Design of Parallel and Higlherformance

Computing
Fall2016
LecturelLocks and Loekree

Motivational video https:// www.youtube.com/watch?v=lhApOQIPQqguw

Instructor: Torsten Hoefler & Markus Puischel
TA:Salvatore DiGirolamo

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

https://www.youtube.com/watch?v=jhApQIPQquw

Administrivia
A Final project presentation: Monday 2/ 19 during last lecture
A Report will be due in January!

Still, starting to write early is very helpfs write ¢ rewrite ¢ rewrite (no joke!)

A Somemore ideas what to talk about:

What tools/programming language/parallelization scheme do you use?
Which architecture? (we only offer access to Xeon Phi, you may use differen
How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)
(Somewhat) realistic useases and input sets?

What are the key concepts employed?

What are the main obstacles?

Review of last lecture

A Language memory models
A Java/C++ memory model overview
A Synchronized programming

A Locks
A Broken twothread locks
A Peterson
A N-thread locks (filter lock)
A Many different locks, strengths and weaknesses
A Lock options and parameters

A Formal proof methods
A Correctness (mutual exclusion as condition)
A Progress

DPHPC Overview

DPHPC\
2 IocTIity Bgralle\lism
s | - \
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 , cache coherency
o3 |
P memory | distributed |
o models ' algorithms '
&)
= locks group commu-
O lock free nications
wait free
linearizability
| Amdahl's and Gustafson's law
|
5 _memory | PRAM » LogP
© | | |
: o F
I/O complexity

balance principles | balance principles Il
Little's Law scheduling

Goals of this lecture

A More N-thread locks!
A Hardware operations for concurrency control

A More on locks (using advanced operations)
A Spin locks
A Various optimized locks

A Even more on locks (issues and extended concepts)

A Deadlocks, priority inversion, competitive spinning,
semaphores

A Case studies
A Barrier, easoning about semantics

A Locks in practice: a set structure

Lock Fairness

A Starvation freedom provides no guarantee on how long a thread
gl Ada 2N AT A0 A& aL) aaSRéH

A To reason about fairness, we define two sections of each lock

algorithm:

A Doorway D (bounded # of steps) void lock() {

A Waiting W (unbounded # of steps) intj=1-tid;
flagiid8 I G NHzST K kK
victim =tid; // other goes first
while (flag[j] && victim =id) {}:

}
A FIFO locks:

A If T, finishes its doorway before,The CRA CR
A Implies fairness

[| Y LIZBhIderpAlgorithm (974

A Is a FIFO lock (and thus fair)

A Each thread takes a number in doorway and threads enter in the
order of their number!

volatile int flag[n] =Q,0> X}>
volatile int label[n] =Q,0% X0 >

void lock() {
flag[tid] =1, // request
labelftid] = max(label]], ...,|label[r1]) +1; // take ticket
while ((k '=tid)(flag[k] && (label[k],k) <* (labeif],tid))) {};
}
public void unlock() {
flag[tid] =0;
}

[| Y LIZBblKker@Algorithm

A Advantages:
A Elegant and correct solution
A Starvation free, even FIFO fairness

A Not used in practice!
A Why?
A Needs to read/write N memory locations for synchronizing N threads
A Can we do better?
Using only atomic registers/memory

A Lower Bound to Memory Complexity

A Theorem5.1in[1:4LF { A& | wlki2YA0O8 NBI Rk
two processes and S solves mutual exclusion with global progress

[deadlockfreedom], then S must have at least as many variables as
LINRE OSaasSac

A {2 U6SQOQNB R22YSRH hLIWGAYIf t201a IN
fundamentally nonscalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual

exclusion. Information and Computatiori,07(2):171¢184, December
1993

Hardware Support?

A Hardware atomic operations:
A Test&Set
Write const to memory while returning the old value
A Atomic swap
Atomically exchange memory and register
A Fetch&Op
Get value and apply operation to memory location
A Compare&Swap
Compare two values and swap memory with register if equal
A Loadlinked/StoreConditional LL/SC

Loads value from memory, allows operations, commits only if no other updat
committed4 mini-TM

A Intel TSX (transactional synchronization extensions)
HardwareTM (roll your own atomic operations)

Relative Power of Synchronization

A DesignrProblem I: Multicore Processor
A Which atomic operations are useful?

