
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Locks and Lock-Free

Instructor:Torsten Hoefler & Markus Püschel

TA:Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=jhApQIPQquw

https://www.youtube.com/watch?v=jhApQIPQquw

Administrivia

Â Final project presentation: Monday 12/ 19 during last lecture

ÁReport will be due in January!

Still, starting to write early is very helpful --- write ςrewrite ςrewrite (no joke!)

ÁSome more ideas what to talk about:

What tools/programming language/parallelization scheme do you use?

Which architecture? (we only offer access to Xeon Phi, you may use different)

How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)

(Somewhat) realistic use-cases and input sets?

What are the key concepts employed?

What are the main obstacles?

2

Review of last lecture

Â Language memory models

Á Java/C++ memory model overview

ÁSynchronized programming

Â Locks

ÁBroken two-thread locks

ÁPeterson

ÁN-thread locks (filter lock)

ÁMany different locks, strengths and weaknesses

ÁLock options and parameters

Â Formal proof methods

ÁCorrectness (mutual exclusion as condition)

ÁProgress

3

DPHPC Overview

4

Goals of this lecture

Â More N-thread locks!

ÁHardware operations for concurrency control

Â More on locks (using advanced operations)

ÁSpin locks

ÁVarious optimized locks

Â Even more on locks (issues and extended concepts)

ÁDeadlocks, priority inversion, competitive spinning,
semaphores

Â Case studies

ÁBarrier, reasoning about semantics

Â Locks in practice: a set structure

5

Â Starvation freedom provides no guarantee on how long a thread
ǿŀƛǘǎ ƻǊ ƛŦ ƛǘ ƛǎ άǇŀǎǎŜŘέΗ

Â To reason about fairness, we define two sections of each lock
algorithm:

ÁDoorway D (bounded # of steps)

ÁWaiting W (unbounded # of steps)

Â FIFO locks:

Á If TA finishes its doorway before TB the CRAĄCRB

Á Implies fairness

void lock() {
int j = 1 - tid;
flag[tidϐ Ґ ǘǊǳŜΤ κκ LΩƳ ƛƴǘŜǊŜǎǘŜŘ
victim = tid; // other goes first
while (flag[j] && victim == tid) {};

}

Lock Fairness

6

[ŀƳǇƻǊǘΩǎBakery Algorithm (1974)

Â Is a FIFO lock (and thus fair)

Â Each thread takes a number in doorway and threads enter in the
order of their number!

volatile int flag[n] = {0,0ΣΧΣ0};
volatile int label[n] = {0,0ΣΧΦΣ0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((ɱ k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {
flag[tid] = 0;

}

7

[ŀƳǇƻǊǘΩǎBakery Algorithm

Â Advantages:

ÁElegant and correct solution

ÁStarvation free, even FIFO fairness

Â Not used in practice!

ÁWhy?

ÁNeeds to read/write N memory locations for synchronizing N threads

ÁCan we do better?

Using only atomic registers/memory

8

A Lower Bound to Memory Complexity

Â Theorem 5.1 in [1]: άLŦ { ƛǎ ŀ ώŀǘƻƳƛŎϐ ǊŜŀŘκǿǊƛǘŜ ǎȅǎǘŜƳ ǿƛǘƘ ŀǘ ƭŜŀǎǘ
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
ǇǊƻŎŜǎǎŜǎέ

Â {ƻ ǿŜΩǊŜ ŘƻƻƳŜŘΗ hǇǘƛƳŀƭ ƭƻŎƪǎ ŀǊŜ ŀǾŀƛƭŀōƭŜ ŀƴŘ ǘƘŜȅΩǊŜ
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171ς184, December
1993

9

Hardware Support?

Â Hardware atomic operations:

ÁTest&Set

Write const to memory while returning the old value

ÁAtomic swap

Atomically exchange memory and register

ÁFetch&Op

Get value and apply operation to memory location

ÁCompare&Swap

Compare two values and swap memory with register if equal

ÁLoad-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed Ąmini-TM

Á Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

10

Relative Power of Synchronization

Â Design-Problem I: Multi-core Processor

ÁWhich atomic operations are useful?

