
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Performance
Recitation session

spcl.inf.ethz.ch

@spcl_eth

 Reminder: Project presentations next Monday

 10min each

 Presentations order as teams are displayed on the web-page

 Send me an e-mail by Sunday if you have particular time constraints (already got some)

 Send slides at digirols@inf.ethz.ch by Sunday 11/6 11:59pm

 Rough guidelines:

Present your plan

Related work

Preliminary results (milestones)

 Main goal: gather feedbacks (so present some details)

 Ideally one presenter (make sure to rotate for other presentations!)

2

Administrativia

mailto:salvatore.di.girolamo@inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

3

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ ≤
1

𝑓

spcl.inf.ethz.ch

@spcl_eth

4

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 = 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1
𝑇𝑃

=
1

1 − 𝑓
𝑃

+ 𝑓

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ =
1

𝑓

It’s like to see the glass as half empty but…

It could be even worse!

Possible factors: load balancing, communication costs, I/O, scheduling

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with f as the fraction not affected by the parallelization on P-processors machine:

Speedup:

𝑆𝑃 =
𝑇1
𝑇𝑃

≤ 𝛼 + 𝑃(1 − 𝛼)

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

Note: no parallel overheads are taken into account here!

spcl.inf.ethz.ch

@spcl_eth

 Speedup

 How well something responds to adding more resources

 What’s your base case? The best serial version or a single parallel process?

 Efficiency

 Gives idea on the “utilization” degree of the computing resources

 Strong Scaling

 Problem size stays fixed as the number of processing elements are increased

 Weak Scaling

 Problem size increases as the number of processing elements are increased

6

Quiz

spcl.inf.ethz.ch

@spcl_eth

7

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel

Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there

are no additional overheads, what is the parallel speedup?

spcl.inf.ethz.ch

@spcl_eth

8

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that

add overhead depending on the number of cores involved. There are two broadcast implementations

available. One adds a parallel overhead of 0.0001𝑛, the other one 0.0005 log𝑛. For which number of cores

do you get the highest speedup for both implementations?

spcl.inf.ethz.ch

@spcl_eth

9

PRAM: Parallel Random Access Machine

 P processes with shared memory

 Ignores communications and synchronization

 Instruction are composed by 3 phases:

 Load data from shared memory (if needed)

 Perform computation (if any)

 Store data in shared memory (if needed)

 Any process can read/write to any memory cell

 How conflicts are handled?

spcl.inf.ethz.ch

@spcl_eth

 EREW: Exclusive Read / Exclusive Write

 No two processes are allowed to read or write to the same memory cell simultaneously

 CREW: Concurrent Read / Exclusive Write

 Simultaneous reads are allowed; only one process can write

 CRCW: Concurrent Read / Concurrent Write

 Simultaneous reads and write to the same memory cell are allowed

 Priority CRCW: processors assigned fixed distinct priorities, highest priority wins

 Arbitrary CRCW: one randomly chosen write wins

 Common CRCW: all processors are allowed to complete write if and only if all the values to be written are

equal

10

PRAM: Conflicting Accesses

http://homes.cs.washington.edu/~arvind/cs424/notes/l2-6.pdf

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Weak Strong

spcl.inf.ethz.ch

@spcl_eth

 Reduce p values on the p-processor EREW PRAM in 𝑶(𝒍𝒐𝒈𝒑) time

 The algorithm uses exclusive reads and writes

 It’s the basis of other EREW algorithms

11

PRAM: Reduction

spcl.inf.ethz.ch

@spcl_eth

 Computing a position of the first one in the sequence of 0’s and 1’s in a constant time.

12

PRAM: First 1

Algorithm A

(2 parallel steps and n2 processors)
for each 1 i<j n do in parallel

if C[i] =1 and C[j]=1 then C[j]:=0

for each 1 i n do in parallel

if C[i] =1 then FIRST-ONE-POSITION:=i

1 1

1 0

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

@spcl_eth

13

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any one in the table.

There-is-one:=0

for each 1 i n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

Merge A and B

1. Partition table C into segments of size 𝑛

2. In each segment apply the algorithm B

3. Find position of the first one in these sequence by

applying algorithm A

4. Apply algorithm A to this single segment and compute

the final value

B B B B B B BB B B

A

A

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

How many processors we need?

(𝑛)2= 𝑛

What’s the complexity?

3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑡𝑒𝑝𝑠 → 𝑂(1)

spcl.inf.ethz.ch

@spcl_eth

 Odd-Even Merge

 Odd-Even Merge Sort

14

PRAM: Odd-Even Merge Sort

𝑂 log𝑛 with n processors

𝑂(log2 𝑛) with n processors

http://people.cs.pitt.edu/~kirk/cs1510/notes/parallelnotes.pdf

spcl.inf.ethz.ch

@spcl_eth

15

Exercise 3

We can find the minimum from an unordered collection of n natural numbers by performing a reduction

along a binary tree: In each round, each processor compares two elements, and the smaller element gets

to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

spcl.inf.ethz.ch

@spcl_eth

16

Exercise 4

Develop an Algorithm which can find the minimum in an unordered collection of n natural numbers in 𝑂 1
time on a CRCW-PRAM machine.

spcl.inf.ethz.ch

@spcl_eth

17

Public Lecture: Scientific Performance Engineering in HPC

Abstract:

We advocate the usage of mathematical models and abstractions in practical high-performance computing. For this, we show a series of

examples and use-cases where the abstractions introduced by performance models can lead to clearer pictures of the core problems and

often provide non-obvious insights. We start with models of parallel algorithms leading to close-to-optimal practical implementations. We

continue our tour with distributed-memory programming models that provide various abstractions to application developers. A short

digression on how to measure parallel systems shows common pitfalls of practical performance modeling. Application performance models

based on such accurate measurements support insight into the resource consumption and scalability of parallel programs on particular

architectures. We close with a demonstration of how mathematical models can be used to derive practical network topologies and routing

algorithms. In each of these areas, we demonstrate newest developments but also point to open problems. All these examples testify to

the value of modeling in practical high-performance computing. We assume that a broader use of these techniques and the development

of a solid theory for parallel performance will lead to deep insights at many fronts.

Invitation to a lecture by Prof. Dr. Torsten Hoefler (Scalable Parallel Computing Lab at ETH Zurich)

Date: Tuesday, November 8, 2016

Time: 17:15

Location: HG F 5, ETH Zurich

http://htor.inf.ethz.ch/