A DesignProblem II: Complex Application
A What atomic should I use?

Al 2YyOSLII 2F aO2yaSyadza ydzYoSNE /A
GO2yasSyadzai LINRoOofSYE AYy | FAYAILS
A atomic registers have @#thus locks have @8

A TAS, Swapretch&Ophave C2
A CAS, LL/SC, TM have;C=

Testand-Set Locks

A Testand-Set semantics

A Mem.0|zeold value booltest and_seibool *flag) {
A Set fixed valug ASvaltrue) bool old = *flag:

A Return old value *flag = true;

return old:

A After execution: }// all atomic!

A Postcondition is a fixed (constant) value!

Testand-Set Locks

A AssumeTASvah Y RAOF 1S&a af 201 SR¢E
A 2NARGS a2YSOKAYy3 StasS a2 AYRAOFGS

A TAS until return value is '¥ASval

A When will the lock be volatile int lock =0:

granted?

) < work well in void lock() {

A Does this work we while (TestAndSe&lock) ==1):
practice? }

void unlock() {
lock =0;
}

Contention

A On 86, the XCHG instruction is used to implement TAS

A For experts: 8 LOCK is superfluous!
movl $1, %eax

A Cachelinas read and written xchg %eax (Yebx)
A Ends up in exclusive state, invalidates other copies
A Cachelineh & GO KNRgYE¢ | NBdzy R dzasSt Saaf e
A High load on memory subsystem
x86 bus lock is essentially a full memory barder

SchweizeBestaHoeflety G 9 @t f dzZ Ay 3 GKS [/ 2al0 !12ZNOKANRSADSZMEBISING GtAI 2 yeaQ 2y a2 F

Testand-Testand-Set (TATAS) Locks

A Spinning in TAS is not a good idea

A Spin on cache line in shared state
A All threads at the same time, no cache coherency/memory traffic

A Danger!
A Efficient but use with great yoatile int lock =0:
carel!
A Generalizations are void lock() {
dangerous do {
while (lock =3);
} while TestAndS€®&lock) ==1);
}

void unlock() {
lock =0;
}

Warning: Even Experts get it wrong!

A Example: DoubleChecked Locking

1997

Double-Checked Locking

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

Douglas C. Schmidt
schmidt@cs.wustl.edu
Dept. of Computer Science
Wash. U., St. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

This paper shows how the canonical implementation [1] of

the Stngleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism. To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (Le., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent sofiware.

Tim Harrison
harrison @cs.wustlLedu
Dept. of Computer Science
Wash. U., St. Louis

context of concurrency. To illustrate this, consider b
canonical implementation [1] of the Singleton pattd
haves in multi-threaded environments.

The Singleton pattern ensures a class has only one i
and provides a global point of access to that instance [
namically allocating Singletons in C++ programs is cq
since the order of initialization of global static objects
programs is not well-defined and is therefore non-p
Moreover, dynamic allocation avoids the cost of initi
a Singleton if it is never used.

Defining a Singleton is straightforward:

class Singleton

*instance (void)

gleton;

return instance_;

double-checked locking

Double-checked locking - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Double-checked_locking

In software engineering, double-checked locking (also known as "double-checked
locking optimization") is a software design pattern used to reduce the ...

Usage in Java - Usage in Microsoft Visual C++ - Usage in Microsoft .MET ...

The "Double-Checked Locking is Broken" Declaration
www.cs.umd.edu/~pughfjava/.. /DoubleCheckedLocking.html

Details on the reasons - some very subtle - why double-checked locking cannot be
relied upon to be safe. Signed by a number of experts, including Sun ...

Double-checked locking and the Singleton pattern
www.ibm.com/developerworks/javallibrany/j-dclfindex html

1 May 2002 — Double-checked locking is one such idiom in the Java programming
language that should never be used. In this article, Peter Haggar ...

Double-checked locking: Clever, but broken - Javaworld

9 Feb 2001 — Many Java programmers are familiar with the double-checked locking
idiom, which allows you to perform lazy initialization with reduced ...