Â Design-Problem II: Complex Application

ÁWhat atomic should I use?

Â /ƻƴŎŜǇǘ ƻŦ άŎƻƴǎŜƴǎǳǎ ƴǳƳōŜǊέ / ƛŦ ŀ ǇǊƛƳƛǘƛǾŜ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ǎƻƭǾŜ ǘƘŜ
άŎƻƴǎŜƴǎǳǎ ǇǊƻōƭŜƳέ ƛƴ ŀ ŦƛƴƛǘŜ ƴǳƳōŜǊ ƻŦ ǎǘŜǇǎ όŜǾŜƴ ƛŦ ǘƘǊŜŀŘǎ ǎǘƻǇύ

Áatomic registers have C=1 (thus locks have C=1!)

ÁTAS, Swap, Fetch&Ophave C=2

ÁCAS, LL/SC, TM have C=қ

11

Test-and-Set Locks

Â Test-and-Set semantics

ÁMemoizeold value

ÁSet fixed value TASval(true)

ÁReturn old value

Â After execution:

ÁPost-condition is a fixed (constant) value!

bool test_and_set(bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

12

Test-and-Set Locks

Â Assume TASvalƛƴŘƛŎŀǘŜǎ άƭƻŎƪŜŘέ

Â ²ǊƛǘŜ ǎƻƳŜǘƘƛƴƎ ŜƭǎŜ ǘƻ ƛƴŘƛŎŀǘŜ άǳƴƭƻŎƪŜŘέ

Â TAS until return value is != TASval

Â When will the lock be
granted?

Â Does this work well in
practice?

volatile int lock = 0;

void lock() {
while (TestAndSet(&lock) == 1);

}

void unlock() {
lock = 0;

}

13

Contention

Â On x86, the XCHG instruction is used to implement TAS

ÁFor experts: x86 LOCK is superfluous!

Â Cachelineis read and written

ÁEnds up in exclusive state, invalidates other copies

ÁCachelineƛǎ άǘƘǊƻǿƴέ ŀǊƻǳƴŘ ǳǎŜƭŜǎǎƭȅ

ÁHigh load on memory subsystem

x86 bus lock is essentially a full memory barrier L

movl $1, %eax
xchg %eax, (%ebx)

14
Schweizer, Besta, HoeflerΥ ά9ǾŀƭǳŀǘƛƴƎ ǘƘŜ /ƻǎǘ ƻŦ !ǘƻƳƛŎ hǇŜǊŀǘƛƻƴǎ ƻƴ aƻŘŜǊƴ !ǊŎƘƛǘŜŎǘǳǊŜǎέΣ t!/¢Ω15

Test-and-Test-and-Set (TATAS) Locks

Â Spinning in TAS is not a good idea

Â Spin on cache line in shared state

ÁAll threads at the same time, no cache coherency/memory traffic

Â Danger!

ÁEfficient but use with great
care!

ÁGeneralizations are
dangerous

volatile int lock = 0;

void lock() {
do {
while (lock == 1);

} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;

}
15

Warning: Even Experts get it wrong!

Â Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

1997

16

Contention?

Â Do TATAS locks still have contention?

Â When lock is released, k threads fight for
cache line ownership

ÁOne gets the lock, all get the CL exclusively (serially!)

