
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Balance Principles & Scheduling
Recitation session



spcl.inf.ethz.ch

@spcl_eth

 Concept of balance: a computation running on some machine is efficient if the compute-time 

dominates the I/O time. [Kung, 1986]

 Deriving a balance principle:

 Algorithmically analyze the parallelism

 Algorithmically analyze the I/O behavior 

(i.e., number of memory transfers)

 Combine these two analyses with a cost 

model for an abstract machine.

 Goal: say precisely and analytically how

 Changes to the architecture might affect the scaling of a computation

 Identify what classes of computation might execute efficiently on a given architecture

2

Deriving a Balance Principle

Czechowski, Kent, et al. "Balance Principles for Algorithm-Architecture Co-Design." HotPar 11 (2011): 9-9.



spcl.inf.ethz.ch

@spcl_eth

3

The DAG Model

Strand: chain of serially executed instructions.

Strands are partially ordered with dependencies 

Spawn nodes have two 

successors

Sync nodes are where 

the control flow merges



spcl.inf.ethz.ch

@spcl_eth

4

The DAG Model

Given an input size n:

• The work 𝑾(𝒏) is the total number of strands. 

• W(n)=13

• The depth 𝑫(𝒏) is the length of the critical path 

(measured in number of strands). 

• Defines the minimum execution time of the computation

• D(n)=8

The ratio 
𝑊(𝑛)

𝐷(𝑛)
measures the average available parallelism



spcl.inf.ethz.ch

@spcl_eth

 We use the classical external memory model

 Two level memory

 One large&slow

 The other small&fast (capacity: Z words)

It can be an automatic cache or a software-controlled 

scratchpad

 Work operations can be performed only on data

in fast memory

 Slow<->Fast memory transfers occur in blocks

of L words

 𝑸𝒁,𝑳 𝒏 is the number of L-sized transfers 

between slow and fast memory for an input of 

size 𝑛

5

Analyzing I/Os

Goal is to optimize the computational intensity: 
𝑊(𝑛)

𝑄𝑍,𝐿 𝑛 ∙𝐿



spcl.inf.ethz.ch

@spcl_eth

 We need to introduce the time

 This depends on the specific architecture

 𝑝 cores

 Each core can deliver 𝐶0 operations per unit time

 The time to transfer 𝒎 ∙ 𝑳 words is:

 𝛼 +𝑚 ∙ Τ𝐿 𝛽

 𝛼 is the latency

 𝛽 is the bandwidth in units of words per time

6

Architecture-Specific Cost Model

 The best possible compute time is (Brent’s theorem):



spcl.inf.ethz.ch

@spcl_eth

 𝑸𝒁,𝑳 𝒏 is for the sequential case

 We need to move to the parallel case 𝑸𝑝;𝒁,𝑳 𝒏

 We can bound 𝑸𝑝;𝒁,𝑳 𝒏 in terms of 𝑸𝒁,𝑳 𝒏

Blelloch et al, 2009, need to select a specific scheduler

 Compute it directly

 Assumptions:

 the latency is accounted for each node in the critical path

 all the 𝑸𝑝;𝒁,𝑳 𝒏 are aggregated and pipelined

by the memory system

Hence they are delivered at the peak bandwidth

7

Architecture-Specific Cost Model

 We can estimate the memory cost as:



spcl.inf.ethz.ch

@spcl_eth

8

The Balance Principle

 The balance principle follows by imposing 𝑻𝒎𝒆𝒎 ≤ 𝑻𝒄𝒐𝒎𝒑



spcl.inf.ethz.ch

@spcl_eth

9

Scheduling

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1);
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return

Edge: Dependency

5 threads

spawn call



spcl.inf.ethz.ch

@spcl_eth

10

Scheduling

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

5 threads

spawn call

spawn

join
thread



spcl.inf.ethz.ch

@spcl_eth

11

Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

executed

ready

p = 3



spcl.inf.ethz.ch

@spcl_eth

12

Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

executed

ready

p = 3



spcl.inf.ethz.ch

@spcl_eth

13

Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

 Incomplete step:

 < p nodes ready

 run all

executed

ready

p = 3



spcl.inf.ethz.ch

@spcl_eth

14

Greedy Scheduler

Maintain thread pool of live threads, each is ready or not

 Initial: Root thread in thread pool, all processors idle

 At the beginning of each step each processor is idle or has a thread T to work on