[FoF) Double-Checked Locking An Optimization Pattern for Efficiently ...

e.icm.edu.pl/packages/ace/ACE/PDF/DC-Locking .pdf

mat: PDF/Adohe Acrobat - Quick View

C Schmidt - Cited by 14 - Related articles

solve this problem, we present the Double-Checked Lock- ing optimization ...
Double-Checked Locking illustrates how changes in under- lying forces (ji.e. ...

Problem: Memory ordering leads to+am®ditions!

16

Contention?

A Do TATAS locks still have contention?

A When lock is released, k threads fight for
cache line ownership

A One gets the lock, all get the CL exclusively (serially!)

A What would be a good _
52t dzi A2y K 60K volatile int lock 0;
I D2 ARl YyOS€ U el o) |
do {
while (lock ==1);
} while TestAndSd&lock) ==1);
}

void unlock() {
lock =0;

}

SchweizgBestaHoeflety G 9 @t f dzZ Ay 3 GKS [/ 2al0 !12ZNOKANRSADSZMEBISING GtAI 2 yeaQ 2y a2 F

TAS Lock with Exponenti8lackoff

A Exponentialbackoffeliminates contention statistically

A Locks granted in

unpredictable volatile int lock =0;

order
A Starvation possible void lock() {
but unlikely while (TestAndSe®&lock) ==1) {
How can we make wait(time);
it even less likely? time *=2; // double waiting time
}
}
void unlock() {
lock =0;
}
{AYATIFNI G2Y ¢ ! yRSNE2YY dG¢KS
Ydzft G ALINR OS & a1dAskiiels Janl990 5 { = +2f @

LISMEMEnNIY |-

TAS Lock with Exponenti8lackoff

A Exponentialbackoffeliminates contention statistically
A Locks granted in

unpredictable volatile int lock =O;
order const intmaxtime=1000
A Starvation possible _
but unlikely void lock() {
Maximum waiting Whlle_ (I_'estAndSe(&Iock) ==1) {
time makes it less v_valt(t_lme_), N L
likely time = min(time *2, maxtime),
}
}
void unlock() {
lock =0;
}
{AYATFNI G2Y ¢ ! yRSNE2YY G ¢KS LISHEMEWNY I
Ydzft G ALINR OS & a1dAskiiels Janl990 5 { = +2f @

Comparison of TAS Locks

0 |

= —— TAS
. TATAS o
5 <« | —— TAS+Backoff o7
@ o~
B ° /,
é o g—©
E g] ﬁ/ \ /D ,,.«O/ FGJ.-G“D
=) S 0 }G _0o—90
2 /)(,HO o—0%
_E 0

o .
o © | /] _o—o0
5 DKD""
3 — ,:,/D
E o 7 o=/
= / _©

o
o | o
e | | | |
0 5 10 15

Number of Threads

20

Improvements?

A Are TAS locks perfect?
A What are the two biggest issues?
A Cache coherency traffic (contending on same location with expensive

atomics)
- Or -
A Critical section underutilization (waiting foackofftimes will delay entry
to CR)

A What would be a fix for that?
A How is this solved at airports and shops (often at least)?

A Queue locks- Threadsenqueue

Al SINY FTNRY LINBRSOSa&a2NJ AT AGQa (GKSA
A Each threads spins at a different location
A FIFO fairness

Array Queue Lock

A Array to implement
gueue .
A Tailpointer shows next free Volatile int array[n] =3,0= X}>
queue position volatile int index[n] =q,0= X}

: : volatile int tail =0;
A Each thread spins on own

location | void lock() {
~ CL padding! indextid] = GetAndIn¢tail) % n;
A index[] array can be putin TL while (‘array[indexiid]]); // wait to receive lock
}

A S0 are we done now?
A2 Kl GdQa 6NBY 3K void unlock() {
A Synchronizing M objects array[indexfid]] =0; // | release my lock
requiresU(NM) storage array[(indexfid] + 1) % n] =1, // next one
A What do we do now? }

CLH Lockl93

A Listbased (same gueue
principle)

A Discovered twice by Craig,
Landin Hagersten1993 94

A 2N+3M words
A N threads, M locks

A Requires threadocalgnode
pointer

A Can be hidden!

typedefstruct gnode{
structgnode*prey;
int succ_blocked

} gnode

gnode*Ilck= newgnode // node owned by lock

void lock@inode*Ick, gnode*qgn) {
gn->succ_blocked: 1,
gn->prev = FetchAndS¢€lck, gn);
while @n->prev->succ_blockef

}

void unlock@node** gn) {
gnode*pred = (*gn)->prey,
(*gn)->succ_blocked-0;
*gn =pred;

}

CLH Lockl93

A Qnodeobjects represent
thread state!