ÁWhat would be a good
ǎƻƭǳǘƛƻƴΚ όǘƘƛƴƪ άŎƻƭƭƛǎƛƻƴ
ŀǾƻƛŘŀƴŎŜέύ

volatile int lock = 0;

void lock() {
do {
while (lock == 1);

} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;

}

17
Schweizer, Besta, HoeflerΥ ά9ǾŀƭǳŀǘƛƴƎ ǘƘŜ /ƻǎǘ ƻŦ !ǘƻƳƛŎ hǇŜǊŀǘƛƻƴǎ ƻƴ aƻŘŜǊƴ !ǊŎƘƛǘŜŎǘǳǊŜǎέΣ t!/¢Ω15

TAS Lock with Exponential Backoff

Â Exponential backoffeliminates contention statistically

ÁLocks granted in
unpredictable
order

ÁStarvation possible
but unlikely

How can we make
it even less likely?

volatile int lock = 0;

void lock() {
while (TestAndSet(&lock) == 1) {

wait(time);
time *= 2; // double waiting time

}
}

void unlock() {
lock = 0;

}

{ƛƳƛƭŀǊ ǘƻΥ ¢Φ !ƴŘŜǊǎƻƴΥ ά¢ƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ ǎǇƛƴ ƭƻŎƪ ŀƭǘŜǊƴŀǘƛǾŜǎ ŦƻǊ ǎƘŀǊŜŘ-memory
ƳǳƭǘƛǇǊƻŎŜǎǎƻǊǎέΣ ¢t5{Σ ±ƻƭΦ 1 Issue 1, Jan 1990 18

TAS Lock with Exponential Backoff

Â Exponential backoffeliminates contention statistically

ÁLocks granted in
unpredictable
order

ÁStarvation possible
but unlikely

Maximum waiting
time makes it less
likely

volatile int lock = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lock) == 1) {

wait(time);
time = min(time * 2, maxtime);

}
}

void unlock() {
lock = 0;

}

{ƛƳƛƭŀǊ ǘƻΥ ¢Φ !ƴŘŜǊǎƻƴΥ ά¢ƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ ǎǇƛƴ ƭƻŎƪ ŀƭǘŜǊƴŀǘƛǾŜǎ ŦƻǊ ǎƘŀǊŜŘ-memory
ƳǳƭǘƛǇǊƻŎŜǎǎƻǊǎέΣ ¢t5{Σ ±ƻƭΦ 1 Issue 1, Jan 1990 19

Comparison of TAS Locks

20

Improvements?

Â Are TAS locks perfect?

ÁWhat are the two biggest issues?

ÁCache coherency traffic (contending on same location with expensive
atomics)

-- or --

ÁCritical section underutilization (waiting for backofftimes will delay entry
to CR)

Â What would be a fix for that?

ÁHow is this solved at airports and shops (often at least)?

Â Queue locks -- Threads enqueue

Á[ŜŀǊƴ ŦǊƻƳ ǇǊŜŘŜŎŜǎǎƻǊ ƛŦ ƛǘΩǎ ǘƘŜƛǊ ǘǳǊƴ

ÁEach threads spins at a different location

ÁFIFO fairness

21

Array Queue Lock

Â Array to implement
queue

ÁTail-pointer shows next free
queue position

ÁEach thread spins on own
location

CL padding!

Á index[] array can be put in TLS

Â So are we done now?

Á²ƘŀǘΩǎ ǿǊƻƴƎΚ

ÁSynchronizing M objects
requires Ū(NM) storage

ÁWhat do we do now?

22

volatile int array[n] = {1,0ΣΧΣ0};
volatile int index[n] = {0,0ΣΧΣ0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one

}

CLH Lock (1993)

Â List-based (same queue
principle)

Â Discovered twice by Craig,
Landin, Hagersten1993/ 94

Â 2N+3M words

ÁN threads, M locks

Â Requires thread-local qnode
pointer

ÁCan be hidden!

23

typedefstruct qnode{
struct qnode*prev;
int succ_blocked;

} qnode;

qnode* lck= new qnode; // node owned by lock

void lock(qnode* lck, qnode*qn) {
qn->succ_blocked= 1;
qn->prev= FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode** qn) {
qnode*pred= (*qn)->prev;
(*qn)->succ_blocked= 0;
*qn = pred;

}

CLH Lock (1993)

Â Qnodeobjects represent
thread state!