 If idle

 Get ready thread from pool

 If has thread T

 Case 0: T has another instruction to execute

execute it

 Case 1: thread T spawns thread S

return T to pool, continue with S

 Case 2: T stalls

return T to pool, then idle

 Case 3: T dies

if parent of T has no living children, continue with the parent, otherwise idle



spcl.inf.ethz.ch

@spcl_eth

15

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready for execution; bottom is 

manipulated as a stack

processor

ready deque

threads can be added

or removed

(stack discipline)

threads can be removed

thread being executed



spcl.inf.ethz.ch

@spcl_eth

16

Work Stealing Scheduler

P P P P

Spawn



spcl.inf.ethz.ch

@spcl_eth

17

Work Stealing Scheduler

P P P P

Spawn Spawn



spcl.inf.ethz.ch

@spcl_eth

18

Work Stealing Scheduler

P P P P

Return



spcl.inf.ethz.ch

@spcl_eth

19

Work Stealing Scheduler

P P P P

Return



spcl.inf.ethz.ch

@spcl_eth

20

Work Stealing Scheduler

P P P P

Steal

 When a processor runs out of work, it steals a task from the top of a random victim’s deque.



spcl.inf.ethz.ch

@spcl_eth

21

Work Stealing Scheduler

P P P P

Steal



spcl.inf.ethz.ch

@spcl_eth

22

Work Stealing Scheduler

P P P P

Spawn



spcl.inf.ethz.ch

@spcl_eth

23

Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack

 Initial: Root thread in deque of a random processor

 Deque not empty:

 Processor takes thread T from bottom and starts working

 T spawns S: Put T on stack, continue with S

 T stalls: Take next thread from stack

 T dies: Take next thread from stack

 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty: 

 Steal thread from the top of a random (uniformly) processor’s deque



spcl.inf.ethz.ch

@spcl_eth

 Based on the following insight:

 Important (sequential) programs have already been highly tuned to get a good cache performance on a 

single score

 Small working set

 Good spatial and temporal reuse

 When a core completes a task, it is assigned the ready-to-execute task that the sequential 

program would have executed first.

24

Parallel Depth First Scheduler

Liaskovitis, Vasileios, et al. "Parallel depth first vs. work stealing schedulers on CMP architectures." Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and 

architectures. ACM, 2006.

Why the speedup is not that different?
Low miss/instruction ratio => 

High Operational Intensity



spcl.inf.ethz.ch

@spcl_eth

 Cilk extends the C language with just a handful of keywords

 cilk: identifies a cilk procedure

 spawn: spawns a new task

 sync: synchronization point

 It provides performance guarantees based 

on performance abstractions.

 Cilk is processor-oblivious.

 Cilk developed at MIT

 Cilk++ developed at Cilk Arts

 Cilk Plus based on Cilk and Cilk++

 Maintained by Intel

25

Introducing Cilk

cilk int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

http://supertech.csail.mit.edu/cilk/lecture-1.ppt



spcl.inf.ethz.ch

@spcl_eth

26

Cilk Example: fib(4)

Parallelism: T1/T1 = 2.125

Assume for simplicity that each Cilk thread in fib() takes unit time to execute.

Span: T1 = 8Work: T1 = 17

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

http://supertech.csail.mit.edu/cilk/lecture-1.ppt

What about pointers? A pointer to stack space can be passed 

from parent to child, but not from child to parent.

B

A

C

ED

A A

B

A

C

A

C

D

A

C

E

Views of stack

CBA D E



spcl.inf.ethz.ch

@spcl_eth

27

Cilk Example: Vector Addition

void vadd (real *A, real *B, int n){
int i; for (i=0; i<n; i++) A[i]+=B[i];

}

How to parallelize?

if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];

} else {

void vadd (real *A, real *B, int n){

vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

}
}

http://supertech.csail.mit.edu/cilk/lecture-1.ppt



spcl.inf.ethz.ch

@spcl_eth

28

Cilk Example: Vector Addition

void vadd (real *A, real *B, int n){
int i; for (i=0; i<n; i++) A[i]+=B[i];

}

How to parallelize?

if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];

} else {

void vadd (real *A, real *B, int n){

vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

}
}

if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];

} else {

void vadd (real *A, real *B, int n){cilk

spawn vadd (A, B, n/2;

vadd (A+n/2, B+n/2, n-n/2;spawn
}

}
sync;

http://supertech.csail.mit.edu/cilk/lecture-1.ppt



spcl.inf.ethz.ch

@spcl_eth

 Cilkview reads from metadata embedded by the Cilk Plus compiler to perform its 

calculations.

 Cilkview generates rough (but repeatable) performance measures by counting instructions 

rather than reading from a clock.

 Despite the coarseness of measurements, Cilkview accurately estimates scalability.

29

Cilk Plus: Scalability Estimation

http://www.ckluk.org/ck/talks/cilkplus-tutorial-ppopp11.pdf



spcl.inf.ethz.ch

@spcl_eth

30

Cilk Plus: Scalability Estimation

http://www.ckluk.org/ck/talks/cilkplus-tutorial-ppopp11.pdf



spcl.inf.ethz.ch

@spcl_eth

31

Cilk Plus: Race Detection