A succ_blocked=1 if waiting
or acquired lock

A succ_blocked=0 if released
lock

A Listis implicit!
A One node per thread

A Spin location changes
NUMA issuesc@cheless

A Can we do better?

typedefstruct gnode{
structgnode*prey;
int succ_blocked

} gnode

gnode*Ilck= newgnode // node owned by lock

void lock@inode*Ick, gnode*qgn) {
gn->succ_blocked: 1,
gn->prev = FetchAndS¢€lck, gn);
while @n->prev->succ_blockef

}

void unlock@node** gn) {
gnode*pred = (*gn)->prey,
(*gn)->succ_blocked-0;
*gn =pred;

}

MCS Locki991)

A Make queue explicit

A Acquire lock by
appending to queue

A Spin on own node
until locked is reset

A Similar advantages
as CLH but

A Only2N + M words
A Spinning position is fixed!
Benefits cachdess NUMA

A What are the issues?
A Releasing lock spins
A More atomics!

typedefstruct gnode{
structgnode*next;
int succ_blocked

} gnode
gnode*Ick= NULL,;

void lock@node*Ick, gnode*qgn) {
gn->next = NULL,;
gnode*pred = FetchAndS€lck, gn);
if(pred!= NULL) {
gn->locked =1;
pred->next =qgn;
while(@n->locked);

b}

void unlock@node* Ick, gnode*qgn) {
ifgn-By SEG I'T b![[0 9 k«k
if(CASEk, gn, NULL)) return;
while(@n->next == NULL); // wait fqred arrival
}
gn->next>locked =0; // free next waiter
gn->next = NULL,;

}

| essons Learned!

A Key Lesson:
A Reducing memory (coherency) traffic is most important!
A Not always straighforward (need to reason about CL states)

A MCS:2006DijkstraPrize in distributed computing

A ¢éan outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade

A 6éprobably the most influential practical mutual exclusion algorithm &ver
A dvastly superior to all previous mutual exclusion algorithms
A fast, fair, scalablé, widely used, always compared against!

Time to Declare Victory?

A Down to memory complexity oPEN+M
A Probably close to optimal

A Only local spinning
A Several variants with low expected contention

A But: we assumed sequential consistenty
A Reality causes trouble sometimes
A Sprinkling memory fences may harm performance
A Open research on minimaiynching algorithms!
/2YS YR GFf1 G2 YS AT &2dz2QNB AYydS

More Practical Optimizations

A [SGQa adGdSLI olFO1 G2 GRFEOF NI OS¢
A (recap) two oper,atiorls A and B on the same memory cause a data race if
2YyS 2F UKSY Ada | gNAUS ABOaB®RAL AOUAY
A So we put conflicting accesses into a CR and lock it!
This also guarantees memory consistency in C++/Javal

A [SGQa
Al 2yaAh

| & 2 dzbaksed edfcyslopediali || 6 S0

al e
RSN 0KS &l @8oNdeyXsnflidt 2 | O0SaasSacs

ReaderWriter Locks

A Allows multiple concurrent reads
A Multiple reader locks concurrently in CR

A Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

A Syntax:
A read_(un)lock()
A write_(un)lock()

A S|mp|e RW Lock constw=i

const R 2;
volatile int lock®; // LSB is writer flag!

A Seems efficient!?

ALa AGK 2KIFIGQa & voidread_locklock_tlock) {

AtomicAddlock, R);

A Polling CAS! while(lock & W):
}
A s it fair? void write_locklock_tlock) {
A Readers are preferred! while(!CAS(locl), W));
A Can always delay }

writers (again and

again and again) voidread_unlocklock_tlock) {

AtomicAddlock,-R);
}

void write_unlocKlock tlock) {
AtomicAddlock,-W);

}

Fixing those Issues?