Á succ_blocked== 1 if waiting
or acquired lock

Á succ_blocked== 0 if released
lock

Â List is implicit!

ÁOne node per thread

ÁSpin location changes

NUMA issues (cacheless)

Â Can we do better?

24

typedefstruct qnode{
struct qnode*prev;
int succ_blocked;

} qnode;

qnode* lck= new qnode; // node owned by lock

void lock(qnode* lck, qnode*qn) {
qn->succ_blocked= 1;
qn->prev= FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode** qn) {
qnode*pred= (*qn)->prev;
(*qn)->succ_blocked= 0;
*qn = pred;

}

MCS Lock (1991)

Â Make queue explicit

ÁAcquire lock by
appending to queue

ÁSpin on own node
until locked is reset

Â Similar advantages
as CLH but

ÁOnly 2N + M words

ÁSpinning position is fixed!

Benefits cache-less NUMA

Â What are the issues?

ÁReleasing lock spins

ÁMore atomics!

25

typedefstruct qnode{
struct qnode*next;
int succ_blocked;

} qnode;

qnode* lck= NULL;

void lock(qnode* lck, qnode*qn) {
qn->next = NULL;
qnode*pred= FetchAndSet(lck, qn);
if(pred != NULL) {
qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode* lck, qnode*qn) {
if(qn-ҔƴŜȄǘ ҐҐ b¦[[ύ ϑ κκ ƛŦ ǿŜΩǊŜ ǘƘŜ ƭŀǎǘ ǿŀƛǘŜǊ
if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for predarrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}

Lessons Learned!

Â Key Lesson:

ÁReducing memory (coherency) traffic is most important!

ÁNot always straight-forward (need to reason about CL states)

Â MCS: 2006 DijkstraPrize in distributed computing

Áάan outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decadeέ

Áάprobably the most influential practical mutual exclusion algorithm everέ

Áάvastly superior to all previous mutual exclusion algorithmsέ

Á fast, fair, scalable Ąwidely used, always compared against!

26

Time to Declare Victory?

Â Down to memory complexity of 2N+M

ÁProbably close to optimal

Â Only local spinning

ÁSeveral variants with low expected contention

Â But: we assumed sequential consistency L

ÁReality causes trouble sometimes

ÁSprinkling memory fences may harm performance

ÁOpen research on minimally-synching algorithms!

/ƻƳŜ ŀƴŘ ǘŀƭƪ ǘƻ ƳŜ ƛŦ ȅƻǳΩǊŜ ƛƴǘŜǊŜǎǘŜŘ

27

More Practical Optimizations

Â [ŜǘΩǎ ǎǘŜǇ ōŀŎƪ ǘƻ άŘŀǘŀ ǊŀŎŜέ

Á (recap) two operations A and B on the same memory cause a data race if
ƻƴŜ ƻŦ ǘƘŜƳ ƛǎ ŀ ǿǊƛǘŜ όάŎƻƴŦƭƛŎǘƛƴƎ ŀŎŎŜǎǎέύ ŀƴŘ ƴŜƛǘƘŜǊ !ĄB nor BĄA

ÁSo we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

Â [ŜǘΩǎ ǎŀȅ ȅƻǳ ƛƳǇƭŜƳŜƴǘ ŀ ǿŜō-based encyclopedia

Á/ƻƴǎƛŘŜǊ ǘƘŜ άŀǾŜǊŀƎŜ ǘǿƻ ŀŎŎŜǎǎŜǎέ ςdo they conflict?

28

Reader-Writer Locks

Â Allows multiple concurrent reads

ÁMultiple reader locks concurrently in CR

ÁGuarantees mutual exclusion between writer and writer locks and reader
and writer locks

Â Syntax:

Á read_(un)lock()

Áwrite_(un)lock()

29

A Simple RW Lock

Â Seems efficient!?

