion

 If busy-waiting thread has higher priority than thread holding lock ⇒
no progress!

 Can be fixed with the help of the OS

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to 
highest priority among waiting tasks)
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Condition Variables

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch
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Condition Variable Semantics

 Hoare-style:

 Signaler passes lock to waiter, signaler suspended

 Waiter runs immediately

 Waiter passes lock back to signaler if it leaves critical section or if it waits 
again

 Mesa-style (most used):

 Signaler keeps lock

 Waiter simply put on run queue

 Needs to acquire lock, may wait again
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When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block
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When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant 
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the 
competitiveness?
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Competitive Spinning

 If T is the overhead to process a wait, then a locking algorithm that 
spins for time T before it blocks is 2-competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized 
Algorithms for Non-Uniform Problems”, SODA 1989 

 If randomized algorithms are used, then 
e/(e-1)-competitiveness (~1.58) can be achieved

 See paper above!
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Generalized Locks: Semaphores

 Controlling access to more than one resource

 Described by Dijkstra 1965

 Internal state is an atomic counter C

 Two operations:

 P() – block until C>0; decrement C (atomically)

 V() – signal and increment C

 Binary or 0/1 semaphore equivalent to lock

 C is always 0 or 1, i.e., V() will not increase it further

 Trivia:

 If you’re lucky (aehem, speak Dutch), mnemonics:

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce)
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Semaphore Implementation

 Can be implemented with mutual exclusion!

 And can be used to implement mutual exclusion 

 … or with test and set and many others!

 Also has fairness concepts:

 Order of granting access to waiting (queued) threads

 strictly fair (starvation impossible, e.g., FIFO)

 weakly fair (starvation possible, e.g., random)
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Case Study 1: Barrier

 Barrier semantics:

 No process proceeds before all processes reached barrier

 Similar to mutual exclusion but not exclusive, rather “synchronized”

 Often needed in parallel high-performance programming

 Especially in SPMD programming style

 Parallel programming “frameworks” offer barrier semantics (pthread, 
OpenMP, MPI)

 MPI_Barrier() (process-based)

 pthread_barrier

 #pragma omp barrier

 …

 Simple implementation: lock xadd + spin

Problem: when to re-use the counter?

Cannot just set it to 0 → Trick: “lock xadd -1” when done 

45
[cf. http://www.spiral.net/software/barrier.html]



Barrier Performance
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Case Study 2: Reasoning about Semantics

47

CACM 

Volume 9 Issue 1, Jan. 1966 



bool want[2];
bool turn;
byte cnt;

proctype P(bool i)
{
want[i] = 1;
do
:: (turn != i) ->

(!want[1-i]);
turn = i

:: (turn == i) ->
break

od;
skip; /* critical section */
cnt = cnt+1;
assert(cnt == 1);
cnt = cnt-1;
want[i] = 0

}

init { run P(0); run P(1) }

Case Study 2: Reasoning about Semantics

 Is the proposed algorithm correct?

 We may proof it manually 

Using tools from the last lecture

→ reason about the state space of H

 Or use automated proofs (model checking)

E.g., SPIN (Promela syntax)
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Case Study 2: Reasoning about Semantics

 Spin tells us quickly that it 
found a problem

 A sequentially consistent
order that violates mutual
exclusion!

 It’s not always that easy

 This example comes from the SPIN
tutorial

 More than two threads make it much 
more demanding!

 More in the recitation!
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Locks in Practice

 Running example: List-based set of integers

 S.insert(v) – return true if v was inserted

 S.remove(v) – return true if v was removed

 S.contains(v) – return true iff v in S

 Simple ordered linked list

 Do not use this at home (poor performance)

 Good to demonstrate locking techniques

E.g., skip lists would be faster but more complex
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Set Structure in Memory

 This and many of the following illustrations are provided by Maurice 
Herlihy in conjunction with the book “The Art of Multiprocessor 
Programming”
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a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞



Sequential Set
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boolean add(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) 

return false;
else {

node n = new node();
n.key = x;
n.next = curr;
pred.next = n;

}  
return true;

}

boolean remove(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
free(curr);
return true;

} 
return false;

}  

boolean contains(S, x) {
int *curr = S.head;
while(curr.key < x) 

curr = curr.next;
if(curr.key == x) 

return true;
return false;

}

typedef struct {
int key;
node *next;

} node;



Sequential Operations
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a c d

b

a b c

add()

remove()



Concurrent Sets

 What can happen if multiple threads call set operations at the “same 
time”?

 Operations can conflict!

 Which operations conflict?

 (add, remove), (add, add), (remove, remove), (remove, contains) will 
conflict

 (add, contains) may miss update (which is fine)

 (contains, contains) does not conflict

 How can we fix it?
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Coarse-grained Locking

55

boolean add(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) 

unlock(S);
return false;

else {
node node = malloc();
node.key = x;
node.next = curr;
pred.next = node;

}  
unlock(S);
return true;

}

boolean remove(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
unlock(S);
free(curr);
return true;

} 
unlock(S);
return false;

}  

boolean contains(S, x) {
lock(S);
int *curr = S.head;
while(curr.key < x) 

curr = curr.next;
if(curr.key == x)  {

unlock(S);
return true;

}
unlock(S);
return false;

}



Coarse-grained Locking

 Correctness proof?