)

A Polling issue:

A Combine with MCS lock idea of queue polling

)

A Fairness:

A Count readers and writers

(199)

John M. Mellor-Crummey*
(johnmc@rice. edu)
Center for Research on Parallel Computation
Rice University, P.O. Box 1892
Houston, TX 77251-1892

Abstract

Reader-writer synchronization relaxes the constraints of mu-
tual exclusion to permit more than one process to inspect a
shared object concurrently, as long as none of them changes
its value. On uniprocessors, mutual exclusion and reader-
writer locks are typically designed to de-schedule blocked
processes; however, on shared y multip s it
is often advantageous to have processes busy wait. Un-
fortunately, implementations of busy-wait locks on shared-
memory multiprocessors typically cause memory and net-
work contention that degrades performance. Several re-
searchers have shown how to implement scalable mutual
exclusion locks that exploit locality in the memory hier-
archies of shared-memory multiprocessors to eliminate con-
tention for memory and for the processor-memory intercon-
nect, In this paper we present reader-writer locks that sim-
ilarly exploit locality to achieve scalability, with variants
for reader preference, writer preference, and reader-writer
fairness. Performance results on a BBN TC2000 multipro-
cessor demonstrate that our algorithms provide low latency
and excellent scalability.

Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors

Michael L. Scott!
(scott@cs.rochester.edu)
Computer Science Department
University of Rochester
Rochester, NY 14627

communication bandwidth, introducing performance bottle-
necks that become markedly more pronounced in larger ma-
chines and applications, When many processors busy-wait
on a single synchronization variable, they create a hot spot
that gets a disproportionate share of the processor-memory
bandwidth. Several studies [1, 4, 10] have identified synchro-
nization hot spots as a major obstacle to high performance
on machines with both bus-based and multi-stage intercon-
nection networks.

Recent papers, ours among them [9], have addressed the
construction of scalable, contention-free busy-wait locks for
mutual exclusion. These locks employ atomic fetch.and.®
instructions' to construct queues of waiting processors,
each of which spins only on locally-accessible flag variables,
thereby inducing no contention. In the locks of Anderson (2]
and Graunke and Thakkar [5), which achieve local spinning
only on cache-coherent machines, each blocking processor
chooses a unique location on which to spin, and this loca-
tion becomes resident in the processor’s cache. Our MCS
mutual exclusion lock (algorithm 1) exhibits the dual ad-
vantages of (1) spinning on locally-accessible locations even
on distributed shared-memory multiprocessors without co-
herent caches, and (2) requiring only O(P + N) space for N
locks and P processors. rather than O(N P).

The final algorithm (Alg4)
has a flaw that was

corrected in2003

31

Deadlocks

A Kansas state legislaturét 2 KSy (62 GNI Ay a | LILINR I
crossing, both shall come to a full stop and neither shall start up again
dzy 0 Af (0KS 20KSNJ KlIa 32y Soé

[according toBotkin, Harlow "A Treasury of Railroad Folklore" @®@iD)]

CAN'T, Yov GO
CAN'T, Yov Go

What are necessary
conditions for deadlock?

32

Deadlocks

A Necessary conditions:
A Mutual Exclusion
A Hold one resource, request another
A No preemption
A Circular wait in dependency graph

A One condition missing will prevent deadlocks!
A A Different avoidance strategies (which?)

Issueswith Spinlocks

A Spinlocking is very wasteful
A The spinning thread occupies resources

A Potentially the PE where the waiting thread wants to Airrequires
context switch!

A Context switches due to

A Expiration of timeslices (forced)
A Yielding the CPU

What is this?

35

Why Is thel997Mars Rover in our lecture?

A LG fFYRSRZ NBOSAYUSR LINPINIYZI YR
rebooted!
A A watchdog

A Scenario Y xXWorksRT OS):
A Single CPU
A Two threads A,B sharing common bus, using locks
A (independent) thread C wrote data to flash
A Priority: A4 CA B (A highest, B lowest)
A Thread C would run into ldelock (infinite loop)
A Thread B was preempted by C while holding lock
A Thread A got stuck at lotk

[http://research.microsoft.comfestum/people/mbj/Mars_Pathfinder/Authoritative Account.html]

Priority Inversion

A If busywaiting thread has higher priority than thread holding logk
no progress!