ÁLǎ ƛǘΚ ²ƘŀǘΩǎ ǿǊƻƴƎΚ

ÁPolling CAS!

Â Is it fair?

ÁReaders are preferred!

ÁCan always delay
writers (again and
again and again)

30

const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
AtomicAdd(lock, R);
while(lock & W);

}

void write_lock(lock_t lock) {
while(!CAS(lock, 0, W));

}

void read_unlock(lock_t lock) {
AtomicAdd(lock, -R);

}

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}

Fixing those Issues?

Â Polling issue:

ÁCombine with MCS lock idea of queue polling

Â Fairness:

ÁCount readers and writers

31

The final algorithm (Alg. 4)
has a flaw that was
corrected in 2003!

(1991)

Deadlocks

Â Kansas state legislature: ά²ƘŜƴ ǘǿƻ ǘǊŀƛƴǎ ŀǇǇǊƻŀŎƘ ŜŀŎƘ ƻǘƘŜǊ ŀǘ ŀ
crossing, both shall come to a full stop and neither shall start up again
ǳƴǘƛƭ ǘƘŜ ƻǘƘŜǊ Ƙŀǎ ƎƻƴŜΦέ

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

32

What are necessary

conditions for deadlock?

Deadlocks

Â Necessary conditions:

ÁMutual Exclusion

ÁHold one resource, request another

ÁNo preemption

ÁCircular wait in dependency graph

Â One condition missing will prevent deadlocks!

ÁĄDifferent avoidance strategies (which?)

33

Issues with Spinlocks

Â Spin-locking is very wasteful

ÁThe spinning thread occupies resources

ÁPotentially the PE where the waiting thread wants to run Ą requires
context switch!

Â Context switches due to

ÁExpiration of time-slices (forced)

ÁYielding the CPU

34

What is this?

35

Why is the 1997 Mars Rover in our lecture?

Â Lǘ ƭŀƴŘŜŘΣ ǊŜŎŜƛǾŜŘ ǇǊƻƎǊŀƳΣ ŀƴŘ ǿƻǊƪŜŘ Χ ǳƴǘƛƭ ƛǘ ǎǇǳǊƛƻǳǎƭȅ
rebooted!

ÁĄwatchdog

Â Scenario (vxWorksRT OS):

ÁSingle CPU

ÁTwo threads A,B sharing common bus, using locks

Á (independent) thread C wrote data to flash

ÁPriority: AĄCĄB (A highest, B lowest)

ÁThread C would run into a lifelock(infinite loop)

ÁThread B was preempted by C while holding lock

ÁThread A got stuck at lock L

36[http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

Â If busy-waiting thread has higher priority than thread holding lock ᵼ
no progress!

Â Can be fixed with the help of the OS

ÁE.g., mutexpriority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

37

Condition Variables

Â Allow threads to yield CPU and leave the OS run queue

ÁOther threads can get them back on the queue!

Â cond_wait(cond, lock) ςyield and go to sleep

Â cond_signal(cond) ςwake up sleeping threads

Â Wait and signal are OS calls

ÁOften expensive, which one is more expensive?

Wait, because it has to perform a full context switch

38

Condition Variable Semantics

Â Hoare-style:

ÁSignaler passes lock to waiter, signaler suspended

ÁWaiter runs immediately

ÁWaiter passes lock back to signaler if it leaves critical section or if it waits
again

Â Mesa-style (most used):

ÁSignaler keeps lock

ÁWaiter simply put on run queue

ÁNeeds to acquire lock, may wait again

39

When to Spin and When to Block?

Â Spinning consumes CPU cycles but is cheap

Áά{ǘŜŀƭǎέ /t¦ ŦǊƻƳ ƻǘƘŜǊ ǘƘǊŜŀŘǎ

Â Blocking has high one-time cost and is then free

ÁhŦǘŜƴ ƘǳƴŘǊŜŘǎ ƻŦ ŎȅŎƭŜǎ όǘǊŀǇΣ ǎŀǾŜ ¢/. Χύ

ÁWakeup is also expensive (latency)

Also cache-pollution

Â Strategy:

ÁPoll for a while and then block

40

When to Spin and When to Block?