 Assume sequential version is correct

Alternative: define set of invariants and proof that initial condition as 
well as all transformations adhere (pre- and post conditions)

 Proof that all accesses to shared data are in CRs

This may prevent some optimizations

 Is the algorithm deadlock-free? Why?

 Locks are acquired in the same order (only one lock)

 Is the algorithm starvation-free and/or fair? Why?

 It depends on the properties of the used locks!
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Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads 
accessing it?

57

honk!

a b d

c

Simple but hotspot + bottleneck 

honk!



Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads 
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil. Yet we should not pass up 
our opportunities in that critical 3%. A good programmer will not be lulled 
into complacency by such reasoning, he will be wise to look carefully at the 
critical code; but only after that code has been identified” — Donald Knuth 
(in Structured Programming with Goto Statements)
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How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex 
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Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead
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Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock 

will see why in a minute

 Important to acquire locks in the same order
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typedef struct {
int key;
node *next;
lock_t lock;

} node;



Hand-over-Hand (fine-grained) locking
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a b c



Hand-over-Hand (fine-grained) locking
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a b c



Hand-over-Hand (fine-grained) locking
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a b c



Hand-over-Hand (fine-grained) locking
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a b c



Hand-over-Hand (fine-grained) locking
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a b c



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a c d

remove(b)
Why lock target node?



Concurrent Removes
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a b c d

remove(c)
remove(b)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 83

Concurrent Removes
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a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 84

Concurrent Removes
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a b c d

remove(b)
remove(c)



Uh, Oh
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a c d

remove(b)
remove(c)



Uh, Oh

86

a c d

Bad news, c not removed

remove(b)
remove(c)



Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking
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Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again
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a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again
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a c d

remove(b)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

Must 

acquire 

Lock for 

b

remove(c)



Removing a Node
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a b c d

Waiting to 

acquire 

lock for b

remove(c)



Removing a Node
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a b c d

Wait!
remove(c)



Removing a Node
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a b d

Proceed 

to 

remove(b)



Removing a Node
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a b d

remove(b)



Removing a Node
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a b d

remove(b)



Removing a Node
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a d

remove(b)



What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item 
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only 
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks 
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Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks 
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations
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Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct
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Optimistic: Traverse without Locking
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b d ea

add(c) Aha!



Optimistic: Lock and Load
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b d ea

add(c)



Optimistic: Lock and Load
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b d ea

add(c)

c



What could go wrong?
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b d ea

add(c) Aha!



What could go wrong?
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b d ea

add(c)



What could go wrong?
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b d ea

remove(b)



What could go wrong?
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b d ea

remove(b)



What could go wrong?
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b d ea

add(c)



What could go wrong?
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b d ea

add(c)

c



What could go wrong?
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d ea

add(c) Uh-oh



Validate – Part 1
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b d ea

add(c) Yes, b still 

reachable 

from head



What Else Could Go Wrong?
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b d ea

add(c) Aha!



What Else Could Go Wrong?

124

b d ea

add(c)

add(b’)



What Else Could Go Wrong?
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b d ea

add(c)

add(b’)b’



What Else Could Go Wrong?
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b d ea

add(c)
b’



What Else Could Go Wrong?
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b d ea

add(c)

c



Validate Part 2
(while holding locks)
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b d ea

add(c) Yes, b still 

points to d



Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!
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Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!
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typedef struct {
int key;
node *next;
lock_t lock;
boolean valid;

} node;



Lazy Removal
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aa b c d



c

Lazy Removal
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aa b d

Present in list



c

Lazy Removal
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aa b d

Logically deleted



Lazy Removal
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aa b c d

Physically deleted



Lazy Removal
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aa b d

Physically deleted



How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr
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Business as Usual
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a b c



Business as Usual
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a b c



Business as Usual
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a b c



Business as Usual
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a b c

remove(b)



Business as Usual
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a b c

a not 

marked



Business as Usual
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a b c

a still 

points 

to b



Business as Usual
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a b c

Logical 

delete



Business as Usual
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a b c

physical 

delete



Business as Usual
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a b c



Summary: Wait-free Contains
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a 0 0 0a b c 0e1d

Use Mark bit + list ordering 
1. Not marked  in the set
2. Marked or missing  not in the set 

Lazy add() and remove() + Wait-free contains()



Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable
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Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion
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Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it
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a 0 0 0a b c 0e1c

(1) Logical Removal

(2) Physical 

Removal
Use CAS to verify pointer 

is correct 

Not enough! Why? 

Lock-free Lists
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Problem…
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a 0 0 0a b c 0e1c

(1) Logical Removal

(3) Physical 

Removal 0d

(2) Node 

added



The Solution: Combine Mark and Pointer
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a 0 0 0a b c 0e1c

(1) Logical Removal 

=

Set Mark Bit

(3) Physical

Removal CAS
0d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not 

added after logical 

Removal



Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b  (operates on a cache line))
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Removing a Node
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a b d

remove 

b

remove 

c

c



Removing a Node
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a b d

remove 

b

remove 

c

c

failed

CAS CAS



Removing a Node
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a b d

remove 

b

remove 

c

c



Uh oh – node marked but not removed!
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a d

remove 

b

remove 

c

Zombie node!



Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and 
remove curr

If CAS fails, restart from beginning! 

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!
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Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked 
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really 
depends)
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More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be 
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor 
Programming”
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