A Can be fixed with the help of the OS

A E.g.mutexpriority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

Condition Variables

A Allow threads to yield CPU and leave the OS run queue
A Other threads can get them back on the queue!

A cond_waif(cond, lock)¢ yield and go to sleep
A cond_signalcond) ¢ wake up sleeping threads

A Wait and signal are OS calls
A Often expensive, which one is more expensive?
Wait, because it has to perform a full context switch

Condition Variable Semantics

A Hoarestyle:
A Signaler passes lock to waiter, signaler suspended
A Waiter runs immediately
A Waiter passes lock back to signaler if it leaves critical section or if it waits
again
A Mesastyle (most used):
A Signaler keeps lock
A Waiter simply put on run queue
A Needs to acquire lock, may wait again

When to Spin and When to Block?

A Spinning consumes CPU cycles but is cheap
Aa{iSIfa¢ /t! FTNRY 20GKSNJ GKNBI Ra&
A Blocking has high oname cost and is then free
AhTiSy Kdzy RNBR& 2F 08 0fSa o6GNI LI al @
A Wakeup is also expensive (latency)
Also cacheollution

A Strategy:
A Poll for a while and then block

When to Spin and When to Block?

A 2KIEOG Aa F aoKAf SEK
A Optimal time depends on the future
A When will the active thread leave the CR?
A Can compute optimal offline schedule
A Actual problem is an online problem

A Competitive algorithms

A An algorithm is €ompetitive if for a sequence of actions x and a constant
a holds:

| 6 EU 0 +@F /
A What would a good spinning algorithm look like and what is the
competitiveness?

Competitive Spinning

A If T is the overhead to process a walit, then a locking algorithm that
spins for time T before it blocks Bcompetitive!
A Karlin ManasseMcGeochOwicky &/ 2 YLISGA GA GBS wl
AlgorithmsforNod YA F2 N)XY t NPDBISYa£ > { hb5!

A If randomized algorithms are used, then
e/(e-1)-competitiveness (.58 can be achieved

A See paper above!

Generalized Locks: Semaphores

A Controlling access to more than one resource
A Described byijkstral1965

A Internal state is an atomic counter C

A Two operations:
A P()¢ block until C8; decrement C (atomically)
A V()¢ signal and increment C

A Binary or0/ 1 semaphore equivalent to lock
A Cis alway®or 1, i.e., V() will not increase it further

A Trivia:
ALT &2 dzaehBm spedeCDuteh), mnemonics:
Verhogen(increment) andProlaag (probeerte verlagen= try to reduce)

Semaphore Implementation

A Can be implemented with mutual exclusion!
A And can be used to iImplement mutual exclusibn

A X 2N gAGK GSad YR asSid FyR Ylyeée 2
A Also has fairness concepts:
A Order of granting access to waiting (queued) threads

A strictly fair (starvation impossible, e.g., FIFO)
A weakly fair (starvation possible, e.g., random)

Case Study.: Barrier

A Barrier semantics:

A No process proceeds before all processes reached barrier
A{AYAELFNI 2 YdzidzZ £ SEOfdzaAz2y odzi y2i

A Often needed in parallel higiperformance programming
A Especially in SPMD programming style
At EFENFEESE LINRPINFYYAYT &F NI Ythregad, NJ a ¢
OpenMP, MPI)
A MPI_Barrief) (processbased)
A pthread_barrier
A #pragmaomp barrier
A X
A Simple implementation: lockadd+ spin
Problem: when to reise the counter?
Cannot justsetitt®@ L Th ¢ NA Ojadd-1&x t 2 O$yJ R2Yy S

[cf. http://www.spiral.net/software/barrier.ntml]

Barrier Performance

Time per Barrier [us] (median)

0.10 1.00 10.00 100.00

0.01

— MPI
OpenMP o_0—0—0—0—0—0—0—0—=070
—— XADD -0~
—— Pthreads
7]
|
{
/ O0O—0—0—0
."I D_'_‘_D
'f / (&)
|" _ -_D_
I & R
o—"°
0
[| |
5 10 15

Number of Threads

46

Case Study: Reasoning about Semantics

CACM
Volume9d Issuel, Jan.1966

47