Â ²Ƙŀǘ ƛǎ ŀ άǿƘƛƭŜέΚ

Â Optimal time depends on the future

ÁWhen will the active thread leave the CR?

ÁCan compute optimal offline schedule

ÁActual problem is an online problem

Â Competitive algorithms

ÁAn algorithm is c-competitive if for a sequence of actions x and a constant
a holds:

/όȄύ Җ Ŏϝ/opt(x) + a

ÁWhat would a good spinning algorithm look like and what is the
competitiveness?

41

Competitive Spinning

Â If T is the overhead to process a wait, then a locking algorithm that
spins for time T before it blocks is 2-competitive!

ÁKarlin, Manasse, McGeoch, OwickiΥ ά/ƻƳǇŜǘƛǘƛǾŜ wŀƴŘƻƳƛȊŜŘ
Algorithms for Non-¦ƴƛŦƻǊƳ tǊƻōƭŜƳǎέΣ {h5! 1989

Â If randomized algorithms are used, then
e/(e-1)-competitiveness (~1.58) can be achieved

ÁSee paper above!

42

Generalized Locks: Semaphores

Â Controlling access to more than one resource

ÁDescribed by Dijkstra1965

Â Internal state is an atomic counter C

Â Two operations:

ÁP() ςblock until C>0; decrement C (atomically)

ÁV() ςsignal and increment C

Â Binary or 0/ 1 semaphore equivalent to lock

ÁC is always 0 or 1, i.e., V() will not increase it further

Â Trivia:

ÁLŦ ȅƻǳΩǊŜ ƭǳŎƪȅ όaehem, speak Dutch), mnemonics:

Verhogen(increment) and Prolaag(probeerte verlagen= try to reduce)

43

Semaphore Implementation

Â Can be implemented with mutual exclusion!

ÁAnd can be used to implement mutual exclusion J

Â Χ ƻǊ ǿƛǘƘ ǘŜǎǘ ŀƴŘ ǎŜǘ ŀƴŘ Ƴŀƴȅ ƻǘƘŜǊǎΗ

Â Also has fairness concepts:

ÁOrder of granting access to waiting (queued) threads

Á strictly fair (starvation impossible, e.g., FIFO)

Áweakly fair (starvation possible, e.g., random)

44

Case Study 1: Barrier

Â Barrier semantics:

ÁNo process proceeds before all processes reached barrier

Á{ƛƳƛƭŀǊ ǘƻ Ƴǳǘǳŀƭ ŜȄŎƭǳǎƛƻƴ ōǳǘ ƴƻǘ ŜȄŎƭǳǎƛǾŜΣ ǊŀǘƘŜǊ άǎȅƴŎƘǊƻƴƛȊŜŘέ

Â Often needed in parallel high-performance programming

ÁEspecially in SPMD programming style

Â tŀǊŀƭƭŜƭ ǇǊƻƎǊŀƳƳƛƴƎ άŦǊŀƳŜǿƻǊƪǎέ ƻŦŦŜǊ ōŀǊǊƛŜǊ ǎŜƳŀƴǘƛŎǎ όpthread,
OpenMP, MPI)

ÁMPI_Barrier() (process-based)

Ápthread_barrier

Á#pragmaompbarrier

ÁΧ

Â Simple implementation: lock xadd+ spin

Problem: when to re-use the counter?

Cannot just set it to 0 LҦ ¢ǊƛŎƪΥ άƭƻŎƪ xadd-1έ ǿƘŜƴ ŘƻƴŜ J

45
[cf. http://www.spiral.net/software/barrier.html]

Barrier Performance

46

Case Study 2: Reasoning about Semantics

47

CACM

Volume 9 Issue 1, Jan. 1966

